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Abstract

The purpose of this study is to demonstrate a method for virtually evaluating novel imaging 

devices using machine learning and open-access datasets, here applied to a new, low-field strength 

portable 64mT MRI device. Paired 3 T and 64mT brain images were used to develop and validate 

a transformation converting standard clinical images to low-field quality images. Separately, 3 T 

images were aggregated from open-source databases spanning four neuropathologies: low-grade 

glioma (LGG, N = 76), high-grade glioma (HGG, N = 259), stroke (N = 28), and multiple 

sclerosis (MS, N = 20). The transformation method was then applied to the open-source 

data to generate simulated low-field images for each pathology. Convolutional neural networks 

(DenseNet-121) were trained to detect pathology in axial slices from either 3 T or simulated 64 

mT images, and their relative performance was compared to characterize the potential diagnostic 

capabilities of low-field imaging. Algorithm performance was measured using area under the 

receiver operating characteristic curve. Across all cohorts, pathology detection was similar 

between 3 T and simulated 64mT images (LGG: 0.97 vs. 0.98; HGG: 0.96 vs. 0.95; stroke: 

0.94 vs. 0.94; MS: 0.90 vs 0.87). Pathology detection was further characterized as a function of 

lesion size, intensity, and contrast. Simulated images showed decreasing sensitivity for lesions 

smaller than 4 cm2. While simulations cannot replace prospective trials during the evaluation of 

medical devices, they can provide guidance and justification for prospective studies. Simulated 

data derived from open-source imaging databases may facilitate testing and validation of new 

imaging devices.
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1. Introduction

Modern medical imaging has become a mainstay of optimal patient care, particularly in 

the diagnosis and management of patients with neurologic disease. While the availability 

of imaging technology has dramatically increased worldwide in recent decades, the expense 

and operational complexity of standard imaging systems limits access in underserved areas 

and developing countries [1]. This so-called “radiology divide” leaves about 90% of the 

world’s population without access to magnetic resonance imaging (MRI) [2] and almost 

two-thirds of the population without even basic imaging technology such as ultrasound and 

X-ray radiography [3–5].

Low-field (LF) strength MRI systems aim to make MRI more accessible, promising lower 

cost, portability, fewer magnetic field-related safety concerns, and ease of use [6]. Such 

devices could decrease healthcare expenditures, improve availability in underserved areas, 

and provide a convenient and ionizing-radiation-free modality for routine or monitoring 

studies. Portable LF MRI systems may be suitable for hospitalized patients, such as those 

in intensive care units or isolation wards, for whom transport to a standard clinical scanner 

carries unacceptable risk [7–10]. More broadly, portable LF MRI units could potentially be 

used in ambulances, emergency departments, physician’s offices or rural clinics [11,12].

While LF MRI presents clear practical advantages, these systems produce images with lower 

signal-to-noise, resolution, and tissue contrast compared to their high-field strength (HF) 

counterparts and are largely designed to complement, and not replace, standard MRI. Prior 

to deployment for clinical use, the diagnostic capabilities of novel imaging technologies 

such as portable LF MRI should be evaluated across a wide range of patients and 

pathologies. The standard approach for device evaluation, improvement, and optimization 

requires recruiting large numbers of patients and manual image review by radiologists. 

This process is costly and time-consuming, which can limit the device development cycle. 

Moreover, selecting target use cases is difficult without basic information about device 

sensitivity. A complementary approach is to simulate LF images from existing, publicly 

available HF datasets and leverage machine learning for image interpretation to guide 

prospective clinical study design. Such datasets, typically compiled for machine learning 

competitions [13–16] or collaborative research programs [17,18], span broad ranges of 

pathology and offer a wealth of information for retrospective analysis [19].

Here, we propose a generalizable method for image simulation and interpretation that can 

guide prospective clinical studies of novel neuroimaging devices. We employ a simple 

empiric method to transform existing images to a custom domain, converting high-resolution 

3 T MR images aggregated from several open-access databases to images matching the 

resolution and quality of those acquired on a portable 64mT LF MRI scanner. Quantitative 

measures and manual ratings by radiologists are used to compare image quality between real 
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and simulated 64mT imaging. Separately, convolutional neural networks are trained to detect 

pathology in axial slices from the HF or simulated LF images, and detection performance is 

compared between image pairs to characterize the potential diagnostic capabilities of 64mT 

LF MRI. While automated lesion detection in simulated images does not guarantee detection 

on actual devices, simulated performance may help indicate whether pursuing a prospective 

study for a given application is promising. Applied here to LF MRI, this simulated trial 

approach offers a broadly applicable means for evaluating and optimizing novel medical 

imaging technologies to complement traditional imaging clinical trials.

