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Abstract: Blocking protein-protein interactions (PPI) using small molecules or peptides 

modulates biochemical pathways and has therapeutic significance. PPI inhibition for 

designing drug-like molecules is a new area that has been explored extensively during the 

last decade. Considering the number of available PPI inhibitor databases and the limited 

number of 3D structures available for proteins, docking and scoring methods play a major 

role in designing PPI inhibitors as well as stabilizers. Docking methods are used in the 

design of PPI inhibitors at several stages of finding a lead compound, including modeling 

the protein complex, screening for hot spots on the protein-protein interaction interface and 

screening small molecules or peptides that bind to the PPI interface. There are three major 

challenges to the use of docking on the relatively flat surfaces of PPI. In this review we 

will provide some examples of the use of docking in PPI inhibitor design as well as its 

limitations. The combination of experimental and docking methods with improved scoring 

function has thus far resulted in few success stories of PPI inhibitors for therapeutic 

purposes. Docking algorithms used for PPI are in the early stages, however, and as more data 

are available docking will become a highly promising area in the design of PPI inhibitors  

or stabilizers. 

Keywords: protein-protein interactions; docking; protein docking; hot spots; virtual 

screening; drug-like molecules 

 
  

OPEN ACCESS



Molecules 2015, 20 11570 

 

 

1. Introduction 

Rational drug design has revolutionized the pharmaceutical industry with the idea that drugs can  

be designed or engineered according to an identified protein or DNA target. This is an efficient 

alternative method in the drug design and discovery areas as opposed to screening thousands of samples 

extracted from natural products for therapeutic purposes. However, such a rational design of drugs is 

knowledge-based and requires an understanding of the intermolecular forces involved, as well as an 

understanding of protein structure and function. Although compounds are created based on the structure 

of the protein that is targeted, once a basic template is developed several possible combinations of the 

functional groups that are spatially separated by a particular distance must be investigated to obtain a 

lead compound to be optimized. In other words, designed compounds have to be optimized for drug-like 

properties in three-dimensional space. This type of optimization necessitates knowledge of the 3D 

structures of the protein receptors involved as well as the conformational space of the ligand drug [1]. 

This method of optimization has gained momentum as the number of available 3D structures of proteins 

has increased rapidly in the last two decades. Along with advances in genomics and proteomics, the 

methods to obtain the X-ray crystal or NMR-based structure of proteins have enabled new protein 

targets that have therapeutic potential. With detailed information about the binding site of a protein 

receptor available, computational methods such as docking have gained importance in optimizing 

drug-like compounds. Such computational methods were established in the 1980s [2] for the drug 

discovery process; however, there were several limitations. With advances in high-speed computers, 

development of efficient parallel processing algorithms, and availability of high-resolution 3D structures 

of receptor proteins, docking methods have become more reliable for optimizing the compounds for 

therapeutic purposes. In addition, docking methods are also used for analysis of drug metabolites using 

the structure of cytochrome p450 isoforms [3]. 

Drug creation involves several stages, starting from the design of a compound to lead identification 

(hit-to-lead), optimization, preclinical and toxicology reports for a New Drug Application (NDA), and 

final approval from the Food and Drug Administration (FDA) [4,5]. As drug-like molecules are taken to 

the next level in each stage described above, the cost of optimization increases significantly [6]. As the 

overall cost of creating a drug and bringing it to the market has skyrocketed, computational methods of 

creating drug-like molecules have gained importance. Most of the process of screening using docking 

occurs in the early stages of drug discovery. Typically, high-throughput screening (HTS) of compounds 

is used in the drug creation process, even in the rational drug discovery process, to find a lead compound. 

HTS involves screening of compounds using biochemical or cellular methods to determine the optimum 

pharmacological activity. For such methods, the proposed number of compounds is large, and 

synthesizing and evaluating such large numbers is a difficult task. Docking in silico methods provide a 

faster and less expensive way of screening compounds [7]. However, there are few successful examples 

of drug design using such methods. For the past two decades, computational and docking methods 

have gained popularity in different stages of drug design [1,8,9]. In the drug creation process, docking 

is a virtual screening method for possible target identification and lead optimization. Docking involves 

prediction of ligand orientation and different possible conformations within the receptor cavity or near 

the protein surface. In its simplest form, the binding cavity in the receptor or protein surface of the 

receptor protein is assumed to be rigid with only the ligand allowed to be flexible. The overall docking 
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process involves two steps: namely, a conformational search of the ligand molecule within the defined 

grid box near the binding surface of a protein to represent different possible conformations and scoring, 

where different possible conformations generated in different orientations are scored based on energy 

function [10,11]. Based on the scoring method used, ligand conformations are arranged from lowest to 

highest energy order with the lowest energy conformers considered as a possible “pose” of the molecule 

in the bound form with the receptor. Depending on the application, users can employ an exhaustive 

search method and then optimize the scoring or search with optimized values and use the robust scoring 

function [12,13]. In most cases, searching methods are time-consuming, and searching for all possible 

conformations and orientations of a molecule on the receptor surface is an impossible task. 

2. Protein-Protein Interactions 

Cells communicate with one another via protein-protein interactions. All of the physiological processes 

of life are controlled via interactions of different proteins that are well regulated. In an organism,  

PPI form a huge complex network known as an “interactome,” which contributes significantly to the 

biological processes that are carried out in that organism [14]. It is estimated that there are nearly 

650,000 interactions that regulate human life, and any deregulation of this process leads to a disease 

state [15]. These interactions control signal transduction, immune response, transcription, etc. Hence, 

among these PPI, at least a sizable number of proteins can be used as drug targets [16–18]. Many 

proteins interact in an obligatory fashion, maintaining a stable interaction for a longer period of time 

whereas some protein-protein interactions are transient. The affinity of PPI varies, depending on the 

type of interaction and signaling needed; this affinity can vary from millimolar to picomolar [19]. 

Although their affinity varies over a wide range, all PPI maintain a high degree of specificity for their 

partners, including many proteins that exhibit specificity for multiple partners [20]. How one protein can 

form specific interactions with different partners either simultaneously or separately depends on the 

nature of the interaction surface. In other words, the “molecular recognition” is a key concept in PPI, 

its affinity, specificity, and selectivity. A detailed knowledge of the interaction surfaces of proteins and 

their energetics is necessary to understand the regulatory mechanisms of biochemical pathways with 

the goal of modulating or blocking these pathways for therapeutic purposes using drug-like molecules. 

