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Abstract: Schizophrenia is a severe neuropsychiatric disease whose diagnosis, unfortunately, lacks
an objective diagnostic tool supporting a thorough psychiatric examination of the patient. We
took advantage of today’s computational abilities, structural magnetic resonance imaging, and
modern machine learning methods, such as stacked autoencoders (SAE) and 3D convolutional neural
networks (3D CNN), to teach them to classify 52 patients with schizophrenia and 52 healthy controls.
The main aim of this study was to explore whether complex feature extraction methods can help
improve the accuracy of deep learning-based classifiers compared to minimally preprocessed data.
Our experiments employed three commonly used preprocessing steps to extract three different feature
types. They included voxel-based morphometry, deformation-based morphometry, and simple spatial
normalization of brain tissue. In addition to classifier models, features and their combination, other
model parameters such as network depth, number of neurons, number of convolutional filters, and
input data size were also investigated. Autoencoders were trained on feature pools of 1000 and
5000 voxels selected by Mann-Whitney tests, and 3D CNNs were trained on whole images. The
most successful model architecture (autoencoders) achieved the highest average accuracy of 69.62%
(sensitivity 68.85%, specificity 70.38%). The results of all experiments were statistically compared (the
Mann-Whitney test). In conclusion, SAE outperformed 3D CNN, while preprocessing using VBM
helped SAE improve the results.

Keywords: schizophrenia; classification; 3D CNN; autoencoders; voxel-based morphometry;
deformation-based morphometry; deep learning

1. Introduction

Schizophrenia represents a severe neuropsychiatric disorder that affects nearly 20 mil-
lion people worldwide [1]. As treatment can help more efficiently if an appropriate antipsy-
chotic is prescribed in the early stage, a fast diagnosis is crucial [2]. However, there is no
known objective marker, such as a finding in a blood test or a shape in the brain anatomy,
to conclusively diagnose schizophrenia, so current diagnosis relies on an interview with a
psychiatrist. During the interview, the patient shows the symptoms they suffer from, such
as hallucinations or delusions. Still, there is no objective diagnostic result to confirm the
diagnosis and be available for presentation to the patient and their family.

In past decades, there have been efforts to take advantage of computational methods as
tools for neuroimaging data analysis to determine the neurobiological nature of psychiatric
diseases. In the early stages, statistical methods were used to detect differences between the
brain of a healthy person and a patient diagnosed with, for example, schizophrenia [3–7],
Alzheimer’s disease [8], or borderline personality disorder [9–11] at the group level. Man-
ual region-of-interest (ROI) methods were used to measure the size of a specific structure in
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the brain and compare it between patients and healthy subjects. However, this method is
unsuitable for comparability between laboratories due to vaguely defined borders between
anatomical structures [8]. Recently, fully automated brain morphometry methods have
emerged that focus not on a single structure but the whole brain or its tissues. The method,
termed voxel-based morphometry (VBM), has become a standard pipeline that processes
image data from an anatomical MRI scan into a statistically comparable image [12,13]. The
pipeline starts with registration and resampling into a standardized space, continues with
segmentation into brain tissues–white matter (WM), gray matter (GM), and cerebrospinal
fluid (CSF), and ends with Gaussian kernel smoothing, resulting in gray matter density
(GMD) features. A statistical map with p-values can be counted on features and describes
the statistical significance of the differences between groups in each voxel. VBM-based
approaches revealed structural changes in schizophrenia, particularly in the left superior
temporal gyrus region [3], decrease in GM volume in the thalamus, middle orbital gyrus,
inferior frontal gyrus, and other structures [6], and decline in GM bilateral occipital lobe,
left orbital frontal cortex and other structures [7], as well as GM reduction in the ventral
cingulate gyrus and several regions of the medial temporal lobe in patients with Borderline
Personality Disorder [9]. These findings suggest that schizophrenia is manifested by mor-
phological abnormalities in many brain structures. Another brain morphometry method
that uses anatomical MRI scans is deformation-based morphometry (DBM). DBM tracks
the shifts, turns, and other movements of the brain tissues while registering the image on a
standard brain template. The resulting features are represented by local volume changes
(LVC), which can also be statistically evaluated at the voxel level.

Findings obtained using various automatic brain morphometry methods suggest that
there are differences between healthy and diseased groups that are revealable by statistical
analysis of various features extracted from brain image data. Despite these successful
results based on a group-level analysis, there is a lack of a supportive diagnostic tool that
would reveal with specific probability whether a patient is affected by a brain disorder or
not. In comparison with statistical methods, classifiers work at the subject level. Many
classification methods have been used to solve this task. Statistics-based methods such as
linear discriminant analysis and its modifications have been applied to imaging data in
schizophrenia research [14], whereas machine learning methods, which, in comparison
with statistical methods, learn hidden patterns in the images, often iteratively based on the
training dataset, proved to be a good way to classify neuroimaging data. There have been a
lot of studies using machine learning to classify neuropsychiatric diseases. Some authors
used support vector machines (SVM) to classify schizophrenia with features extracted from
MRI data using wavelet transform [15] or from fMRI data using independent component
analysis [16]. Other features were extracted by calculating the Pearson correlation of WM
integrity in diffusion-weighted images [17] or features extracted and selected with SVM
alone [18]. Other authors took advantage of ensemble learning, which employs multiple
classifiers trained on different data or features, to provide a decision by voting [19–21].
Although the classification of schizophrenia is still challenging, some machine learning
methods have been very successful in diagnosing some neurodegenerative diseases, such
as Alzheimer’s disease. Savio et al. used backpropagation, radial basis function, and
probabilistic neural network [22], while Huang et al. [23] used VBM and artificial neural
networks (NNs).