2. Materials & methods

2.1. Data collection

Paired portable 64mT LF (Hyperfine) and same-day standard clinical 3 T HF (Siemens) 

brain MRI data were collected as part of an ongoing research study approved by the 

University of Pennsylvania Institutional Review Board. Participants provided informed 

consent. To develop the domain transformation, we used data from six adult patients 

with known or suspected hydrocephalus. To validate and assess the generalizability of 

the domain transformation, we used data from ten adult patients with multiple sclerosis 

(MS). Fluid-attenuated inversion recovery (FLAIR) images covering the whole brain were 

collected on each scanner. This sequence was chosen because it 1) is fundamental to 

clinical imaging for each type of pathology detailed below, 2) provides the most lesion 

conspicuity across pathologies, 3) is more robust at low field than other sequences such as 

diffusion-weighted imaging (DWI), and 4) does not rely on exogenous contrast mechanisms. 

For 64mT imaging, patients received the following 3D fast spin-echo scan optimized for 

typical brain tissue contrasts (TE = 200 ms, TR = 4 s, TI = 1.4 s, averages = 1, scan time = 

9:29 min, resolution = 1.6 × 1.6 × 5 mm). For 3 T imaging, hydrocephalus patients received 

clinical axial 2D FLAIR imaging with variable sequence parameters (TE = 96–141 ms, TR = 

8–10 s, TI = 2.2–2.55 s, resolution = 0.72–0.94 × 0.72–0.94 × 3–6 mm), while MS patients 

received a standardized 3D FLAIR sequence (TE = 398 ms, TR = 5 s, TI = 1.6 s, averages = 

1, scan time = 5:02 min, resolution = 1 mm isotropic).

Separately, retrospective axial FLAIR images obtained at 3 T for a range of pathologies 

were aggregated from several open-access sources [13–16,20]. Pathologies consisted of 

high-grade glioma (HGG, N = 259), low-grade glioma (LGG, N = 76), stroke (N = 28), 

and MS (N = 20) [13–16]. Each dataset contained manual segmentations of lesions, which 

generally manifest as hyperintense areas on FLAIR imaging. These datasets incorporate a 

range of lesion sizes and signal intensities that can be quantified using the provided lesion 

segmentations. HGG and LGG lesion segmentations on FLAIR imaging include areas that 

may represent vasogenic edema or non-enhancing infiltrative neoplasm as well as enhancing 

components when present. Additionally, non-lesional control scans (N = 5) were drawn from 

the OASIS3 dataset [20]. Table 1 contains information about the different public datasets 

used in this study. Related web addresses as of publication are listed in section 2.9 Code and 

data availability.

Arnold et al. Page 3

Magn Reson Imaging. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2. Domain transformation: high-field to low-field MRI

To generate simulated LF images from HF data, we employed a simple image 

transformation using 3 T and 64mT image pairs from three of the hydrocephalus patients. 

Transformation steps are listed in Fig. 1A and include registration, brain extraction, re-

slicing, Gaussian smoothing, and noise filtering. After registration, brain extraction, and 

re-slicing simulated images match LF resolution; however, SNR remains substantially higher 

than actual LF imaging. To better match LF image quality, a series of smoothing kernels 

and noise filters were applied to simulated images. Noise filter amplitude and smoothing 

kernel standard deviation were parameterized and fit using training data. First, random noise 

was smoothed using a 3-D Gaussian kernel with a 0.5 standard deviation. Amplitude of 

the noise filter was parameterized and added to the image. Next, the image was smoothed 

using a 3-D Gaussian kernel with a parameterized standard deviation. Finally, an additional 

noise filter was applied with a parameterized amplitude and smoothing kernel. To determine 

optimal parameters, we minimized the difference in histogram features between real and 

simulated images. The objective function consisted of the first three statistical moments 

(mean, standard deviation, and skewness). An example HF/LF pair and the simulated LF 

image can be seen in Fig. 1B with the matched intensity histograms shown in Fig. 1C. The 

transformation was applied to the HF images collected from open-access datasets to produce 

simulated LF images for gliomas, stroke, and multiple sclerosis.

2.3. Domain transformation: quantitative validation

A quantitative validation of the domain transformation was performed using data from three 

additional hydrocephalus patients. The image transformation method was quantitatively 

assessed using the gradient entropy, F, as a measure of perceived diagnostic image quality. 

