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A B S T R A C T

The outbreak of coronavirus disease 2019 (COVID-19) requires urgent need for effective treatment. Severe
COVID-19 is characterized by a cytokine storm syndrome with subsequent multiple organ failure (MOF) and
acute respiratory distress syndrome (ARDS), which may lead to intensive care unit and increased risk of death.
While awaiting a vaccine, targeting COVID-19-induced cytokine storm syndrome appears currently as the

efficient strategy to reduce the mortality of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
The stress-responsive enzyme, heme oxygenase-1 (HO-1) is largely known to protect against inflammatory

response in animal models. HO-1 is induced by hemin, a well-tolerated molecule, used for decades in the
treatment of acute intermittent porphyria. Experimental studies showed that hemin-induced HO-1 mitigates
cytokine storm and lung injury in mouse models of sepsis and renal ischemia-reperfusion injury. Furthermore,
HO-1 may also control numerous viral infections by inhibiting virus replication.
In this context, we suggest the hypothesis that HO-1 cytoprotective pathway might be a promising target to

control SARS-CoV-2 infection and mitigate COVID-19-induced cytokine storm and subsequent ARDS.

Background

COVID-19 and cytokine storm

The coronavirus disease 2019 (COVID-19) was first described in
Wuhan, China, in December 2019 and the outbreak has rapidly spread
across the world. COVID-19 is caused by a novel beta-coronavirus
named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
[1,2]. Most of COVID-19 cases (about 80%) develop mild symptoms
while 5% of infected patients have severe disease characterized by
acute respiratory distress syndrome (ARDS) and multiorgan damage
[1]. Through the binding of angiotensin-converting enzyme 2 (ACE2)
receptor, SARS-CoV-2 targets lung and other organs (e.g., heart, kidney,
intestine, brain, liver, and blood vessels), which may lead to subsequent
multiple organ failure (MOF) and intensive care unit (ICU) requirement
[1,2]. The mortality of ICU patients is mainly due to ARDS and in-
creases to 60% [3,4].

Compelling evidence suggest that cytokine storm syndrome plays a

critical role in severe COVID-19 [5]. Indeed, proinflammatory cyto-
kines/chemokines such as tumor necrosis factor (TNF)-α, interleukin
(IL)-1β, IL-2, IL-6, IL-7, granulocyte-colony stimulating factor (G-CSF),
interferon gamma-induced protein-10 (IP-10), monocyte chemoat-
tractant protein-1 (MCP-1), and macrophage inflammatory protein 1-α
(MIP-1α) are elevated in plasma of COVID-19 patients, particularly in
severe cases [4,6,7]. This cytokine storm may trigger an uncontrolled
systemic inflammatory response, which also contributes to ARDS and
MOF leading to death [8].

While awaiting a vaccine, targeting COVID-19-induced cytokine
storm syndrome appears currently as the efficient strategy to reduce the
mortality of SARS-CoV-2 and limit the overload of ICU.

In this context, the use of glucocorticoids as an immunomodulatory
therapy remains a current matter of debate. On the one hand, gluco-
corticoids might exacerbate COVID-19-associated lung injury, but on
the other hand, short course of treatment is suggested for moderate-to-
severe COVID-19-induced ARDS [5,9].

IL-6 has recently emerged as a key target due to its critical role in
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cytokine storm syndrome and subsequent disease severity [10]. Hence,
numbers of clinical trials using tocilizumab (IL-6 receptor blockade)
have been approved and in progress (e.g., ChiCTR2000029765,
NCT04317092, NCT04346355, NCT04335071).

Heme oxygenase-1 (HO-1)

Heme oxygenase-1 (HO-1, encoded by Hmox1) is a stress-induced
enzyme that metabolizes free heme into carbon monoxide, biliverdin,
and iron. Through its byproducts, HO-1 exhibits cytoprotective, anti-
apoptotic, and immunomodulatory properties that may modulate dis-
eases involving inflammation [11]. HO-1 controls the immune re-
sponse, for instance, by stimulating the expression of IL-10, the well-
known anti-inflammatory cytokine and by enhancing macrophage po-
larization toward an anti-inflammatory (i.e. M2) phenotype [12–15].
HO-1 also mediates immune response through IRF3 and subsequent
IFNα/β production, which may induce IL-10 and reduce the production
of inflammatory cytokines [16]. Interestingly, HO-1 is induced by
hemin (i.e. synthetic heme), a molecule which is well tolerated with
low rate of side effects and has been approved by the US Food and Drug
Administration for the treatment of acute intermittent porphyria
[17,18].