The current success of deep learning builds on the historical development of NNs,
which began with the perceptron [24] and the multi-layer perceptron (MLP) [25]. The MLP
is a commonly used classifier. However, it may be overfitted with a growing number of
neurons and layers. A very deep architecture can easily learn the information, such as
subject class, and classify well on a training group, but the similarly successful results
may not be achieved on test data. A better way to learn NNs is to go layer by layer while
controlling the correctness of the learning. Such models are called stacked autoencoders.

An autoencoder [26] is a single-layer neural network in which the input information
is the same as the expected target; thus, the hidden layer of neurons tries to reconstruct
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the input [27]. The single layers are then cascaded to create a deep stacked autoencoder
network, which is finally tuned by a backpropagation algorithm. Autoencoders are used
to classify many brain diseases. Employing the leave-site-out method for validation,
Zeng et al. [28] diagnosed schizophrenia with a deep discriminant autoencoder network on
functional connectivity MRI in a multi-centric study, reaching an accuracy of 85% and 81%.
Moussavi-Khalkhali and Jamshidi [29] used sparse AE to extract features for classifying
Alzheimer’s disease vs late and mild cognitive impairments and controls using multinomial
logistic regression. In addition to the standard AE (82.88% accuracy), they used partially
cascaded AE that works with information from each layer as an input to the classifier
(92.44% accuracy). They also used denoising autoencoders. Nayak et al. [30] employed
a modified autoencoder (SRVFL-AE) to classify MRI with multiclass brain abnormalities
such as degenerative disease, stroke, tumor, infectious disease, and normal brain, with
high accuracy exceeding 95%. Mendoza-Léon et al. [31] developed a supervised switching
autoencoder based on the principle of reconstructing two output channels. The better-
reconstructed channel defined the input class. They had single slices taken from structural
MRIs of patients with Alzheimer’s disease and achieved an accuracy higher than 87.5%.
Deep wavelet autoencoders helped to detect cancer in the brain [32]. Pinaya et al. [33] used
deep autoencoders to classify schizophrenia with AUC-ROC 0.611-0.751.

Another effective method for training deep architectures is the convolutional neural
network (CNN) [34,35]. The convolutional neural network has its 3D variant for imaging
data with its 3D nature, such as MRI. The 3D CNN consists of several types of layers.
The main type is a convolutional layer that counts the convolution operation between the
kernel and the input image or output of the previous layer. The convolution operation
brings two advantages. The CNN works with a much smaller number of weights than
traditional MLP because the weights for each convolution kernel are shared for each kernel
position during convolution. It strongly reduces the number of network parameters, which
can help to tackle overfitting. Compared to MLP, SVM, Naïve Bayes, or other classifiers,
the convolution works with information about the position of neighboring voxels. Each
convolution’s result serves as the activation function’s input, which is necessary to turn the
network into a nonlinear model, and the standard for CNN is RELu (Rectified Linear Unit).
Two other types of layers follow: the batch normalization (BN) layer and the max-pooling
(MP) layer, several layers with fully connected neurons follow, and typically, the output
layer for the classification task is SOFTMAX.

CNN has found application in many medical image classification and schizophrenia
applications, delivering good results. Wang et al. [36] worked with functional MRI and
took advantage of the dilated 3D convolution, achieving an accuracy of 80%. They suggest
preprocessing the data by slice timing, realigning, normalization, and smoothing. Three-
dimensional CNN was used in [37] on structural MRI preprocessed by VMB, reaching
79.27% accuracy and 70.98% accuracy on the validation set, respectively. Hu et al. [38]
trained 3D CNN on structural and diffusion MRI, preprocessed by skull stripping, regis-
tration, segmentation, and modulation, with an accuracy of 79.27% and pre-trained 2D
CNN with an accuracy of 72.41%. Oh et al. [39] classified schizophrenia patients on a
multi-centric structural MRI dataset (n = 873) with an accuracy of 97%, but the accuracy
achieved on the validation dataset was lower than 70%. Campese et al. [40] compared
3D CNN, 2D CNN and SVM on structural MRI data (preprocessed by VBM), with 3D
CNN outperforming the other two. Therefore, the authors suggest that 3D convolution can
capture spatial information correctly. The authors also applied the augmentation technique
in CNN and noted a positive effect on accuracy.

The two previously mentioned deep architectures (CNN and AE) were combined
by Oh et al. [41]. They used a 3D convolutional autoencoder to diagnose schizophrenia
spectrum disorders based on task-based fMRI (the task was to evaluate positive, negative,
and neutral images with an unpleasant or neutral reaction). In doing so, they achieved
an accuracy of around 84%. The autoencoders served as a tool for initializing the weights
before the final tuning of the convolutional network.
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Since the quality of the classifiers is directly affected by the dataset’s quality, one of the
main challenges is using an appropriate image preprocessing pipeline. There are various
feature extraction and selection methods that can successfully extract only important and
well-discriminative information from the image. Voxel and deformation-based morphome-
tries can serve as feature extraction methods, as can wavelet transform [15] or independent
component analysis [16] in the case of fMRI data. In this paper, the advantage of mor-
phometry methods is exploited. Voxel-based morphometry [12] prepares segmented and
smoothed tissues, whereas deformation-based morphometry preprocesses the whole brain
and prepares information, as some shifts are necessary for template fitting. Since CNNs are
known to classify the original image without feature selection, the third dataset used in this
paper uses T1-weighted images preprocessed using only the necessary steps to remove the
skull and non-brain parts. As previously described, a whole-brain approach without much
preprocessing could be advantageous because schizophrenia manifests inhomogeneously
in the brain.