This metric was derived by McGee et al. [21]:

F = − ∑
ij

ℎi, jlog2 ℎi, j , (1)

ℎi, j = [1 − 1] * gi, j
∑ij [1 − 1] * gi, j

. (2)

where gi,j is the pixel value at coordinate i,j and * represents the convolution operation. 

Of 24 metrics evaluated, McGee et al. found gradient entropy (Eq. 1) to have the strongest 

correlation with radiologists’ perception of image quality in structural MRI. We compared 

gradient entropy values between 3 T, real 64mT, and simulated 64mT images using a paired 

t-test.

2.4. Domain transformation: radiologist validation

For the domain transformation approach to be valid, real and simulated LF images should 

have similar image quality and interpretability for radiologists. To assess the diagnostic 

quality of images, we compared ratings from three neuroradiologists (with 4, 5 and 9 years 

in clinical practice) for real 64mT, simulated 64mT, and 3 T imaging from ten MS patients 

(Fig. 2B). All imaging was coregistered and paired axial slices were drawn from each image 
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type. We asked the neuroradiologists to rate slices from each image type using a 5-point 

Likert scale [22]. Each neuroradiologist rated a total of 90 image slices and slice order 

was randomized. For each slice, neuroradiologists were asked: 1) Do you see white matter 

lesions in this image? (yes/no), 2) How confident are you in this rating? (1 = excellent, 2 

= good, 3 = average, 4 = poor, and 5 = random), 3) What is the diagnostic quality of the 

image? (1 = excellent, 2 = good, 3 = average, 4 = poor, and 5 = nondiagnostic). Statistical 

comparisons between 3 T, real 64mT, and simulated 64mT imaging were performed using a 

paired sample Wilcoxon signed-rank test [22].

2.5. Modulating lesion contrast

Differences in magnetic relaxation times and optimal sequence parameters at LF relative to 

HF can contribute to differences in tissue and lesion contrasts [2]. Although our domain 

transformation approach does not mathematically model these potential differences, we 

can use lesion segmentations to evaluate how changes in lesion contrast and conspicuity 

should be expected to affect detection accuracy. Thus, we prepared additional simulated 

LF images from the HGG dataset with decreasing signal intensity within the segmented 

lesions. We chose to run this sub-analysis on the BraTS HGG dataset because the glioma 

segmentations contained 4 tissue type labels, which allowed us to modulate contrast in 

each area separately, providing overall better contrast modulation. Lesion intensity values 

were scaled independently from surrounding brain tissue in 20% increments over a range 

from 100% (original intensity) to 0% (isointense with background tissue). Isointensity was 

defined as mean lesion intensity equal to mean intensity of non-lesional tissue in the same 

slice.

Separate classifiers were trained to identify lesions at each intensity level, allowing for 

the decoupling of intensity contrast and structural abnormalities in classifier performance. 

Note that because of structural abnormalities caused by large tumors, such as mass effect, 

midline shift, and ventricular effacement, as well as intensity heterogeneity within lesions, 

even isointense lesions may retain some structural and signal alterations after contrast 

modulation. To minimize the effect of within lesion intensity heterogeneity, we restricted 

our analysis to patients within the top 50% of lesion homogeneity (N = 130), as defined by 

within tumor signal to noise ratio (SNR). Accurate detection of isointense lesions should 

therefore be primarily driven by structural abnormalities.

While tissue relaxation rates of pathology remain unknown on the low-field system, this 

contrast modulation approach can be used to gauge how much contrast would be necessary 

for lesion detection. Importantly, while we applied this intensity modulation approach 

to alter contrast between pathology and background tissue, the same approach could be 

applied to gray matter, white matter, and cerebral spinal fluid segmentations to vary contrast 

between tissues.

2.6. Model architecture

A convolutional neural network model was used to identify pathology in each high-field 

and simulated low-field dataset. Model construction and training was carried out using 

the Keras API [23] with TensorFlow [24,25] backend. Model architecture consisted of 
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the DenseNet-121 network [26,27] with initial weights pre-trained on the ImageNet 

database [28] and four additional densely-connected layers using Xavier initialization. This 

architecture was consistent across datasets (Supplemental Fig. 1).

2.7. Model training

For each dataset, a unique model was trained to perform binary classification of axial slices 

(lesion present vs. lesion absent). To obtain the best estimate of device sensitivity as well 

as avoid scanner and site confounds, separate models were trained for each dataset rather 

than combining datasets and using a multi-class classifier. Separate models were trained on 

the HF and simulated LF images. Slices were labeled as “lesion present” if at least one 

pixel from the ground-truth lesion segmentations was present. Each dataset was divided 

(~9:1 split) into “training” and “test” datasets (Supplemental Table 1). Each patient was 

confined to either the training or test dataset. Training image order was randomly shuffled. 