The analysis of 3D structures of many protein complexes and the nature of interfaces forming PPI has 

revealed that the contact surface involved in PPI is relatively large, ranging from 1000 to 4000 Å2. It is 

reported that standard-sized interfaces are 1200 to 2000 Å2 [21]. Smaller interfaces of 1150–1200 Å2 

size normally constitute short-lived and low-stability complexes, and large surfaces ranging from 2000 

to 4600 Å2 are observed between proteases and particular inhibitors and between G-proteins and other 

components of the signal transduction system [22]. In comparison, protein-small molecule interaction 

surfaces have an area of 300 to 1000 Å2. In addition to this, surfaces of PPI are generally flat and lack the 

grooves and pockets that are present at the surfaces of proteins that bind to small molecules [23–26]. 

Although a description of PPI was known more than two decades ago, because of the large surface 

area of PPI, small molecules that were targeted were unsuccessful. It was viewed that targeting PPI  

had high risk and such targets were considered “undruggable.” However, this concept was challenged, 

and now there are drugs on the market [18,27,28] and drug-like candidates that target PPI are in clinical 

trials [29]. Since PPI surfaces are relatively flat and the docking methods applied use probe atoms  
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or ligand atoms on the flat surface, we use the word “surfing” for identification of hot spots and  

ligand-binding mode at PPI interface. 

The most significant contribution to understanding the PPI surface comes from structural biology 

via X-ray crystallography or NMR as well as mutational studies. Detailed 3D structure analysis of  

PPI revealed that PPI interfaces can form a continuous epitope that often forms a single secondary 

structure or discontinuous epitope originating from multiple secondary structures. These continuous or 

discontinuous epitopes form small pockets and groove-like structures that together form a binding site 

for proteins. Protein-protein interaction surfaces are generally hydrophobic in nature. This was assessed 

by measuring the area of accessible surface on the protein surface that forms the interface region of 

partner proteins that becomes inaccessible to solvent due to protein-protein contacts. It is known that 

the PPI interface area is large; however, only certain hydrophobic spots contribute to the free energy of 

binding and help to hold the two proteins together. Such regions on PPI interfaces that contribute more 

to the binding energy are called hot spots. Hot spots account for less than 50% of the contact area of PPI. 

A region of protein surface is called a hot spot when replacement of an amino acid residue by alanine in 

that spot lowers the free energy of binding by at least 2 kcal/mol [30]. The hot spots have a core region 

and rim region with more accessible rim region residues surrounding the more buried core region 

residues. The amino acid composition in the rim region is similar to that of the rest of the protein surface, 

whereas the core region contains aromatic residues [31–33]. Analysis of the amino acid composition of hot 

spots shows that some residues are found more frequently in hot spots, namely, Tyr, Trp, and Arg [34]. 

The hot spots are surrounded by energetically less important residues that probably separate/prevent 

bulk water from hot spots. The presence of these hot spots provides an opportunity to target PPI with 

therapeutic agents because compounds that are designed to interact with hot spots should prevent or 

block PPI since a large part of the binding energy contributes to interaction in these areas. For hot 

spots that are discontinuous and distributed over an area, relatively large molecules such as peptides 

have been designed to prevent PPI. In terms of amino acid functional groups, Trp, Tyr, Leu, Ile, Phe, 

and Arg are frequently found in PPI hot spots [34]. Among these, Trp has a hydrophobic surface and 

contributes to π-interactions that contribute to binding energy. Apart from this, Trp can form hydrogen 

bonds with ligand molecules without the introduction of water at the PPI site. Tyr also has a hydrophobic 

surface that can produce π-interactions and can form hydrogen bonds. Arg can form up to five hydrogen 

bonds and salt bridges as well as hydrophobic interactions with its long side chain. Between the amino 

acids Leu and Ile, Ile seems to be preferred at PPI [21]. While there is much detailed structural 

information available about the PPI, there are still many challenges in the design of PPI inhibitors. 

Some of these challenges have been discussed in reviews [26,32,35–40]. Recent literature suggests that 

the modulation or inhibition of PPI has advanced rapidly in the last few years [41–51]. 

3. Identification of Hot Spots on Proteins and Docking in PPI 

Docking methods are used in several stages during the design of PPI inhibitors (Figure 1). Even 

before docking methods are applied to find the interface residues, the first question asked is whether 

the two proteins of interest interact with one another or not [52]. 
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Figure 1. A schematic diagram for the design of PPI inhibitors and docking methods used 

at different stages of the design. 

Experimental procedures such as yeast two-hybrid method, co-immunoprecipitation, pull-down 

assay, and protein chip- or mass spectrometry-based assays can be used to identify the protein partner 

interactions. Several PPI databases are available in the literature (Table 1). Advances in molecular 

biology and proteomics methods as well as interest in PPI in many research laboratories have led to large 

amounts of data being produced. Genome-scale analysis of PPI in organisms such as bacteria, yeast, 

worm, fly, and human have produced enormous amounts of data [53]. PPI network data generated has 

been used to elucidate biochemical pathways [54] as well as protein function [55] and disease associated 

with deregulation of these pathways [56]. However, the data generated from PPI network may or may 

not be successful in providing information about underlying PPI. This is because analysis of the data 

and the results obtained depend on the technique used. Wodak et al. [57] have discussed the limitations 

of the databases and the fact that they are highly dependent on the detection method used, the error 

generated, and the challenges faced by PPI network databases. The same data analyzed by different 

computational procedures yield poor overlap in the results obtained which is a major concern. They 
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suggest that the poor overlap between the PPI datasets seems to arise from the fact that quite a large 

fraction of data about interactions comes from non-functional interactions. They suggest that future 

studies should use approaches that incorporate identification of the functional portions of the 

interactome as well as characterizing its non-functional complement. 

Table 1. List of protein-protein interaction databases and servers. 