Deep learning methods are state-of-art classifiers known for their ability to extract
appropriate information for classification. However, morphometries as feature extraction
methods used to play a crucial role in brain preprocessing, where shallow classification
methods were applied and enabled to prepare information for classifiers, improving the
classification pipeline. Even nowadays, authors tend to use preprocessing [36–38,40]. To
the best of our knowledge, various morphometric methods have not yet been investigated
and compared in combination with deep learning classifiers, such as autoencoders and 3D
CNN-based models, and the ability of these methods to properly extract features alone has
not been compared with morphometry preprocessing methods.

In this paper, several research questions are asked and answered experimentally. First,
SAE and 3D CNN deep learning methods were employed to classify schizophrenia patients
vs controls from our dataset. Second, CNN, in particular, does not need much preprocessing.
Therefore, two morphometric methods, VBM and DBM, were applied and assessed to see
if this feature extraction helps classify deep learning-based models compared to minimally
preprocessed MRI. The third goal was to explore how architectural changes, such as the
number of layers and neurons, affect each feature extraction outcome. Fourth, features
extracted by the three methods were combined in all possible ways, and the impact on
classification results was observed.

2. Materials and Methods
2.1. Schizophrenia Patients and Healthy Controls

All the subjects were patients at the University Hospital Brno. The dataset was
52 patients in the first episode of schizophrenia (SZ) and 52 healthy control subjects (HC).
The entire dataset consisted of only male patients with median (min-max) age: SZ 22.9
(17–40), HC 23.0 (18.2–37.8). The dataset groups were age-matched to limit the effect of
gray matter volume reduction with aging [42]. All patients were diagnosed according
to ICD-10 (International Classification of Diseases). Their blood and urine samples were
collected and tested for toxicology, hematology, and biochemistry to exclude patients
with abnormal findings. None of the subjects had a family or personal history of Axis I
psychiatric disorder. All subjects signed informed consent, and the study was approved by
the ethics committee [43].

A previous study [44] involved a subset of 39 patients and an equal number of controls.
Another of our previous studies [14] comprised 49 patients and 49 healthy controls recruited
from the same clinical workplace. The numbers of subjects differed due to prospectivity in
the study design. The data collected from this study were also used in our previous paper
focused on training a multi-layer perceptron with random subspace ensembles [21].

All subjects were scanned using a 1.5 T Siemens Symphony MRI machine with the
following parameters: the sagittal tomographic plane thickness was 1.17 mm, the in-plane
resolution was 0.48 mm × 0.48 mm, the 3-D field of view contained 160 × 512 × 512 voxels,
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IR/GR sequence, TR was 1700 ms, TE was 3.93 ms, TI was 1100 ms, the flip angle was 15◦,
and FOV was 246 × 246 mm [43].

2.2. Feature Extraction

There are many brain imaging modalities, each carrying a different type of information,
which together provide comprehensive data for data modeling based on multidimensional
statistical methods and machine learning techniques. In this experiment, structural MRI
data provided information for deep neural network models. The data were preprocessed
using three different standardized pipelines supplying different image features: (i) image
registration with skull stripping and two automated morphometry methods, (ii) voxel-
based morphometry, and (iii) deformation-based morphometry.

The first dataset, later referred to as the T1 dataset, consisted of features corresponding
to T1-weighted intensities in structural MRI images. The images were spatially normalized,
the skull was stripped, and the CSF was removed using SPM8 software (Statistical Paramet-
ric Mapping package for MATLAB: http://www.fil.ion.ucl.ac.uk/spm/, accessed 11 March
2022) to preserve only those brain parts with white and gray matter. The second dataset
was preprocessed using the VBM pipeline [45], later referred to as the GMD dataset, im-
plemented in the SPM8 toolbox (http://dbm.neuro.uni-jena.de/vbm/, accessed 11 March
2022). The pipeline, described in detail in [21], included intensity inhomogeneity correction,
spatial normalization, GM segment extraction and its modulation with the determinants
of the Jacobian matrices computed during the nonlinear registration, and final smoothing
using an 8 mm FWHM Gaussian kernel. The third dataset was preprocessed using DBM,
which involved identical correction and spatial normalization steps as for VBM. Instead
of working with only the GM tissue segment, the DBM pipeline transforms the brain
images into local volume changes resulting from the determinants of the Jacobian matrices
extracted from vector displacement fields obtained by the high-dimensional registration
algorithm [46]. This preprocessed dataset of local volume change features is later referred
to as the LVC dataset.

2.3. Experiment 1: Autoencoders

The first experiment focused on the use of stacked autoencoders. The pipeline of the
classification process, consisting of simple feature selection, SAE with specific configu-
rations, and validation methods, is shown in Figure 1. The first part of the algorithm is
the selection of voxels that could fundamentally improve the success rate of the networks
and tackle the problem of the time-consuming learning process. The selection metric was
the Mann-Whitney test, i.e., a non-parametric method, so no assumption about the data
distribution had to be met. After putting aside the testing samples, the Mann-Whitney test
was applied to each voxel of the brain images voxels at a specific location in each patient’s
brain, creating one group, and voxels at the same location in healthy brains created a second
group. The application of the tests on the whole brain resulted in a probability map of
p-values. These values were ranked from lowest to highest so that only the most discrimi-
nating voxels could be selected. The results are not interpreted as statistically significant
differences between the two groups–the healthy and patients–but serve as a tool to select
only those voxels that could lead to good classification results. The selection was performed
using a threshold value related to a predefined p-value, i.e., an uncorrected significance
level. By thresholding, voxels were divided into two groups. The first group served as the
set of features for learning classifiers and is referred to as the feature pool (FP). The second
group was omitted in further analysis. The parameter examined was the size of the feature
pool, which was set to 1000 and 5000 voxels. Since the feature pool of 5000 voxels did not
bring significant classification improvement and was very computationally expensive, the
feature pool was not further enlarged.

http://www.fil.ion.ucl.ac.uk/spm/
http://dbm.neuro.uni-jena.de/vbm/
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Figure 1. Scheme of the performed experiments with SAE-based and 3D CNN-based classifiers
trained on different types of brain imaging features. There are three distinct features extracted using
different image preprocessing pipelines–two complex pipelines taken from automated morphometry
methods (VBM, DBM) and a simple one that includes only registration and skull-stripping operations.
The features are pooled using univariate testing, sorting, and thresholding in the case of the SAE
classifier, whereas all features are taken in with the 3D CNN classifier. The experiments further
involve changes in the architectures and the optional combination of different feature types.