All reported performance metrics were derived from held-out test data. Models were trained 

for 100 epochs using the Nadam optimizer, a learning rate of 0.002 with decay [29], and 

a batch size of 32. Batch size was chosen to accommodate VRAM of a Titan X GPU. 

Training data were augmented using random horizontal flipping. Training hyperparameters 

were consistent across all models.

2.8. Model evaluation

Classification performance was evaluated using two metrics: (1) area under curve (AUC) of 

the receiver operating characteristic (ROC) and (2) F1 score (harmonic mean of precision 

and recall). A random chance null model (performance averaged over 1000 trials) was 

included for comparison. ROC curves were compared using DeLong’s test, implemented 

using the pROC R package [30]. Logistic regression was used to quantify the impact of 

lesion size and intensity on detection. Significance of logistic regression parameters was 

determined by the Wald test.

Class activation maps (CAMs) were generated from shallow and deep convolutional layers 

to identify discriminative image regions [31]. CAMs were constructed using the output 

feature map of a given convolutional layer with each feature map channel weighted by the 

lesion class gradient. Conceptually, CAMs help to interpret model function by visualizing 

image areas that are driving the model’s classification decision.

In addition to slice-by-slice classification performance, models were evaluated on a per-

patient basis. For each test patient, the model assigned a classification score to all axial 

slices. A sliding convolutional filter was used to determine the mean classification score over 

several adjacent slices (approximately 1.5 cm in the z-axis) (Supplemental Fig. 2).

2.9. Code and data availability

All code related to simulated image generation, classifier design, and statistical analysis can 

be found at: https://github.com/penn-cnt/Arnold_simulated_clinical_trial. We are grateful to 

the researchers that published the well-curated, publicly available datasets used in this study. 

As of publication, these data can be found at MS-SEG 2008 [13]: http://www.ia.unc.edu/

MSseg/, BraTS 2019 [14]: https://www.med.upenn.edu/cbica/brats2019.html, MS-SEG 
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2016 [15]: https://portal.fli-iam.irisa.fr/english-msseg/, ISLES 2015 [16]: http://www.isles-

challenge.org/ISLES2015/, OASIS3 [20]: https://www.oasis-brains.org/.

3. Results

3.1. Image transformation: quantitative validation

Quantitative validation of the image transformation method was performed using data from 

the three additional hydrocephalus patients not included during the transformation fitting 

step. For each participant, a standard 3 T FLAIR image was transformed into a simulated 

LF image for comparison against the authentic LF ground truth. Representative images from 

each participant are shown in Fig. 2A.

Image quality was quantitatively assessed using the entropy of the MR image gradient. 

Lower gradient entropy indicates sharper features and correlates strongly with radiologists’ 

perception of image quality on MRI [21]. Gradient entropy of HF images (mean ± standard 

deviation: 5.91 ± 0.54) was significantly lower than both the real LF images (7.89 ± 0.90) 

and simulated LF (7.42 ± 0.73) images (t-test, p < 0.0001). While there was a statistical 

difference between the gradient entropy of real and simulated LF images (t-test, p < 0.05), 

the effect size was dramatically reduced compared to the original HF images (0.47 vs 1.98). 

While perceived quality was modestly higher in simulated LF images, there was substantial 

overlap of gradient entropy with real LF images, indicating similar image quality between 

simulated and real images.

3.2. Image transformation: radiologist validation

Representative image transformations from MS patients are shown in Fig. 2B with 

additional examples and details in Supplemental Fig. 3. Perceptions of diagnostic quality 

for real and simulated 64mT images (Fig. 3) were similar (mean ± standard deviation, 2.98 ± 

1.04 and 3.04 ± 0.86 respectively) with no statistical difference detected between the ratings 

(paired sample Wilcoxon signed-rank test, p = 0.32). Both real and simulated 64mT images 

were rated as having average diagnostic quality, which was significantly lower than clinical 

3 T imaging, which was rated as having excellent quality (1.27 ± 0.47, paired sample 

Wilcoxon signed-rank test, p < 0.0001). White matter lesions were detected at similar rates 

in real and simulated 64mT images (86.6% and 82.2% respectively), both lower than the 

baseline detection rate of 94.4% in 3 T imaging. Confidence in rating the presence or 

absence of lesions was slightly lower for simulated 64mT (1.88 ± 1.08) compared to real 

64mT (1.59 ± 0.96) images (paired sample Wilcoxon signed-rank test, p < 0.01). Taken 

together, these results indicate that radiologists found perceived quality and clinical utility to 

be similar between real and simulated 64mT imaging.