Database Website Reference 
2P2I http://2p2idb.cnrs-mrs.fr/ [58,59] 

PrePPI http://bhapp.c2b2.columbia.edu/PrePPI [60] 
STRING http://string-db.org/ [61,62] 

IBIS http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis_help.shtml#whatisIBIS [63,64] 
PIPS http://www.compbio.dundee.ac.uk/www-pips/ [65,66] 

PredUS https://bhapp.c2b2.columbia.edu/PredUs/ [67,68] 
DIP, LiveDIP dip.doe-mbi.ucla.edu/ldipc/tmpl/livedip.cgi [69] 

BIND http://www.bindingdb.org/bind/index.jsp [70] 
MPact/MIPS http://mips.helmholtz-muenchen.de/proj/ppi/ [71] 

YPD and WormPD 
https://portal.biobase-international.com/build_ghpywl/idb/1.0/html/bkldoc/ 
source/bkl/proteome/proteome_wormpd_intro.html 

[72,73] 

MINT http://mint.bio.uniroma2.it/mint/Welcome.do [74,75] 
IntAct http://www.ebi.ac.uk/intact/ [76] 

BioGRID http://thebiogrid.org/ [77] 
HPRD http://www.hprd.org/ [78,79] 

ProtCom http://www.ces.clemson.edu/compbio/protcom [80,81] 
3did, Interprets http://3did.irbbarcelona.org/ [82,83] 

Pibase, ModBase http://modbase.compbio.ucsf.edu/pibase/introduction.html [84,85] 
CBM http://www.cazy.org/Carbohydrate-Binding-Modules.html [86,87] 

SCOPPI http://scoppi.biotec.tu-dresden.de/scoppi/ [88,89] 
iPfam http://www.ipfam.org/ [90,91] 

InterDom http://interdom.i2r.a-star.edu.sg/ [92] 
DIMA http://webclu.bio.wzw.tum.de/dima/ [93] 

Prolinks http://prl.mbi.ucla.edu/prlbeta/ [94] 

Before extensive docking studies, hot-spot identification studies, and design of PPI can begin, 

experimental methods must be used to show that the two proteins of interest interact with one another or 

to identify the partner of a known protein of interest. If the structure of the complex of protein partners is 

available along with mutational data, hot spots are readily available for docking of designed drug-like 

molecules to one of the proteins. However, if the structure of the complex is not available but the structures 

of individual proteins are available along with molecular biology data on mutation of residues and 

binding, protein complexes may be built to identify the binding interface. In the first step when the 

structures of monomers of interacting partners are available, docking methods are used to determine 

the complex structure of the protein. There are two types of docking used for protein-protein docking: 

(1) Template-based docking, where the structures of individual proteins are manually docked using the 

template structure of a dimer in the same homologous family. This method is fast and simple in the 

sense that no automatic docking and scoring algorithms are used. The generated structure of the complex 

based on a template is minimized to obtain the docked conformation; (2) Template-free docking, in 
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which the structures of monomers are docked using docking algorithms with or without the support of 

experimental data. Several protein-protein docking methods are available. Some available databases 

(Table 1), docking methods (Table 2) that have been used for several years, and scoring/refining methods 

(Table 3) that have been improved over time are provided. An updated list of all these methods and 

functions is available at http://www.vls3d.com/index.php/links/bioinformatics/protein-protein-interaction/ 

protein-protein-docking. 

Table 2. List of protein-protein docking methods. 

Method Website Type Reference 

HADDOCK http://www.bonvinlab.org/software/haddock2.2/haddock.html Online [95] 

pyDOCK* http://life.bsc.es/pid/pydock/ Software [96] 

Cell-Dock http://mmb.pcb.ub.es/~cpons/Cell-Dock/ Software [97] 

KBDOCK http://kbdock.loria.fr/ Online/Database [98] 

F2DOCK www.cs.utexas.edu/~bajaj/cvc/software/f2dock.shtml Online [99] 

BiGGER http://centria.di.fct.unl.pt/~ludi/bigger.html Software [100] 

FRODOCK www.chaconlab.org/methods/docking/frodock Online [101] 

DOCK/PIERR http://clsb.ices.utexas.edu/web/dock.html Online [102] 

ZDOCK http://zdock.umassmed.edu/ Online [103,104] 

PI-LzeRD www.kiharalab.org/proteindocking/pilzerd.php Software [105] 

ATTRACT http://www.t38.ph.tum.de/index.php?id=88 Software [106] 

Swarmdock http://bmm.cancerresearchuk.org/~SwarmDock/ Online [107] 

PruneandProbe http://chembio.iisc.ernet.in/prune/ Online [108] 

3D-GARDEN www.sbg.bio.ic.ac.uk/~3dgarden/ Online [109] 

LIGIN http://swift.cmbi.ru.nl/gv/start/index.html Software [110] 

Smoothdock http://structure.pitt.edu/servers/smoothdock/ Online [111] 

DOT www.sdsc.edu/CCMS/DOT/ Software [112] 

RosettaDock http://graylab.jhu.edu/docking/rosetta/ Online [113] 

Molfit www.weizmann.ac.il/Chemical_Research_Support/molfit/ Software [114] 

Hex http://hex.loria.fr/hex.php Online [115] 

ESCHER-NG www.ddl.unimi.it/escherng/index.htm Software  

GRAMM http://vakser.compbio.ku.edu/resources/gramm/grammx/ Online/Software [116] 

ClusPro http://cluspro.bu.edu/login.php Online [117,118] 

SEQMOL www.biochemlabsolutions.com/FASTAandPDB.html Software [119] 

Datasets www.lgm.upmc.fr/CCDMintseris/ Software/Dataset [120] 

UDOCK www.udock.fr/ Software (Windows) [121] 

FireDock http://bioinfo3d.cs.tau.ac.il/FireDock/ Online [122,123] 

FTDock www.sbg.bio.ic.ac.uk/docking/ftdock.html Software [124] 

HingeProt www.prc.boun.edu.tr/appserv/prc/hingeprot/usage.html Software [125] 

ICMpro www.molsoft.com/icm_pro.html Software [126] 

PatchDock http://bioinfo3d.cs.tau.ac.il/PatchDock/ Online [127] 

SymmDock http://bioinfo3d.cs.tau.ac.il/SymmDock/ Online [127] 
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Table 3. List of scoring, and refining methods/software and servers. 

Method Website Type Reference 
FunHunt http://funhunt.furmanlab.cs.huji.ac.il/ Online [128] 
Fiberdock http://bioinfo3d.cs.tau.ac.il/FiberDock/ Online [129,130] 
TACOS http://zhanglab.ccmb.med.umich.edu/TACOS/about.html Online [131] 
SPA-PP https://www.dl.dropboxusercontent.com/u/1865642/Optimization.cpp. Software [132] 
FastContact http://structure.pitt.edu/servers/fastcontact/ Online [133] 
CONSRANK www.molnac.unisa.it/BioTools/consrank/ Online [134] 
FILTREST 3D www.genesilico.pl/software/stand-alone/filtrest3d Software [135] 

We discuss few methods of protein-protein docking here. ZDOCK is a software developed by  

Chen et al. [136] in which proteins were treated as rigid objects and 6-dimenional rotational and 

translational degrees of freedom were explored. For this initial stage, surface complementarity, 

electrostatic complementarity, and desolvation parameters were used to search for different conformations 

using the fast Fourier transform method (FFT). After an initial search, a number of conformers were 

identified and ranked according to the scoring criteria used. In the second stage, these conformers were 

re-ranked, and energy minimization was performed to refine the structures. Later, to improve the 

performance of the docking, ZDOCK 3.0 was used. It has a scoring function that includes shape 

complementarity, electrostatics, and a pairwise atomic statistical potential developed using contact 

propensities of transient protein complexes [103,137]. As an example to show the efficiency of the 

computational method developed, the authors applied the method to predict the structure of the yeast 

interactome using a large supercomputing cluster [103,138]. The method was efficient in terms of the 

use of computational resources. ZRANK, a scoring algorithm that [139] relies on the usage of a 

combination of three atom-based terms, i.e., van der Waals, electrostatics, and desolvation, was used to 

rank the structures. 