Once the feature pool was defined, stacked autoencoders could be learned on selected
voxels to classify healthy controls and patients. The SAE-based classifiers have many
parameters that need to be set, so the size of the feature pool and two other network
settings were explored. These were the number of layers and the number of neurons.
The latter always decreased from the input to the output layer, so the information going
through the network was continually compressed to eventually provide a small feature
space for the classification by the SOFTMAX layer. The number of neurons was set equal to
or smaller than the number of inputs. Although it would have been very informative to
compute all combinations of layers and neurons within layers, the experiment would have
been very demanding on computational resources, which were limited. Therefore, trends
were observed rather than looking for the best results across all possible combinations of
network architectures.
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Stacked autoencoders with the following settings were used for classification based on
all the three datasets: each layer was learned using 100 epochs, the supervised SOFTMAX
layer was learned in 1000 epochs, the regularization parameters were left as default (L2
regularization was equal to 0.004, sparsity regularization was equal to 4, and sparsity
proportion to 0.15), and the training was fine-tuned. The training process was validated
using 10-fold cross-validation, where 10% of the dataset was put aside in each fold before
the features were selected and the network trained. After the last fold was performed,
the complete testing data set consisted of 104 subjects, and each subject was classified by
a network that was not trained on that subject to achieve unbiased results. The entire
training process was repeated ten times to tackle the variability caused by random weight
initialization. Finally, average accuracy metrics were assessed.

2.4. Experiment 2: 3D Convolutional Neural Network

Like autoencoders, 3D convolutional neural networks were used to solve the problem
of classifying all three types of features, i.e., intensity with minimal preprocessing, gray
matter density, and local volume changes (see the classification process in Figure 1). Since
the convolutional neural network can extract important features by itself, no other feature
selection method, such as the Mann-Whitney test, was applied in this experiment. Further-
more, by omitting this selection step, no information about the position of neighboring
voxels was lost, so the images were treated as 3D structures, which is crucial for convolution
operations in CNNs.

The parameters examined were the number of convolutional layers and convolutional
kernels. The deep nature allows the neural network to learn and compose the structure of
complex features across layers; the more layers, the more space to work with the features.
However, the size of the network also affects the risk of overfitting, and a very deep CNN
may not provide benefits, especially if the dataset is not large enough. The convolution
kernel size was set to 3 × 3 × 3 voxels by default, and the number of convolutional
kernels increased from the input to the output layer. The convolutional layer was always
followed by the batch normalization, RELu, and max-pooling layers. The particular 3D
CNN architectures examined can be seen in Table 1. The other parameter settings were as
follows: the input image dimension was 121 × 145 × 121 × 1, where the last dimension was
the number of channels (grayscale channel only); the stride was set to 3, the dilation factor
was 1, the max-pooling dimension was the same as filter dimension (3 × 3 × 3 voxels),
the number of neurons in the fully connected layer was 10 hidden and 2 output neurons,
the dropout = 0.5, the initial learning rate was 0.0001 for the Adam algorithm, the data
were shuffled in each epoch, and the mini-batch size was 10. Training was performed on
batches (subsets) of data to estimate the gradient over the training set. The more data there
is in a batch, the better the gradient estimation, and it is more efficient than calculating the
gradient for each subject separately [47]. The training was controlled by the validation set,
which consisted of 10% of the training data, and was stopped after 1000 epochs or when all
of the following criteria were met: the minimal number of epochs was 100, accuracy on
the validation set was decreasing, training accuracy was greater than 90%, and validation
accuracy exceeded 75%. These criteria enabled the 3D CNN to learn with high accuracy in
a reasonable amount of time.

The training process was validated using 10-fold cross-validation in the same way as
for SAEs, and since the weights were initialized randomly and the learning process was
random due to shuffling in both network types, the entire learning process of each architec-
ture was performed ten times. Therefore, all assessment metrics (accuracy, sensitivity, and
specificity) were averaged, and their mean values are presented here.
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Table 1. The 3D CNNs architectures used. The numbers in the chart represent the number of
kernels in a particular layer. The dashes stand for the following: batch normalization, RELu, and
max-pooling layers. There is a fully connected layer at the end of each network with 10 hidden and
2 output neurons.

3D CNN Name 3D CNN Architecture

CNN-1 10-50-100
CNN-2 20-40-60-80-100
CNN-3 20-50-100-150-200
CNN-4 5-10-20-40-60-80-100
CNN-5 10-20-30-40-50-60-70-80-90
CNN-6 50-100-150-200-250-300-350
CNN-7 50-100-150-200-250-300-350-400-450

2.5. Experiment 3: Combined Features

The final experiment focused on combining the input data to investigate whether
this step would improve accuracy. T1, GMD, and LVC features were thus combined in
all possible ways, i.e., T1 + GMD, T1 + LVC, GMD + LVC, and T1 + GMD + LVC were
put together as input data. In the case of autoencoders, feature selection based on the
Mann-Whitney test was applied to each dataset separately, and particular feature pools
were concatenated to serve as input data for autoencoders with various architectures.
Regarding 3D CNNs, features were combined using a Directed Acyclic Graph (DAG),
allowing multiple inputs in the next layer. The T1, GMD, and LVC features were processed
separately by 3D convolutional, batch normalization, RELu and max-pooling layers in
their own channels. Then the outputs were combined and processed using fully connected
layers. This way, the DAG architecture enabled assessing whether any feature combinations
could improve accuracy. Since learning the 3D CNN classifier based on the combination
of the two or three features was computationally very intensive, we decided to explore
only CNNs of five and seven convolutional layers, which gave good results when single
modality was used. Adding more layers was beyond our computational possibilities.