3.3. Comparing pathology detection in standard and simulated low-field images

Deep learning models were trained to perform binary classification of images in each 

disease cohort using either HF or simulated LF MRI. ROC curves for each cohort are shown 

in Fig. 4. Despite significant image degradation, per-slice classifier performance was similar 

for HF and simulated LF MRI across all pathologies (Table 2). As expected, accuracy on 

more subtle pathology (MS lesions) was lower than more prominent pathology for both 
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HF and simulated LF MRI datasets. The performance achieved is comparable to previous 

benchmarks using deep learning for detection of brain masses [32,33], and MS lesions [34], 

and significantly exceeded null models in all cohorts tested.

3.4. Characterizing low-field pathology detection

To broadly characterize pathology detection capabilities in simulated LF images, detection 

sensitivity was aggregated across all pathologies and modeled using a logistic regression 

as a function of lesion size and intensity as shown in Fig. 5A & 5B. For both HF and 

simulated LF images, sensitivity was more strongly associated with lesion size, though both 

parameters reached statistical significance (standard: zsize = 13.5, psize < 2e-16, zintensity 

= 9.2, pintensity < 2e-16; simulated low-field: zsize = 8.5, psize < 2e-16, zintensity = 3.9, 

pintensity < 9e-5). HF imaging outperformed simulated LF imaging for detection of smaller 

or less intense lesions as shown in Fig. 5C. While performance did not vary significantly 

between HF and simulated LF images across the cohorts as a whole, sensitivity differences 

in this subgroup analysis suggests a performance drop-off when using LF imaging for 

1–4 cm2 lesions (Fig. 5A & 5B). These findings are agnostic to pathology type and may 

serve as generalizable performance thresholds for FLAIR at 64mT in yet-untested patient 

populations.

3.5. Patient-level classification

In addition to per-slice performance, we assessed pathology detection on a per-patient basis. 

Algorithms were evaluated over 17 held-out patients (three MS, four stroke, five HGG, 

five LGG) and achieved 100% sensitivity in both HF and simulated LF images. The LGG 

classifier was also evaluated using five control subjects, and correctly identified all subjects 

as non-lesional (100% specificity in both HF and simulated LF images) as shown in Fig. 6A 

& B.

3.6. Class activation mapping

We used class activation mapping to probe which image regions were driving algorithm 

decisions as shown in Fig. 6C. As expected, areas containing pathology are the primary 

drivers of classification at both shallow and deep layers. The deep CAM for the MS 

model also reveals that this model attends to periventricular areas known to be clinically 

important for lesion identification. These findings are reassuring that the tested models are 

detecting pathology of interest as expected and may have empirically captured features of 

the typical disease distribution. It is important to note that CAMs serve as an approximate 

representation of model attention, and each convolutional model layer has a unique CAM. 

While interpretation of CAMs alone is difficult due to the nonlinear nature of neural 

networks, the CAMs and the patient level visualizations provide convergent evidence that 

our models are attending to pathological features.

3.7. Determining the effect of lesion intensity on detection

Again, a potential limitation of the simulated image generation method is that it does not 

account for possible changes in LF lesion to background tissue contrast relationships due to 

differences in relaxation times or pulse sequences. Here, we quantify detection robustness by 
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measuring performance over a range of lesion contrasts (outlined in 2.3. Modulating lesion 
contrast) for HGG images. This approach also allows us to assess the relative importance of 

lesion to background tissue contrast in comparison to structural distortion from large brain 

tumors.

ROC curves for detection of HGGs are shown in Fig. 7. Compared to detection of full-

intensity tumors (AUC = 0.972), there was a statistically significant decrease in performance 

for tumors with relative contrast of 60% or less (AUC80 = 0.972, p = NS; AUC60 = 0.943, p 
= 0.01; AUC40 = 0.905, p = 2.0e-5; AUC20 = 0.901, p = 2.2e-6; AUC0 = 0.874, p = 1.7e-8). 

While contrast had a substantial impact on lesion detection, an AUC of 0.874 and F1 of 0.71 

was achieved even for isointense lesions, indicating that in this dataset even with reduced 

lesion contrast large pathology could be identified due to structural deformation.