Hypothesis

We propose an approach to modulate SARS-CoV-2 infection and the
subsequent cytokine storm by stimulating an anti-inflammatory
pathway. Based on current literature, hemin-induced HO-1 cytopro-
tective pathway appears as a consistent target to control COVID-19.

Evidence supporting HO-1 as a potential target

HO-1 as modulator of inflammatory response in animal models

Sepsis and ischemia-reperfusion injury (IRI) are interesting models
to study inflammation. They combine major cell stress, significant burst
of free radicals, and strong inflammatory responses comparable to
COVID-19-induced cytokine storm, suggesting that findings about these
models might be used as potential therapeutic strategy against SARS-
CoV-2.

Sepsis is characterized by a systemic inflammatory response syn-
drome with overexpression of proinflammatory cytokines, which may
lead to lethal MOF [19]. In this context, HO-1 has shown protective
anti-inflammatory properties [11]. Through down-regulation of proin-
flammatory cytokines (i.e., IL-1β and TNF-α), HO-1 induction by using
hemin protects mice from lethal endotoxemia and sepsis induced by
liposaccharide (LPS) or cecal ligation and puncture [19]. Furthermore,
overexpression of HO-1 has also been demonstrated protective against
LPS-induced lung injury [11].

Preemptive induction of HO-1 by using hemin is largely known to be
an efficient protective strategy against renal IRI in animal models
[20,21]. Renal IRI also promotes systemic release of pro-inflammatory
cytokines (e.g., IL-1β, IL-6, and TNF-α) that induces a systemic in-
flammatory response, resulting in proinflammatory cells recruitment
and remote organ damage, particularly in lung [22].

Basically, hemin-induced HO-1 improves renal outcomes after renal
IRI by decreasing level of various renal proinflammatory cytokines,
including IL-1β, IL-6, TNF-α, KC (keratinocyte chemoattractant also
called CXCL1, a chemokine involved in neutrophils influx), and MCP-1
[20,22]. Moreover, it has been shown that hemin-induced HO-1 re-
duces IRI-induced cytokine storm and subsequent lung injury by de-
creasing plasma level of IL-6 and KC, and lung inflammation (neu-
trophils influx and lung KC) [22].

Resident- and circulating-macrophages are critical for HO-1 anti-
inflammatory properties

Hemin-mediated protection against renal IRI requires specific ex-
pression of HO-1 within myeloid cells (i.e., CD11b+ F4/80lo macro-
phages) [20]. Interestingly, this myeloid cell sub-population was ob-
served in the kidney and spleen, suggesting that protective effects might
be provided by both tissue-resident and infiltrating/circulating HO-1+

myeloid cells [20]. In term of lung injury, resident alveolar macro-
phages (AMs) prevent lung inflammation and repair tissue damage
through several anti-inflammatory mechanisms including HO-1 [23].
Then, in vitro hemin significantly induced HO-1 expression in primary
rat AMs [23]. Moreover, it was shown that M2 macrophages promote
recovery in sepsis-induced lung injury through overexpression of anti-
inflammatory cytokines [24]. By inference, tissue-resident AMs ex-
pressing HO-1 might explain the mitigation of renal IRI/sepsis-induced
lung injury observed with hemin. Altogether, these data show the im-
portance of lung-resident macrophages, which might be targeted by
hemin to mitigate local inflammation and subsequent ARDS following
cytokine storm.

Otherwise, splenectomy was associated with an exacerbated pro-
inflammatory response and lung injury after renal IRI due to decreased
splenic IL-10 production, suggesting that circulating macrophages are
also involved in the control of lung injury [25]. HO-1+ spleen myeloid
cells might therefore reduce cytokine storm and constitute a reservoir
that might be recruited to remote injured lung and dampen subsequent
ARDS. Accordingly, these observations suggest that hemin-mediated
improvement of lung injury following systemic inflammatory response
might also be provided by both tissue-resident and infiltrating/circu-
lating HO-1+ M2 macrophages.

Antiviral effect of HO-1

A recent study has highlighted the antiviral effect of HO-1 against
influenza viruses. Indeed, authors showed that cobalt protoporphyrin
(CoPP), a potent HO-1 inducer similar to hemin, inhibits influenza A
virus replication through HO-1 interaction with IRF3 and subsequent
expression of IFNα/β [26]. A same mechanism was found in human
respiratory syncytial virus infection with attenuation of viral replication
and lung inflammation upon HO-1 induction and expression of IFNα/β
in the infected lung [27]. Of note, HO-1-mediated type I IFN response
may control numerous of other viral infections, such as hepatitis B/C
virus, Ebola virus, and human immunodeficiency virus by inhibiting
virus replication [26]. By inference, these data suggest that hemin-in-
duced HO-1may be also used to overcome the outbreak of COVID-19 by
inhibiting SARS-CoV-2 replication.