Protein-protein docking methods developed use a similar general approach in which one protein is 

fixed in space and the second is rotated and translated around the first one. For each new configuration, 

the energy of interaction is calculated based on terms such as surface complementarities, electrostatic 

interactions, van der Waals interaction, and additional terms depending on the method developed.  

The calculated configurations are given a score based on energy functions used. One of the drawbacks 

of these methods is that it is almost impossible to search every possible rotation and translation for  

two interacting objects, and the search through the entire conformational space of the complex 

geometry makes the calculation very time-consuming, seldom resulting in a unique solution. A 

docking method that incorporates experimental data to dock the two protein structures was developed by 

Domingues et al. [140,141]. In the high ambiguity driven docking approach (HADDOCK), the user 

must provide information obtained from biochemical and chemical shift perturbation data from NMR 

titration, as well as mutagenesis experiments [140]. Based on the information input on the interacting 

residues, ambiguous interaction restraints (AIRs) are introduced during the docking to arrive at the most 

possible orientation of the two proteins. Structures are ranked according to their intermolecular energy, 

that is, the sum of electrostatic, van der Waals, desolvation, and AIR energy terms after the docking 

calculations are completed. 

A new computational method that uses an assembly of structures of molecules that can fit into  

an electron density map data generated by cryo-electron microscopy (cryo-EM) electron density  
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maps was described by de Vries et al. [142]. The method is based upon ATTRACT, an atom-based 

protein-protein docking program [142–144]. Compared to other protein docking methods, this technique 

is unique. Since the cryoelectron microscopy data does not provide high-resolution structures of 

proteins at the atomic level, the starting model uses a coarse-grained force field where proteins are 

represented by up to four (pseudo-)atoms per amino acid. The protocol uses an atom-to-grid cryo-EM 

fitting, using ATTRACT’s coarse-grained atom model; the generated models are energy-minimized, and 

these generated structures are mapped onto the electron density map. In a two-step model, the initial 

models are fitted using low-resolution data and are then re-scored using a gradient vector matching 

algorithm to generate models of protein complexes. The models with the best fit with the electron density 

map and the best scored models are refined to obtain a higher resolution model that is optimized using 

the ATTRACT force field. 

Since different docking programs developed by different researchers around the world use different 

criteria for scoring based on the need and the problem encountered, a general assessment method for results 

of docking was established to compare the quality of docked protein complex structures. Performances 

of docking algorithms are compared biannually in the Critical Assessment of Predicted Interaction 

competition (CAPRI) [145] and are evaluated against larger protein docking benchmarks [146–149]. 

The model of the protein complex generated using docking method can be evaluated with CAPRI 

criteria. It provides information about how reliable and accurate the model is likely to be compared to 

the experimentally generated structures. 

3.1. Identification of Hot Spots and Druggability 

One of the most important steps in PPI design is identification of hot spots using computational or 

experimental methods. Alanine scanning is a widely used experimental method for hot-spot identification. 

Apart from this, NMR and X-ray crystallographic methods along with mutational data are used to 

define hot spots in 3D structures of protein complexes. These hot spots are suitable for binding to a variety 

of small molecules and, hence, can be used as “druggable” hot spots with high hit rates [150,151]. 

There are several computational methods available to identify the hot spots, and some of these methods 

are reviewed by Morrow and Zhang [152]. A list of methods/software that are available free for 

academic users to determine hot spots on protein surfaces and the websites of interest are provided in 

the Table 4. Some of the hot-spot determination methods use docking algorithms to find the hot spot; we 

will provide a brief description of those methods. The method developed by Brenke et al. uses the data 

obtained from structure-activity relationships (SAR) by NMR and multiple solvent crystal structures 

(MSCS) [153]. In this method, small molecular probes, namely, organic solvents with hydrophobic  

to hydrophilic properties that vary in size and shape, are placed on a dense grid around the protein  

(16 solvent molecules). Each probe molecule generates many bound positions on the protein surface 

using rigid body docking with the fast Fourier transform correlation approach. For each probe, billions of 

docked conformations are sampled, eventually, the 2000 best poses for each probe are listed for further 

processing. The minimized probe conformations are clustered based on root mean square deviation 

(RMSD), and hot spots are defined by RMSD and consensus clustering. The binding site that has largest 

cluster is defined as one hot spot. The druggability of hot-spots method was applied to well-known PPI 

complexes such as IL-2IL2R, Bcl-xL, p53-MDM2, and TNFα-TNFR1. 
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Table 4. A list of software tools and servers available for identification of hot spots. 

Method Website Type Reference 

FTMap http://ftmap.bu.edu/login.php webserver [150] 
PredHS http://www.predhs.org/ webserver [154] 
HSPred http://bioinf.cs.ucl.ac.uk/structure/ webserver [155] 
iPred http://modlab-cadd.ethz.ch/software/ipred/ Java based webtool [156] 
HotPoint http://prism.ccbb.ku.edu.tr/hotpoint/ webserver [157] 
ROBETTA http://robetta.bakerlab.org/ webserver [158] 
KFC2 http://kfc.mitchell-lab.org/ webserver [159] 
PCRPi http://www.bioinsilico.org/PCRPi/ webserver [160] 

Most of the websites that are related to these software are linked via http://www.predhs.org/. 

Protein-protein interactions can also be viewed as protein-peptide interactions as a small fragment of 

one protein interacts with protein surface of another protein. The peptide part that binds could have a 

particular secondary structure or a linear chain. Examples of such protein-peptide interactions include 

SH3 domain, WW domain (WW domain, one of the smallest protein modules, is composed of 40 

amino acids and mediates specific PPI with short proline-rich or proline-containing motifs), and PDZ 

domain [161–165]. Most of the protein-protein docking software may not be useful for peptide-protein 

docking as protein-protein docking software does not incorporate flexibility of side chains of both 

partner molecules. Software that is used for small molecule-protein docking has limitations in terms of 

the number of rotatable bonds for flexibility. London et al. [162] have developed a method that can be 

applied to peptide-protein docking. This method uses a coarse model of interaction to start with and 

Monte-Carlo simulations to refine the model using energy minimization. The model generated using 

this method refines the backbone and side chains of proteins as well as peptides in bound form, and the 

structure of the complex obtained is of relatively high resolution. 