3. Results

This section summarizes the results obtained in all experiments. First, the results of
the first and third experiments (comprising autoencoders) are described, followed by the
results of all classification experiments with convolutional neural networks. Autoencoder
experiments were performed in Matlab R2020a on a computer with 2× Dual-Core AMD
Opteron (tm) Processor 2220 2.80 GHz and 32 GB RAM. The 3D CNNs experiments were
performed in Matlab R2020a on a computer with 2× Intel® Xeon® CPU E5-2640 2.5 GHz
and 64 GB RAM.

3.1. Autoencoders

The results counted for the combination of two feature pool sizes and six SAE architec-
tures are summarized in Table 2 for all three features.

3.1.1. T1

The classification results achieved on the minimally preprocessed dataset, denoted
as T1, did not exceed 60% of the accuracy metric. The best result was an accuracy of
56.35% (sensitivity 65.77%, specificity 46.92%) using a feature pool with 5000 features and
500 neurons. The model with a feature pool of size 1000 voxels had the best accuracy
of 54.13% when an autoencoder with 50 neurons was trained. The accuracy of the other
architectures varied between 48.65–54.52%.



Brain Sci. 2022, 12, 615 9 of 16

Table 2. Results for SAE learned on the three types of features (T1, GMD, and LVC). The metrics
listed represent the accuracy (sensitivity/specificity) in percentage.

Feature Pool Neurons T1 [%] GMD [%] LVC [%]

1000 500 48.75 (58.27/39.23) 67.6 (64.42/70.77) 56.44 (58.27/54.62)
1000 50 54.13 (47.88/60.38) 65.48 (61.15/69.81) 54.71 (55.96/53.46)
1000 500-50 48.65 (46.73/50.58) 69.62 (68.85/70.38) 52.12 (58.27/45.96)
1000 1000-500-100 52.31 (46.54/58.08) 68.37 (67.69/69.04) 52.98 (54.81/51.15)
1000 100-50-10 52.12 (39.81/64.42) 67.12 (67.12/67.12) 56.63 (52.5/60.77)
1000 1000-500-100-50-10 50.87 (39.42/62.31) 51.44 (90.19/12.69) 56.15 (60/52.31)
5000 500 56.35 (65.77/46.92) 50.77 (96.92/4.62) 63.37 (62.88/63.85)
5000 50 54.52 (58.85/50.19) 50.77 (97.31/4.23) 57.4 (51.92/62.88)
5000 500-50 54.13 (71.73/36.54) 59.04 (54.04/64.04) 61.06 (55.77/66.35)
5000 1000-500-100 52.79 (54.81/50.77) 53.08 (54.23/51.92) 58.65 (55.96/61.35)
5000 100-50-10 50.58 (30/71.15) 65 (64.04/65.96) 57.31 (45.19/69.42)
5000 1000-500-100-50-10 51.25 (39.42/63.08) 66.25 (67.12/65.38) 55.1 (49.42/60.77)

3.1.2. GMD

The autoencoders learned on the GMD performed up to 13% better than those learned
on T1. The best accuracy was achieved on the architecture with FP = 1000 and 500-50 hidden
neurons, and its results were 69.62% (sensitivity 68.85%, specificity 70.38%). Other archi-
tectures that outperformed 67% were 500, 1000-500-100, 1000-500-10 based on FP = 1000.
Regarding FP = 5000, architecture with 1000-500-100 reached the highest accuracy (66.25%).

3.1.3. LVC

The third input feature type, LVC, achieved better results than T1 but not as good as
GMD. The average accuracy varied between 52.12% and 63.37%. More features added to
the feature pool helped classification since accuracy on FP = 1000 was between 52.12% and
56.63% compared to 55.1% up to 63.37% on FP = 5000.

3.2. Autoencoder Combination

After the SAEs were trained on a single feature, an experiment followed in which all
the features were combined. The results are summarized in Table 3.

Table 3. Results for SAE learned on all combinations of the three types of features (T1, GMD, and
LVC). The metrics listed represent the accuracy (sensitivity/specificity) in percentage.

Feature Pool Neurons T1/GMD [%] T1/LVC [%] GMD/LVC [%] T1/GMD/LVC [%]

1000 500 53.17 (55.19/51.15) 50.77 (49.23/52.31) 58.46 (58.46/58.46) 49.71 (47.31/52.12)
1000 50 52.5 (47.12/57.88) 48.56 (53.08/44.04) 53.46 (57.5/49.42) 50.38 (49.04/51.73)
1000 500-50 55.29 (50.19/60.38) 49.42 (44.62/54.23) 59.23 (64.62/53.85) 51.44 (52.69/50.19)
1000 1000-500-100 53.46 (47.5/59.42) 52.79 (50.77/54.81) 60 (61.73/58.27) 52.21 (47.12/57.31)
1000 100-50-10 52.98 (36.15/69.81) 51.15 (47.69/54.62) 56.63 (66.15/47.12) 53.94 (45/62.88)
1000 1000-500-100-50-10 52.5 (37.31/67.69) 52.02 (40/64.04) 59.9 (62.5/57.31) 55.19 (50.96/59.42)
5000 500 57.12 (59.23/55) 56.06 (59.62/52.5) 61.54 (69.62/53.46) 59.62 (55/64.23)
5000 50 57.21 (55.38/59.04) 56.15 (57.12/55.19) 60.87 (67.69/54.04) 55.19 (54.42/55.96)
5000 500-50 56.35 (47.31/65.38) 54.42 (53.65/55.19) 60.58 (66.92/54.23) 55.87 (58.08/53.65)
5000 1000-500-100 54.9 (54.04/55.77) 55.1 (57.69/52.5) 59.9 (59.81/60) 55.1 (52.69/57.5)
5000 100-50-10 58.46 (43.65/73.27) 56.06 (50/62.12) 59.13 (60.19/58.08) 58.27 (56.92/59.62)
5000 1000-500-100-50-10 54.62 (47.88/61.35) 53.08 (53.85/52.31) 59.9 (66.15/53.65) 56.92 (63.46/50.38)