Hemin use in humans

Hemin was shown to increase efficiently HO-1 protein expression
and activity in humans [17]. Currently, hemin is only approved for the
treatment of acute intermittent porphyria by the US Food and Drug
Administration [18]. Interestingly, hemin is a well-tolerated molecule
with low rate of adverse effects, such as headache, fever, and phlebitis
at the site of infusion [17,18]. Recently, hemin safely induced HO-1 in
renal transplant recipients and further studies are expected to de-
termine the impact of HO-1 expression on clinical outcomes [28].

Discussion

Dual effect of hemin

The timing of hemin administration is a critical point to consider in
this hypothesis. Indeed, hemin-induced HO-1 protects against renal IRI
when hemin is given preemptively to renal insult (i.e. hemin pre-
conditioning) [20,21]. However, hemin does not protect kidney and
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even worsened renal insult when acute kidney injury is already estab-
lished [29]. Hemin may therefore have a dual effect, protective or de-
leterious, depending on the timing of its administration.

Hemin-induced HO-1 therapy: a polymorphism dependency

The polymorphism of human Hmox1 gene should be carefully con-
sidered. Indeed, polymorphisms of guanosine thymidine dinucleotide
(GT)n repeats in the promoter of Hmox1 are inversely correlated with
HO-1 mRNA level and enzyme activity [11]. Individuals carrying the
long (L) allele [(GT)n ≥ 30] display impaired transcriptional regulation
and decreased expression of HO-1 [11]. This genetic variation influ-
ences the ability to induce HO-1 and, thereby, hemin treatment effi-
ciency. Of note, HO-1 was found to be elevated in the lungs of patients
with ARDS and Hmox1 promoter polymorphisms also influence the
occurrence of ARDS [30,31]. Polymorphisms in HO-1 might be there-
fore involved in the heterogeneity reported in critically ill COVID-19
patients, and it even more influences susceptibility to various human
diseases (e.g., cardiovascular disease, necrotizing acute pancreatitis,
chronic obstructive pulmonary disease) [11]. Accordingly, these data
provide critical information about eventual pharmacologic targeting of
HO-1 in COVID-19+ patients.

Hypothesis testing

We would perform a clinical study with hospitalized severe COVID-
19+ patients, which would be randomized into hemin and placebo
groups. Patients would be monitored clinically and by usual laboratory
tests and plasma cytokines/chemokines/HO-1 measurement. Although
it would be practically difficult, we think that polymorphisms in HO-1
should be considered to assess rigorously hemin treatment efficiency.
DNA fragments would be extracted from peripheral blood stem cells,
and the Hmox1 locus containing the GT repeat would be amplified by
using polymerase chain reaction (PCR).

Based on current knowledge about hemin pharmacology in humans,
we propose intravenous dose of 3–4 mg/kg/day (maximum dose of
6 mg/kg/day) similar to that recommended for treating acute inter-
mittent porphyria [17,18]. The duration of the treatment should be
considered according to clinical response (e.g. 3–14 days for the
treatment of acute intermittent porphyria) [17,18]. Due to its dual ef-
fect, hemin should be administrated on the onset of respiratory symp-
toms to prevent ARDS and subsequent overloaded ICU. Hence, we do
not recommend hemin use in case of established ARDS because it might
worsen the disease based on experimental data [29].

Conclusion

With respect to current literature, there is a series of compelling
evidence indicating a potential role for hemin-induced HO-1 as a
treatment strategy against COVID-19-induced cytokine storm syn-
drome. Conversely to tocilizumab and glucocorticoids, hemin-induced
HO-1 is able to mitigate cytokine storm and subsequent ARDS with a
deciphered mechanism, by targeting wide range of proinflammatory
mediators in animal models of sepsis and IRI. Moreover, due to its
antiviral properties, hemin-induced HO-1 might be an interesting target
to control the outbreak of COVID-19 by inhibiting SARS-CoV-2 re-
plication.

Obviously, the relevance and translation of animal/in vitro findings
to humans require further investigations. However, hemin efficiently
induces HO-1 in humans and is used safely for decades in the treatment
of acute intermittent porphyria and recently in renal transplant
[17,18,28]. Due to the low rate of adverse events, hemin appears to be a
safer treatment than glucocorticoids. Furthermore, glucocorticoids
might exacerbate COVID-19-associated lung injury [5,9]. Hence,
hemin-induced HO-1 might be a harmless, novel, and promising ap-
proach for controlling SARS-CoV-2 infection and limiting cytokine

storm syndrome with subsequent ARDS following COVID-19.
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