Based on hot spots and the structure of the protein complex, compounds that bind to one of the protein 

partners and inhibit PPI are designed. Structure-based design or database screening is used to arrive at a 

hit compound and a template structure is designed. Once the basic template structure of the compound is 

designed and synthesized, one has to show experimental evidence that the designed molecule is indeed 

a PPI inhibitor of particular partner proteins. Results obtained from docking studies should be validated 

using experimental methods. Several methods are available to study PPI and their inhibition. Since the 

intent of this article is to provide an overview of docking methods in the design of PPI inhibitors or 

modulators, we have briefly highlighted some biophysical methods that are used in concert with docking 

methods to validate the hit compounds. Surface plasmon resonance (SPR) [166], and NMR techniques 

can be used to provide the information about binding of small molecule/peptides to a protein of interest. 

These methods require the protein to be in the pure form, and the binding information obtained is  

direct evidence of binding of a designed molecule to the target protein. SPR methods provide detailed 

information about kinetics of binding of small molecules to proteins. NMR is used widely to obtain 

SAR to design the inhibitors of PPI [167]. Such a method is useful to screen a large number of small 

molecular fragments to bind to one subsite of a protein surface [168]. In vitro methods such as proximity 

ligation assay [169] and enzyme fragment complementation assay [170] provide dimerization of proteins 

and inhibition of the dimerization of proteins by small molecules. Other experimental techniques such as 
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FRET [171], and mass spectrometry are also available for studying PPI. Examples of the use of such 

methods are available in recent literature [42,172–176]. 

3.2. Examples of Design of PPI Inhibitors 

Once the hot spots are identified on the protein surface, molecules that are designed to inhibit PPI 

can be docked to the protein with a grid box covering the area of several hot spots, and the binding 

ability of the designed compound to one of the proteins can be evaluated. At this stage, any of the 

docking methods that evaluate small molecule or peptide docking to proteins can be used. The most 

widely used methods are AutoDock [177], DOCK [178], FlexDock [179], Glide [180] and others [12,181]. 

In the design of PPI inhibitors there are only a few categories. These are antibodies that inhibit PPI, 

peptides and peptidomimetics that inhibit PPI, and small molecules that inhibit PPI. We will not cover 

any aspects of antibody-based PPI in this article. Among the small molecule-based PPI inhibitors, the 

design concept may start with peptides that may later be converted into peptidomimetics and still later 

into small organic molecules. When molecules are designed based on the protein surface of one of the 

interacting protein partners, the design is based on certain protein recognition motifs. It is known  

that certain molecular scaffolds are associated with exhibiting biological or pharmacological activity 

when incorporated into drug design. Secondary structures such as α-helix [182–184], β-sheet [185], or 

β-turns [186,187] often provide structural scaffolds for the design of inhibitors of PPI. Extended 

structures and proline-rich segments [188] also form motifs for design. Organic molecules such as 

benzodiazepines are good scaffolds for protein recognition sites [189]. Such molecular scaffolds are 

also called “proteomimetics” [190,191]. Here we will illustrate some case studies of PPI inhibitors. 

These PPI inhibitors could be small organic molecules or peptides or peptidomimetics. Some examples 

start with peptides that are later modified to organic molecules based on the structures of the important 

functional groups. The discovery of PPI inhibitors has several well-known examples such as p53-MDM2 

inhibitors, IL2-IL2R inhibitors etc. However, the design in these examples includes fragment-based 

discovery [192] and experimental screening techniques using SAR by NMR [151,193] to screen several 

compounds to obtain the hits. Such methods are described in several reviews [35–37,47,194,195]. Some 

recent reports of the design of PPI inhibitors that incorporates the docking method include the design 

of NF-κB antagonist [196], a TNF-like weak inducer of apoptosis (TWEAK) and fiboblast growth 

factor inducible 14 (Fn-14) [197], toll-like receptor 4 (TLR4) and myeloid differentiation factor 2 

(MD-2) [198], calmodulin (CaM) and smooth muscle myosin light-chain kinase (smMLCK) [199], and 

EphA2-ephrin-A1 [200]. Here, we will focus on some recent examples of PPI targeted for drug design 

that were reported in the literature as well as PPI inhibitors designed in our laboratory. 

Much effort has gone into designing new antimalarial agents since most of the antimalarial drugs  

that were marketed decades ago have shown resistance to malarial parasite plasmodium falsiparum. The 

PPI inhibition strategy was used to discover new antimalarian agents. Invasion of red blood cells by 

plasmodium parasite involves the interaction of two proteins, apical membrane antigen 1 (AMA1) on 

the surface of the parasite and Rhoptry neck protein 2 (RON2) that is discharged from the parasite and 

imbedded in the membrane of the host cell [201]. Peptides derived from RON2 were able to compete 

with the binding interaction of RON2 with AMA1 [202]. A small molecule screening HTS assay resulted 

in a molecule that had weak binding affinity and unfavorable properties for drug development [203]. 
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Starting from peptides, different small molecules and peptidomimetics were developed. Pihan et al. [204] 

have used biophysical as well as computational methods to find potent PPI inhibitors of the AMA1-RON2 

interaction that can be used as potential antimalarial agents. The structure of the complex revealed  

that RON2 peptide (amino acids 2021 to 2059) was buried in a hydrophobic grove with a surface area 

of 1700 Å2. Using mutagenesis studies, hot spots on the interacting proteins have been elucidated.  

On AMA1, Phe183 and Tyr234 had an effect on binding upon alanine mutation (Figure 2); for RON2, 

Pro2033, Phe2038, Arg2041, and Pro2044 were critical in binding to AMA1. Using these hydrophobic 

residues, a pharmacophore was created using different databases (Cambridge’s EXPRESS pink collection 

and MMsINC). After initial ligand-based step screening, docking was used to further filter the 

compounds generated based on the pharmacophore. The software PLANTS [205] was used to dock the 

generated molecules to the protein complex of AMA1-RON2. Here, docking was used to filter a large 

number of compounds as possible PPI inhibitors from the pharmacophore modeling and database 

screening. For the final selection, compounds that dock to the AMA1 groove and interact with key 

residues Tyr234, Phe183, and Val169 were selected. Only eight compounds that mimicked the Phe2038 

binding were selected for biological assay and binding studies using surface plasmon resonance and 

biophysical studies. 