3.2.1. T1/GMD

This combination of features improved classification compared to the T1-based clas-
sifier but worsened the results compared to the classifiers learned on GMD. The models
with FP = 1000 achieved accuracy between 52.5% and 55.29%, and the models learned on
FP = 5000 had accuracy between 54.62% and 58.46%.
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3.2.2. T1/LVC

The combination of T1 and LVC features yielded the worst results in all the combina-
tions of the two feature types. The accuracy of architecture with FP = 5000 and 50 hidden
units was 56.15%. As in the previous combination, a bigger feature pool improved the
results (accuracy > 53.08%) compared to FP = 1000 with all average accuracies < 52.79%.

3.2.3. GMD/LVC

The last combination of the two features had the best results of all. The architecture
with FP = 5000 and 500 units yielded an accuracy of 61.54% (sensitivity 69.62%, specificity
53.46%). Accuracy based on FP = 5000 was again higher than on FP = 1000 with all average
accuracies > 59.14%. However, the results were worse compared to autoencoders learned
on GMD only.

3.2.4. T1/GMD/LVC

The combination of all three features did not improve the outcomes as expected. The
accuracy ranged from 49.71% to 59.62%. When comparing the best models from both
feature pools, the results on the bigger feature pool were more than 4% better.

3.3. 3D Convolutional Neural Networks

Seven architectures were created to observe the ability of the 3D CNN to perform our
classification task. The number of layers was set to range from three to nine filters, i.e., with
an increasing number of filters. The experimental results (average accuracy/average
sensitivity and average specificity) are summarized in Table 4.

Table 4. Results for 3D CNNs learned on the three types of features (T1, GMD, and LVC). The metrics
listed represent the accuracy (sensitivity/specificity) in percentage.

3D CNN Architecture T1 [%] GMD [%] LVC [%]

10-50-100 43.37 (43.85/42.86) 42.40 (46.15/38.65) 45.58 (41.15/50.00)
20-40-60-80-100 54.62 (57.5/51.73) 61.15 (62.31/60.00) 52.98 (56.15/49.81)

20-50-100-150-200 60.15 (63.25/57.05) 61.65 (61.11/62.18) 51.92 (52.12/51.73)
5-10-20-40-60-80-100 50.29 (48.85/51.73) 56.73 (57.89/55.58) 51.73 (52.69/50.77)

50-100-150-200-250-300-350 60.39 (61.54/59.23) 63.08 (63.85/55.58) 53.75 (51.15/56.35)
10-20-30-40-50-60-70-80-90 53.27 (52.89/53.66) 59.52 (59.81/59.23) 52.89 (51.54/54.23)

50-100-150-200-250-300-350-400-450 60.19 (60.77/59.62) 62.6 (60.00/65.19) 50.86 (52.78/48.93)

3.3.1. T1

The 3D CNNs trained on the first dataset achieved accuracy higher than 60% when
networks with more than five layers were used. The growing number of filters positively
affected the results, which can be seen in architectures with the same number of layers.
Overall, the higher number of filters added more than 5% to the accuracy of architectures
of the same depth. The most successful architecture had seven layers and an accuracy
of 60.39%.

3.3.2. GMD

Training on preprocessed data using VBM resulted in better outcomes than the T1
dataset. The highest average accuracy was 63.08% when a seven-layer network was used.
The shallowest network, the 10-50-100, failed in classification, and the other architectures
had accuracies between 56.73–63.08%. The larger number of filters improved the results
similarly to the previous T1 data case.

3.3.3. LVC

3D CNNs combined with LVC input data failed to classify schizophrenia patients and
healthy subjects correctly. All defined architectures achieved results between 45.58–53.75%.
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No trends of improving the results were observed. The 3D CNN with three layers and LVC
input data achieved the poorest results in all three datasets.

3.4. DAG 3D CNN

Due to the computational cost, only two architecture experiments were performed.
The first had five layers, and the second had seven layers. The results for the combination
of input datasets are shown in Table 5.

Table 5. Results for 3D CNNs learned on all combinations of the three types of features (T1, GMD,
and LVC). The metrics listed represent the accuracy (sensitivity/specificity) in percentage.

3D CNN Architecture T1/GMD [%] T1/LVC [%] GMD/LVC [%] T1/GMD/LVC [%]

20-40-60-80-100 60.67 (59.81/61.54) 54.42 (52.69/56.15) 58.65 (57.69/59.62) 58.46 (60.00/56.92)
50-100-150-200-250-300-350 62.31 (60.19/64.42) 51.64 (49.23/54.04) 59.14 (58.27/60.00) 59.90 (57.69/62.12)

3.4.1. T1/GMD

The combination of T1 and GMD in 3D CNN reached an accuracy of 60.67% for five
filter layers and 62.31% for seven filter layers. In both cases, the accuracy of 3D CNN
improved compared to the scenario using T1 data but was slightly worse compared to
GMD data use.

3.4.2. T1/LVC

The combination of T1 and LVC reached an accuracy of 54.42% for 3D CNN with five
filter layers and 51.64% for seven filter layers. In both cases, the result was worse than for
CNN models based on T1 alone, but the shallower 3D CNN outperformed it when LVC
alone was used.