4. Discussion

In this study we propose a generalizable method of image simulation and interpretation 

for the assessment of novel imaging modalities, particularly those that involve tradeoffs 

and lower image quality compared to an accepted standard, applied here to portable LF 

MRI. By leveraging open-access datasets, this virtual trial paradigm permits rapid, low-cost 

assessment of a device’s potential diagnostic capabilities across a range of pathologies with 

limited real device data. We assert that this approach can help to address challenges in 

medical device development, regulatory approval, and clinical trial design.

Portable LF MRI offers an exciting opportunity for improving imaging accessibility in 

low-resource environments and enables point-of-care MRI. These scanners have relatively 

low manufacturing and operating costs and may help stem the increasing contribution of 

medical imaging to healthcare expenditures [35]. To accelerate device development cycles 

and reduce the cost of bringing devices to market, it is pivotal that tools are developed to 

allow rapid prototyping, efficient regulatory approval, and expedited deployment. Virtual 

clinical trials can efficiently guide medical imaging technology evaluation by simulating 

patients, imaging systems, and image interpreters [36]. For example, in breast tomography, 

Barufaldi et al. developed a virtual breast phantom and analytical pipeline that can 

simulate a clinical trial for several hundred patients per day [37]. While not a replacement 

for traditional prospective studies, simulated clinical trials may offer significant value 

as the FDA considers devices prior to extensive prospective data collection. Simulated 

trials could contribute to early feasibility studies (EFS) or provide supporting evidence 

for investigational device exemption (IDE) approval. Additionally, simulated trials could 

identify key patient populations or indications to prioritize for standard clinical trials 

involving imaging. When considering a particular disease process, a simulated trial approach 

could help to establish benchmarks that a proposed device (such as a scanner or pulse 

sequence) must meet to provide sufficient diagnostic performance.

Based on simulated LF images, our study suggests LF MRI scanners should detect many 

brain lesions with comparable performance to standard MR imaging. However, simulated 

LF imaging was sensitive to lesion size. Accuracy was lower for 1–4 cm2 lesions as shown 

in Fig. 5A. These findings indicate that LF MRI may perform adequately for identifying 
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macro-scale pathology (most gliomas, medium-large vessel stroke, etc.) or measuring major 

brain structures, but may be less reliable for more subtle pathologies (small MS lesions, 

embolic infarcts).

We expect portable LF MRI to be used predominantly for clinical applications where 

standard MRI is either not feasible or delayed. For this reason and as a proof of concept, our 

analysis is limited to basic diagnostic capability (i.e. lesion sensitivity), defining a range of 

expected size and signal intensity thresholds, rather than more complex image interpretation 

such as distinguishing among pathologies, precise lesion segmentation, or tracking lesion 

evolution over time. While we compare performance of LF MRI to 3 T MR devices, the 

practical alternative in certain use cases (ICU patients, underserved communities, in-office 

disease tracking) would be portable CT scans or no imaging at all. In these settings, LF MRI 

may have advantages over CT such as increased tissue contrast and lack of ionizing radiation 

exposure.

This work underscores the power of open-access clinical databases to facilitate translational 

research. Platforms for data sharing, such as XNAT Central [18], iEEG Portal [38], 

and crowdsourced competitions [39] have led to rapid advances in machine learning. 

While public databases provide diverse repositories of patient data with sufficient sample 

sizes to train deep learning algorithms, most medical imaging data remains federated 

across institutions [40]. Further data-sharing efforts designed explicitly for evaluating 

devices and software for regulatory approval could reduce the cost and time necessary 

to bring innovative imaging technology to the clinic. Recently radiology has shifted 

toward centralizing algorithms while maintaining individual data ownership [41]. While this 

approach may facilitate algorithm validation across research groups, it precludes creative use 

of multi-institutional data for applications beyond algorithm testing.

The simulated trial paradigm presented here is meant to serve as a framework for applying 

pre-existing datasets and deep learning to explore the expected performance of novel 

diagnostic devices. However, the approach brings with it several important limitations and 

methodological considerations. Most importantly, the utility of simulated data is directly 

linked to the transformation method quality. Here, we implemented a relatively simple 

histogram matching based algorithm. While the present method approximates SNR and 

resolution in LF images, it does not account for other potential field strength, pulse sequence 

and device-specific artifacts that may affect lesion conspicuity and image quality.

T1 and T2* relaxation times vary as a function of magnetic field strength, which impacts 

intensity and contrast between tissues at low-field [2]. Additionally, eddy currents and 

permanent magnet imperfections cause device specific artifacts. Neither tissue contrast 

differences nor image artifacts are modeled in our current approach. More advanced 

transformation methods, including generative adversarial networks (GANs), synthetic MRI, 

and other quantitative methods [42–45] could improve simulation quality and potentially 

overcome some of these limitations of our present approach.