 

Figure 2. Crystal structure of complex of AMA1-RON2 peptide (PDB ID:3ZWZ). AMA1 

is shown as the surface and RON2 is shown in magenta. Amino acids from AMA1 that are 

critical for binding are labeled with three-letter codes. Amino acids from RON2 that are 

critical for binding and used in the design of the pharmacophore model are shown as sticks 

(magenta) and labeled with single letter codes for amino acids. Four point pharmacophore 

(shown with circles) was generated based on the PPI interaction. However, Tyr251 was in 

the exclusion sphere in the pharmacophore generated [204]. PyMol (Schrodinger LLC, 

Portland, OR, USA) was used to generate the figure based on the information from  

Pihan et al. [204]. 
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A challenging PPI inhibitor design was reported by Broos et al. [206] in which the proteins that 

interact change the conformation upon binding. In such cases, the inhibitors may not bind to the PPI 

interface, rather, they bind near the PPI interface. The von Willebrand factor (VWF) that is important in 

thrombosis undergoes conformational change due to shear stress conditions, allowing platelet glycoprotein 

(GP) Ib-V-IX to bind to the VWF-A1 domain. The formation of this complex is important in thrombus 

formation; thus, the inhibition of this complex is important in the development of antithrombotic 

agents. Monoclonal antibodies and nanobodies have been developed as antithrombic agents [207,208]. 

However, because of the limitations of antibodies as drugs, there is an interest in the development of 

small molecules. The crystal structures of the free VWF and complexes of VWF-GP-Ib-V-IX [209] as 

well as data from mutational studies were used to design a small molecule to inhibit the PPI of VWF 

and GP-Ib-V-IX. 

Crystal structures (Figure 3) were used to identify the hot spots using PASS [210], Hotpatch [211], 

and site Finder algorithms. Furthermore, molecular dynamic simulations were carried out on the selected 

crystal structures of VWF-A1 and GPIbα to evaluate the stability of hot spots. This step is particularly 

important as VWF undergoes conformational change during binding to GPIbα. Those hot spots that 

were stable during MD simulations were considered for binding of drug-like molecules. The two pockets 

selected were pocket 1 on GPIbα, with amino acids Asp83, Phe109, Lys133, Tyr130, and Trp230 and 

pocket 2 on VWF-A1 consisting of residues Gly567, Ile605, and Try600. Using the molecular databases 

Asinex and Enamine nearly 1,500,000 compounds were selected, and the databases were filtered using 

SMPPII-like criteria to obtain a subset of approximately one-million compounds. Next, using MOE, 

the database was reduced to 80,000 compounds. These compounds were screened by docking the 

compounds on VWF-A1 and GPIbα using GOLD. Finally, 24 molecules were selected from the docking 

studies for in vitro testing. The small molecules exhibited platelet aggregation activity at micromolar 

concentration, and saturation transfer difference (STD) NMR studies indicated binding of these small 

molecules to GPIbα. 

 

Figure 3. Cont. 
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Figure 3. (A) Crystal structure of the complex of VWF-A1 and GPIbα (PDB ID: 1SQ0) [209] 

showing the hot spots determined by computational methods. Residues in the hot spot 

region of VWF-A1 are shown as red sticks. Residues from the hot spots of GPIbα are 

shown as sticks in magenta. Amino acids from VWF-A1 are labeled with three-letter codes 

and those from GPIbα are labeled with single-letter codes; (B) Crystal structure of the 

complex of VWF-A1 and GPIbα (PDB ID: 1SQ0) [209] overlapped with the unbound 

structure of GPIbα (PDB ID: 1P9A) (shown in black). Note the marked oval shape where 

there is a change in the conformation between the free and bound states of GPIbα. This 

region is the most probable hot spot on the protein to be involved in binding of a PPI 

inhibitor [206]. PyMol (Schrodinger LLC) was used to generate the figure based on the 

information from Broos et al. [206].  

As mentioned earlier, most of the PPI inhibitors are based on the structure of one of the protein 

partners and, hence, peptides designed from the interface are natural PPI inhibitors. In our lab, we use 

peptides and peptidomimetics as PPI inhibitors. The T-cell adhesion molecules or co-stimulatory 

molecules CD2-CD58 have an important role in the immune response in strengthening the adhesion  

of T cells to antigen-presenting cells (APC). The protein-protein interaction between CD2 on T cells 

and CD58 on APC is important in the early stages of immune response [212–214]. Blocking 

adhesion/co-stimulatory molecules results in obstructing the T-cell receptor-APC interaction and 

preventing the primary immune response. CD2 and CD58 molecules have been shown to be important 

in inflammatory and autoimmune diseases such as rheumatoid arthritis (RA) [215]. In rodents, CD48 is 

involved in interaction with CD2 for immune response similar to that with CD58 in humans. Crystal 

structure and mutagenesis studies are available for CD2-CD58 interaction [216]. The CD58 binding 

domain of CD2 consists of β-strands F and C with charged residues (Figure 4A). A glance at the 

interfacial structure of CD2-CD58 proteins indicates that electrostatic interactions dominate the interface 

region with 10 salt bridges and five hydrogen bonds [217] and the interface area is around 1200 Å2. 

However, mutagenesis studies indicated that mutation of the residues involved in salt bridges and 

hydrogen bonds did not affect the binding of two proteins significantly. Mutation at a hydrophobic Tyr86 

reduced the binding affinity of CD2-CD58 by 1000 fold, suggesting that the hot spot is a hydrophobic 
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region. Our idea is to design peptides to mimic the CD58 binding region of CD2 protein that blocks 

CD2-CD58 interactions. We have designed several peptides and peptidomimetics that bind to CD58 

and block the CD2-CD58 interaction [218–221]. The designed molecules were docked to CD58 as well 

as CD48 to understand the nature of the interaction between the ligand and the receptor (Figure 4B).  

In vitro and in vivo studies suggested that the designed peptides suppress the adhesion between T cells and 

antigen-presenting cells by inhibiting CD2-CD58/CD48 interaction and are able to suppress immune 

response in an autoimmune disease model of rheumatoid arthritis. 

 

 

Figure 4. (A) Crystal structure of the complex of CD2 and CD58 (PDB ID: 1QA9) [217] 

adhesion domain involved in the recognition of T cells and antigen-presenting cells. Salt 

bridges and hydrogen bonds are shown by dashed lines. The hydrophobic hot spot is 

shown as magenta colored sticks. Note that, although the PPI surface is dominated with 

salt bridges and hydrogen bonds, the hydrophobic interaction between Tyr86, Phe46, and 

the Lys34 side chain sandwiched between the aromatic residues forms the hot spot;  

(B) A cluster of low-energy docked structures of a peptide bound to the CD58 protein 

adhesion domain [218–220]. PyMol (Schrodinger LLC) was used to generate the figure. 
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The literature suggests that PPI hot spots have some common features; however, PPI surfaces in 

different proteins are different, which makes the interactions highly specific. When homologous 

protein partners are involved, how do we design PPI inhibitors that bind specifically to one protein  

and inhibit PPI interaction? We have studied such cases in our laboratory using experimental and 

computational approaches. 