3.4.3. GMD/LVC

The combination of T1 and LVC reached an accuracy of 58.65% for 3D CNN with five
filter layers and 59.14% for 3D CNN with seven filter layers. This combination of input
data did not bring any improvement either. The results were better if LVC alone was used,
but pure GMD-based classifiers reached even higher accuracy.

3.4.4. T1/GMD/LVC

The combination of all three feature types reached an accuracy of 58.46% for 3D CNN
with five filter layers and 59.90% for 3D CNN with seven filter layers. GMD-based models
or a combination of T1 and GMD yielded better outcomes.

3.5. Statistical Comparison

Finally, the architectures with the best result for each dataset (T1, GMD, LVC) and mod-
els (SAE, 3D CNN) were statistically compared using the Mann-Whitney test. Accuracies
that resulted from repeating all experiments 10 times were used as the data that entered the
statistics, and the specific compared architectures were FP = 5000 and 500 hidden neurons
(T1), FP = 1000 and 500-50 hidden neurons (GMD), FP = 5000 and 500 hidden neurons
(LVC) for stacked autoencoders, and 50-100-150-200-250-300-350 architecture for 3D CNN
and each feature type. The comparison omitted feature combination since its performance
did not exceed classifiers based on a single feature type. The results can be seen in Table 6.
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Table 6. p-values of the Mann-Whitney test comparing the accuracies obtained from 10 repetitions
of the experiments for both classifiers (SAE, CNN) and all input feature types (T1, GMD, LVC).
Significant results (α = 0.05) in favor of the classifier, listed on the left, are marked with an asterisk (*).
Those in favor of the classifiers listed above are marked with two asterisks (**).

Classifier-Input
Data GMD-SAE LVC-SAE T1-3D CNN GMD-3D CNN LVC-3D CNN

T1-SAE 3.6580 × 10−4 ** 0.0018 ** 0.0811 0.0018 ** 0.0799
GMD-SAE - 0.0098 * 0.0031 * 0.0031 * 1.7265 × 10−4 *
LVC-SAE - - 0.4459 0.9694 2.3313 × 10−4 *

T1-3D CNN - - - 0.4919 0.0254 *
GMD-3D CNN - - - - 2.3313 × 10−4 *

4. Discussion

This paper contributes to the research and explores the possibility of computer-aided
classification of schizophrenia using deep learning algorithms. Its main contribution is
the investigation of the influence of input data on classification results and thorough
testing and comparison of two modern deep learning classifiers. Stacked autoencoders
and 3D CNNs were applied to classify schizophrenia patients and healthy controls. The
classification was based on MRI data preprocessed using three different pipelines to extract
the three following types of features: T1 with simple registration on a template and skull
stripping, GMD with the use of voxel-based morphometry, and LVC using deformation-
based morphometry. The research focused on three experiments: (1) two deep learning
classifiers were trained to classify schizophrenia based on various data preprocessing
pipelines, (2) two important network architecture parameters were explored: depth and
number of neurons in each layer, and (3) feature extraction methods were finally combined
in all possible ways to train the deep learning classifiers.

The main limitations of the study are small size of the sample dataset (which is difficult
to collect, especially in neuroscience), data-related unavailability of validation data from
another center, insufficiently extensive but also a very time-demanding investigation into
the combination of possible parameters and model architectures–SAE and 3D CNNs have
many parameters to be set, such as number of layers, size of filters, number of filters, size
and frequency of pooling layer, number of layers with fully-connected neurons and their
quantity, which makes the exploration of all possible settings almost impossible. Instead
of the whole grid of parameter combinations, only trends of some main parameters were
investigated. Finally, a method that could show the impact of brain regions on classification
is missing, which was not the aim of this study.

The stacked autoencoders achieved different accuracy for each type of feature. The
best result obtained using T1 features was an accuracy of 56.35%. In contrast, for LVC
features, an accuracy of up to 63.37% was achieved (in both cases with only a shallow
network consisting of two layers with 500 hidden and two output neurons and FP = 5000).
Deeper architectures did not lead to any accuracy improvements for T1 input data cases.
Such low accuracy rates suggest that the simplest image preprocessing (T1) is unsuitable for
stacked autoencoders. In the case of LVC features, a bigger feature pool (FP = 5000) allowed
the network to classify better than a smaller feature pool (FP = 1000). The accuracies
obtained using LVC features ranged from 56.63% (FP = 1000 with 100-50-10 architecture)
to 63.37% (FP = 5000 and 500 architecture). A similar trend in accuracy was observed for
T1 features. There, FP = 1000 and 50 architectures led to an accuracy of 54.13%, while
FP = 5000 and 500 architectures led to an accuracy of 56.35%. However, both feature
extraction methods (simple registration and skull stripping and DBM) did not seem to
provide sufficient information for the given classification task, so the stacked autoencoders
performed poorly. Better results were achieved with features extracted using the VBM
pipeline. GMD enabled SAE-based classifiers to achieve accuracies of up to 70%. The best
architecture (FP = 1000 and 500-50) achieved an average accuracy of 69.62% (sensitivity
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68.85%, specificity 70.38%). This time, a smaller feature pool (FP = 1000) led to better
results, with only the deepest architecture (1000-500-100-50-10) failing, with the networks
classifying almost all subjects as patients, which resulted in an average sensitivity higher
than 90% and an average specificity lower than 13%. Depending on the specific architecture,
a larger pool of features (FP = 5000) led to accuracies between 50.77% and 66.25%. However,
the 100-50-10 and 1000-500-100-50-10 architectures also failed to classify well, as in the case
of FP = 1000. In conclusion, when only one dataset source was used for SAE classification,
GMD provided the most informative features because its results were better than those
using T1 and LVC. A smaller feature pool was better when using GMD. However, when
T1 and LVC were used, more features helped increase the accuracy of the results. This
suggests that GMD might have better discriminative information hidden in fewer features
while not carrying much noise. The main finding of these SAE experiments is that both
VBM and DBM pipelines brought a noticeable advantage for SAE classification compared
to SAE accuracy results on the minimally preprocessed dataset, suggesting that SAE cannot
extract image characteristics by itself, and preprocessing steps are needed.