However, transformation algorithms that learn by example, such as GANs, require large 

amounts of data. Methods that simulate images with a low N can be advantageous in certain 
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situations [44]. Specifically, low-data requirement methods can be useful for evaluating new 

devices or during the prototyping process, where available data are scarce. While data-driven 

methods may produce closer matched simulations in the long run, these methods may 

not be feasible for all applications. Importantly, the simulated trial approach is not meant 

to serve as a replacement for prospective clinical trials. While more advanced methods 

such as GANs may improve image-to-image simulation quality, there will still likely be 

a gap between real and simulated images, especially in patients with pathology [45]. 

Simulations can provide useful guidance, including expected outcomes for prospective trials, 

however these retrospective analyses cannot provide the same level of scientific evidence as 

prospective clinical trials.

The scope of the present work is also limited to a specific field strength and pulse sequence. 

We only applied the domain transformation to 3 T FLAIR imaging with the goal of 

simulating 64mT data. Image quality at low-field varies significantly depending on the 

pulse sequence, which means domain transformation results are unlikely to generalize across 

sequences. For instance, DWI is particularly susceptible to artifacts due to distortions, eddy 

current, and system stability. While more complex simulations incorporating multiple pulse 

sequences could be developed using the current framework, domain transformations would 

need to be developed for each sequence independently and it may be difficult to accurately 

simulate sequences that are significantly impacted by image artifacts. Additionally, our 

study only evaluated the domain transformation approach for 3 T to 64mT. To validate 

that the approach is more broadly applicable, it should be evaluated across a range of field 

strengths such as 7 T to 3 T or 3 T to 1.5 T [46].

Additionally, special consideration should be taken when interpreting the machine learning 

results that compare 3 T and simulated 64mT datasets. While performance of pathology 

detection was similar between datasets, pathology detection is only one component of 

diagnostic imaging, and these results should not be interpreted as equivalent clinical utility 

between the devices. Furthermore, our approach is limited to a single sequence and performs 

a simple detection task using separate classifiers for each pathology. Radiologists use 

multiple contrasts and incorporate patient information when making a clinical diagnosis. 

Additionally, while our approach likely provides the best estimate of device sensitivity and 

avoids potential scanner and site confounds associated with combining publicly available 

datasets, it does not provide insight into device specificity for distinguishing different 

pathologies. In future work, it may be possible to reconcile scanner and site differences 

using data harmonization methods [47–49].

5. Conclusion

In this study, we have proposed a method for guiding evaluation of imaging devices via 

simulated trials, incorporating domain transfer and automated pathology detection, and 

demonstrated its application to a new portable LF MRI device. This method allows for rapid 

evaluation of actual or proposed diagnostic imaging devices and can provide guidance and 

justification for prospective studies. In our simulations, we found that gliomas, strokes, and 

multiple sclerosis lesions could be detected in LF quality images and characterized size and 
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signal intensity differences affecting lesion detection. This work additionally highlights the 

importance of centralized data sharing for device design and validation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Generating simulated low-field (LF) images. (A) Steps in the image processing pipeline 

from the original 3 T image (upper-left) to the simulated LF version (center). (B) Example 

skull-stripped axial FLAR images from a clinical 3 T (left) and a 64mT LF MRI scanner 

(center). The 3 T image was passed through the image transformation pipeline to produce 

the simulated LF image (right). (C) To generate simulated LF images resembling actual LF 

images, histogram features (mean, standard deviation, and skewness) were used to guide 

image transformation. The intensity histogram distributions relative to actual 64 mT images 

are shown before (left) and after (right) transformation.
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Fig. 2. 
Validation of image transformation method. (A) Transformation applied to three novel 

hydrocephalus patients not used to develop the domain transformation. 3 T images (column 

1), 64mT images (column 2), and simulated 64mT images (column 3). (B) Transformation 

was applied to ten novel MS patients, three of which are visualized here. No patients 

visualized were included in the training set used to develop the automated transformation.
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Fig. 3. 
Radiologist ratings of real and simulated images. (A) Radiologists identified lesions at a 

similar rate in real (86.6%) and simulated (82.2%) 64mT images, both lower than 3 T 

imaging (94.4%). (B) Image quality was also rated as similar between real and simulated 

64mT images (no significant difference, paired sample Wilcoxon signed-rank test, p = 0.32). 