The human epidermal growth factor receptor (EGFR/HER) system of receptor tyrosine kinases plays 

an important role in cell growth and differentiation [222]. Among these, EGFR-HER2 and HER2-HER3 

dimers are well known in cancers. HER2 overexpression and its dimerization leads to an aggressive 

form of breast cancer [223,224]. Blocking of the extracellular domain IV of HER2 by the antibody 

trastuzumab is known to be clinically significant [225]. Our strategy is to use peptidomimetics to inhibit 

protein-protein interactions in the key regions of the interactions. We have designed a small molecule 

(a peptidomimetic) that has been shown to bind to HER2 domain IV and modulate dimerization of 

EGFRs. All four EGFRs have an overall similar 3D structure and nearly 50% sequence similarity.  

The molecule we have designed binds only to the HER2 protein extracellular domain and inhibits PPI 

of EGFR:HER2 and HER2:HER3 heterodimers that have important implications in breast, lung, and 

ovarian cancers. Using docking studies, we have defined the possible binding site of the molecules on the 

PPI interface of HER2 protein (Figures 5A,B). Using a variety of experimental methods, the molecules 

designed were shown to inhibit PPI, and these molecules were able to suppress tumors in a xenograft 

model of breast cancer [226–232]. 

 

Figure 5. Cont. 
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Figure 5. Crystal structure of the HER2 protein (PDB ID: 3N85) [233] extracellular 

domain IV shown in surface representation. (A) Hot-spot region on the surface was identified 

by FTMAP [150]. Two hot spots were identified; (B) Docking of a peptidomimetic designed 

to bind to domain IV of HER2 protein. The peptidomimetic docked at rank 1 hot spot 

suggests that hot spots are suitable sites for the design of PPI inhibitors [231]. PyMol 

(Schrodinger LLC) was used to generate the figure.  

Most of the PPI studies and docking methods describe a particular set of PPI and finding inhibitors 

for that particular PPI using docking methods. Casey et al. [234] described a method of combined 

normalization of ligand and target, which resulted in improved ability to rank true positives of multiple 

ligands binding to multiple protein surfaces. Usually in docking, scoring and ranking are relative and 

applicable to the case of many ligands and one protein target. When we want to compare many ligands 

binding to different proteins, the ranking methods do not provide the best results because scoring and 

ranking are relative. In the method developed by Casey et al., the results are normalized in both ligand 

and target dimensions. This method was applied to dock 287 FDA-approved small drugs with 35 small 

peptide-binding proteins, which include 15 true positives. AutoDock 4.0 utility was used as a docking 

function. Different known targets and their ligands such as ML-IAP/XIAP, Factor VIIa, Renin, Bcl-2, 

Thrombin, and MDM2 were used for virtual normalization. The results suggested that the method 

provides true positives (molecules that actually inhibit PPI in experimental studies). Such normalized 

methods are very useful for creating a diverse set of compound data bases that can be used to screen 

PPI inhibitors for any given PPI. Such docking methods need high-performance computers with 

parallel processors and computational methods applicable for parallel processing [234]. 

In HIV-1 infection, many active protein-protein interactions between host and pathogen play a vital 

role. HIV-1 Nef is one of the important proteins involved in infection, pathogenicity, and disease 

progression. Nef proteins have well-defined Src homology 3 (SH3) binding surface through which 

interactions are formed (Figure 6). Betzi et al. [235] made a successful attempt to target the SH3 binding 

site on HIV-1 Nef protein to inhibit HIV-1 Nef/SH3 protein-protein interaction by rational drug 
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design. A combination of virtual screening, high-throughput screening, and in vitro filters was used for 

the drug design. From the NCI diversity library (https://dtp.cancer.gov/branches/dscb/div2_explanation. 

html) of drug-likeness criteria, 1420 molecules were retained on which high-throughput docking was 

performed. FlexX software was used for virtual high-throughput screening, and calculated scores were 

reevaluated by GFscore. The first 335 lowest energy compounds were selected from docking. This 

selection was further narrowed by applying a filter based on RT loop binding region of SH3 domain 

(Figure 6). The final 10 compounds were tested in in vitro cell-based assays; this resulted in two potent 

drug-like hits that can inhibit the HIV-1 Nef/SH3 interaction competitively. The study is a clear 

example that the in silico approach can be used to design a small molecule PPI inhibitor [235]. 

 

Figure 6. Crystal structure of HIV-1 nef-SH3 domain (PDB ID:1AVZ). Nef is shown in 

surface representation and SH3 domain in magenta. Note the interaction of SH3 domain 

with hydrophobic grove that is called RT loop binding region. Residues surround the 

groove are shown in dark shade. Compounds were screened based on RTloop binding 

region [235]. PyMol (Schrodinger LLC) was used to generate the figure based on the 

information from Betzi et al. [235]. Permission obtained. Copyright (2007) National 

Academy of Sciences, U.S.A. 

Using a docking approach, Nomme et al. [236] designed a peptide that inhibits HsRAD51-ssDNA 

interaction. Homologous recombination is one of the important DNA repair processes. RAD51 protein 

is involved in the repair of a double-stranded break, which is the most severe DNA damage. Rad51 is 

overexpressed in various cancers, which causes resistance to the anticancer treatment. The amount of 

overexpression of Rad51 correlates with resistance to cancer treatment as well as degree of cancer 

advancement. Breast cancer (BRC) motifs of human BRCA-2 are involved in the interaction with 

human RAD51 (HsRAD51), and are reported to inhibit the filament formation of HsRad51. A small 

28-amino acid peptide designed from BRC motifs was previously found to be a potent inhibitor of 
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HsRAD51 in vitro, but was not efficient for medical use. Using a docking approach, a chimera peptide 

was designed based on eight existing human BRC protein motifs. To design the peptide, models of all 

eight BRC motifs were complexed with HsRad51 on the basis of HsRad51-BRC4 motif crystal structure. 

The complex modeled was analyzed for interaction energy of each amino acid residue of the BRC motifs 

and the best amino acid residue in the binding position with HsRad51 was selected. The designed 

chimera peptides were evaluated for their PPI inhibition potential. One of the chimeric peptides 

designed exhibited 10 times more potency than a similar peptide described in previous studies. The 

study demonstrates that PPI inhibitors can be designed when crystal structures of homologous proteins 

are known [236]. 