Other authors have used autoencoders to classify patients with schizophrenia.
Zeng et al. [28] achieved an accuracy of >80% with a deep autoencoder discriminant
network. They reached better accuracy results, but worked with fMRI data on a larger
sample size (n = 734) that might have affected the results. Comparable classification results
to ours (AUC-ROC 0.611-0.751) were achieved by Pinaya et al. [33] with a deep autoencoder
and a normative method.

The combination of feature types entering SAEs did not bring any improvement. The
most successful combination was GMD and LVC on a larger pool (FP = 5000) and 500 ar-
chitecture with an average accuracy of 61.54% (sensitivity = 69.62%, specificity = 53.46%).
However, the results were worse than SAEs performed on GMD and LVC only. Any trends
related to the size of the feature pool or SAE architecture were hardly observable. The
combination of all three feature types brought an improvement only when compared to the
results obtained by SAEs trained on T1 data, which we considered inappropriate.

According to the results obtained, 3D CNNs trained on T1 features needed at least five
convolutional layers to train. Architectures with three convolutional layers only achieved
around 50% or less accuracy, whereas 3D CNNs with more than five convolutional layers
reached up to 60%. Unfortunately, more layers did not help to improve the results. In
any case, 3D CNNs seem to have outperformed SAEs trained on the same data (T1).
Architectures with five or more convolutional layers led to an accuracy almost 4% higher
than the best SAE architecture (FP = 5000 and 500 architecture). The reason may lie in the
3D structure of filters and the whole-brain approach. Regarding the 3D CNNs trained on
GMD, the results were slightly better than in the case of the T1 dataset. In terms of accuracy,
the best architecture (50-100-150-200-250-300-350-10) was identical to the T1 data but with
almost up to 3% better results. The improvement may suggest that schizophrenia is more
manifested in the gray matter, which is extracted from the brain in contrast with T1 or
DBM, which is a whole-brain method. However, the trends were similar to the previous
dataset. The three-layer networks did not perform well. Compared to SAE, different
datasets did not help improve the results, suggesting that 3D CNN can learn to extract
features from images themselves and without preprocessing. On the other hand, the results
were not as good as in the case of SAEs, suggesting that SAE can work more effectively
with a smaller sample size, or that the preprocessing method of feature selection helped
reduce noisy voxels from the images, or a combination of both. The 3D CNNs trained on
the DBM (LVC) preprocessed data somehow failed in classification, the accuracy being
less than 54%. We assume that the DBM pipeline deformed the relations between brain
structures, which are useful for CNN classification. In summary, based on our exploratory
work and experimental results, it is obvious that the 3D CNNs are not as powerful a
tool for classifying schizophrenia based on MRI data compared to SAE, at least for such
a small dataset. A small dataset may not provide enough training data for a model as
complex as the 3D CNN. However, it is highly challenging to collect large enough datasets
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in neuroscience. VBM and DBM preprocessing did not affect the results as much as in the
case of SAEs.

DAG 3D CNN networks did not outperform any model based on a single feature
dataset. Input information combined from two or three data sources with the same sample
size of patients and controls probably contributed to overfitting the models in the training
phase only because it exacerbated the curse of dimensionality–too many features for too
many subjects. Thus, feature combination is rather useless with such as small sample size.

In the context of schizophrenia classification, 3D CNNs have been employed by other
researchers. Campese et al. [40] used pre-trained 3D CNNs (LeNet, VNet, and UNet
combined with SVM) to classify VBM preprocessed data. They achieved an accuracy of
86.3% (n = 101) and 71.63% (n = 176) on two independent datasets, respectively. The
dilated 3D CNN achieved >80% accuracy in classifying 2300 fMRI EPI images [36], but
the dataset consisted of only 46 subjects. Moreover, the modality differed from that used
in this paper. Oh et al. [41] used 3D CNN combined with task-based fMRI data (n = 82)
reaching ~84% accuracy. The same dataset as in this paper was used in our previous
work. The first paper [21] explored random subspace ensembles of multi-layer perceptrons
(MLP) and SVMs, which were learned on the VBM and DBM data and their combination.
The achieved accuracies were 73.12% (MLP) and 73.51% (SVM). The second paper [20]
presented the results on SVM trained on selected voxels using two-sample t-tests with an
accuracy not exceeding 64%. These results show that the results achieved in this paper are
worse compared to shallow methods trained on the same dataset and suggest that shallow
methods can achieve better results with smaller sample sizes.

There are studies with well-performing classifiers whose sample dataset does not
exceed n = 130 (recommended by [18]), which may have affected the results. These are the
following: (i) [17], which used neural network-based classifiers (ANN, LVQ, RBF) with
a 100% accuracy (n = 20), (ii) [16], which incorporated NN on fMRI data and reached an
accuracy of 75.6% (n = 69), and (iii) [15], which used SVM on structural MRI achieving
an accuracy over 71% (n = 104). All of the above models outperformed our results. Our
drawback was the small sample size (N = 104).

A final statistical comparison of the results shows that the SAE-based classifier trained
on GMD features outperformed all other investigated classifiers and input feature datasets.
On the other hand, the SAE-based classifier on T1 data and 3D CNN-based on LVC data
performed statistically significantly worse than most of the other classifiers. The results
suggest that it is worthwhile to use GMD resulting from the widely accepted VBM pipeline
combined with SAE-based classification.
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