Both real and simulated 64mT images were rated as having significantly lower quality 

than 3 T imaging (paired sample Wilcoxon signed-rank test, p < 0.0001). (C) Raters were 

however more confident in their ratings for real 64mT compared to simulated images 

(paired sample Wilcoxon signed-rank test, p < 0.01). Confidence ratings of both real and 

simulated 64mT images were significantly lower than 3 T imaging (paired sample Wilcoxon 

signed-rank test, p < 0.0001).
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Fig. 4. 
Pathology detection performance. Receiver operating characteristic (ROC) curves shown for 

binary classification of images with and without pathology. (A) High-grade glioma (N = 

259) 3 T classifier used 35,883 training images and 3797 testing images, while the simulated 

64mT classifier used 8334 training images and 882 testing images. (B) Low-grade glioma 

(N = 76) 3 T classifier used 10,230 training images and 1085 testing images, while the 

simulated 64mT classifier used 2376 training images and 252 testing images. (C) Ischemic 

stroke (N = 28) 3 T classifier used 2553 training images and 614 testing images, while the 

simulated 64mT classifier used 865 training images and 143 testing images. (D) Multiple 

sclerosis (N = 20) 3 T classifier used 10,824 training images and 1428 testing images, 

while the simulated 64mT classifier used 812 training images and 124 testing images. No 

significant differences between 3 T and simulated 64mT ROC curves were detected for any 

pathology. Abbreviations: True positive rate (TPR), False positive rate (FPR), Simulated 

(Sim.).
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Fig. 5. 
Detection sensitivity as a function of lesion size and scaled intensity. Sensitivity of the deep 

learning classifiers for detecting lesions in the test set is shown in the (A) simulated LF 

(1401 testing slices) and (B) standard HF (6924 testing slices) images. Areas highlighting 

discrepancies between the datasets are highlighted in image insets. (C) Sensitivity of lesion 

detection in simulated LF images relative to HF images. Each point represents the sensitivity 

ratio measured on all lesions smaller than the given size threshold. Note that sensitivity is 

similar between image types when averaged over all lesions but differs significantly when 

restricted to smaller lesions.
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Fig. 6. 
Model validation and interpretability. Panel A and B provide examples of per-patient 

pathology detection. Convolutional filters were used to generate average lesion probability 

values across several adjacent axial slices. A threshold value for patient-level classification 

was determined empirically by maximizing per-patient classification accuracy in the training 

set. Sample plots are shown for a patient with HGG (A) and a control patient (B) using 

simulated low-field imaging. (C) Class activation mapping. Row 1: Sample images of 

high-grade glioma (low-field), multiple sclerosis (low-field), low-grade glioma (standard), 

and ischemic stroke (standard). Row 2: CAMs generated from shallow network layer for 

each pathology. Row 3: CAMs generated from deepest convolutional network layer for each 

pathology.
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Fig. 7. 
Intensity modulation to explore effects of intensity contrast. (A) Intensity values of the 

pathology segmentation were modulated over a range from normal intensity (100%) to 

isointense (tumor = background). (B) For each image subset, a classifier was trained to 

distinguish pathological and normal slices (N = 259, 8334 training slices, 882 testing slices). 

AUC varied directly with lesion contrast but remained significantly better than chance even 

in the isointense cohort, which likely reflects structural deformations (such as ventricular 

effacement and midline shift as in the bottom row of panel A) or residual signal intensity 

heterogeneity.
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Table 1

List of open-access neuropathology datasets used in this study.

Dataset BraTS 2019 ISLES 2015 MICCAI 2008 MS-SEG-2016

Pathology Glioma (HGG & LGG) Stroke Multiple Sclerosis (MS) Multiple Sclerosis (MS)

Patients 335 (259 HGG, 76 LGG) 28 10 10

Center/Scanners 19 2 2 3

Classes 3 (enhanced, non-enhanced, edema) 1 (infarct) 1 (MS lesion) 1 (MS lesion)

Abbreviations: High Grade Glioma (HGG), Low Grade Glioma (LGG), Multiple Sclerosis (MS).
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Table 2

Performance metrics for each pathology type using standard or simulated low-field images.

Pathology Standard AUC Low-Field AUC PAUC Standard F1 Low-Field F1 Null Model F1

HGG 0.972 0.978 0.16 0.920 0.896 0.481 ± 0.01

LGG 0.957 0.949 0.61 0.885 0.880 0.468 ± 0.02

Stroke 0.936 0.940 0.83 0.772 0.761 0.485 ± 0.02

MS 0.896 0.873 0.49 0.766 0.745 0.442 ± 0.02

Abbreviations: High Grade Glioma (HGG), Low Grade Glioma (LGG), Multiple Sclerosis (MS), Area Under the Curve (AUC).
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