Protein-protein interaction can also be stabilized by drug-like molecules. These PPI stabilizers can 

bind to one partner protein and stabilize the interaction of the two proteins (allosteric effect) or bind to 

the interface of the complex, stabilizing the dimers. Such examples are available in the literature, and 

the molecules that bind to stabilize the complexes are already on the market. One of the best examples 

of protein stabilizers is paclitaxel, which binds to microtubules and stabilizes the protein dimers [14,237]. 

Here, we provide one example of identification of a PPI stabilizer using a docking method. 

Myc is similar to a myelocytomatosis viral oncogene that codes for a transcriptional factor 

oncoprotein Myc. Myc shows constitutive overexpression in many types of cancer and, hence, is a 

target for cancer therapy. Myc protein belongs to the helix-loop-helix leucine zipper protein family that 

activates or represses transcription as a heterodimer. The heterodimer partner of Myc is myc-associated 

factor X (Max). Max also belongs to the helix-loop-helix leucine zipper protein family, and can form 

homo- and heterodimers. Both Myc and Max are needed in heterodimerization form to bind DNA 

since Max lacks a transactivation domain and Myc contains a transactivation domain but cannot 

homodimerize. Myc can heterodimerize with Max to form heterodimers that can both bind DNA and 

transactivate. The transcriptionally active Max/Myc dimer promotes cell proliferation as well as 

apoptosis. Overall, Myc-Max heterodimers promote cancer and Max homodimers suppress cancer [238]. 

This PPI inhibition of Myc-Max has therapeutic potential for cancer. Small molecules that inhibit PPI 

of Myc-Max have been reported [16]. Jian et al. [238], have used a novel way to find therapeutic 

agents using a different strategy to reduce the Myc-Max heterodimer. The idea was to stabilize the 

Max-Max homodimers so that Max is not available for heterodimerization of Myc and downregulation 

of the entire Myc network. Furthermore, Max-Max homodimers suppress the cancer; thus, stabilization 

strategy is a new way of finding therapeutic agents. The crystal structure of the Max-Max homodimer 

is available [239] and, hence, the dimer structure can be used for docking. The PPI surface of the Max 

homodimer was studied, and stabilizers of Max homodimers were achieved via virtual screening using 

AutoDock. The authors report the screening of 1668 compounds from a NCI diversity set against Max 

homodimer as well as Myc-Max heterodimer using a blind docking method. By analyzing the different 

binding sites, the authors identified the compounds that are specific to Max homodimer stabilizers. 

Overall, this type of method needs more computational time since the entire binding area in PPI has to 

be explored on docking for identification of PPI stabilizers. 

PPI inhibition for designing drug-like molecules is an area that has been explored extensively during 

the last decade. Considering the number of databases available for PPI inhibitors and the limited number 

of 3D structures available for proteins, docking and scoring methods play a major role in various stages 

of screening and designing PPI inhibitors as well as stabilizers. Starting from protein-protein docking, 
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binding site analysis, and screening compounds for drug-like compounds, docking methods are used 

for identification of hot spots and design of PPI inhibitors. There are three major challenges in the use 

of docking on relatively flat surfaces of PPI. The first problem is the flexibility of proteins in docking and 

scoring. This is particularly important when the protein-protein interactions are transient. Furthermore, 

if there are conformational changes in the binding site in the bound or unbound state of one or both of the 

proteins, docking methods have to incorporate a method to deal with this. The analysis of ensembles of 

conformations and prediction of consensus hot spots is a good option for proteins that have a flexible 

surface. The second major problem is taking into account the interaction of small molecules or 

peptides with water molecules in the bound state. Since the PPI surface is flat, even if the hot spots are 

hydrophobic, only one part of a small molecule or peptide is buried in the protein shallow groove or 

cleft. The part of the ligand molecule that binds to the surface of the protein may not have any contact 

with water molecules. In most of the PPI hot spots, water molecules often form a ring around the center 

of the hot spot, and the hot spots are dry. Hence, the contribution of water molecules to the energetics 

of binding is small [20]. The other part is exposed to solvent if the protein of interest is an extracellular 

or cytoplasmic domain. Although some docking programs can incorporate water molecules, most of 

the applications are related to enzyme-active sites where interaction with water molecules within the 

enzyme cavity is well defined or there are a limited number of water molecules within the cavity. With 

limited data on protein complexes and the PPI inhibitors, inclusion of water molecules is still 

questionable and depends on each case studied. The third major challenge in PPI is protein-protein 

docking in the case of the absence of 3D structure of the complexes. It is almost impossible to search 

for all possible interactions between two proteins with different orientation and rotation. Most of the 

protein docking results should be evaluated based on experimental data. 

A promising area in PPI inhibitors is fragment-based drug design, in which fragments are developed 

on the PPI and linked to create new PPI inhibitors. Docking will play a significant role in this method 

also. There are attempts to create focused libraries for specific target types. Such PPI inhibitor libraries can 

be used to dock compounds using virtual screening. Rather than screening the entire data set (for example, 

natural product compounds, NCI), employing only a limited data set of compounds that are useful for 

target protein surfaces is more efficient [240]. A data set of PPI inhibitors would be useful for docking 

the known diverse PPI inhibitors because a traditional data set of inhibitors may not be useful for PPI 

inhibitor screening. A study was conducted to compare high-affinity inhibitors of IL-2, Bcl-XL, HDM2, 

and HPV E2 with compounds in the databases MDL Drug Data Report and World of Molecular 

Bioactivity (WOMBAT) by using the compounds’ Similarity Ensemble Approach. The results of the study 

did not show any similarity between the PPI inhibitors used and the compounds in the database [26]. To 

screen PPI from chemical databases of compounds, a very large collection of data sets may be needed. 

However, small molecular databases can be used to screen fragments in the fragment-based approach. 

4. Conclusions 

The design of PPI inhibitors is gaining confidence as more molecules that have drug-like properties 

are generated. Without defining the proper surface for PPI, the design of molecules that inhibit PPI 

will be vague. Docking methods are used in various stages of PPI inhibitor design whether it is small 

molecule-based or peptide-peptidomimetic-based drug design. Improved docking methods are necessary 
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as a starting point for PPI inhibitor design. A combination of experimental and computational techniques 

with scoring functions appropriate for particular cases is necessary for designing PPI inhibitors. 

Docking algorithms used for PPI are in the early stages; however, as more data are available, it will 

become a highly promising area in the design of PPI inhibitors or stabilizers. 
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