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In Search of an Optimal Subset of  
ECG Features to Augment the Diagnosis 
of Acute Coronary Syndrome at the 
Emergency Department
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BACKGROUND: Classical ST-T waveform changes on standard 12-lead ECG have limited sensitivity in detecting acute coronary 
syndrome (ACS) in the emergency department. Numerous novel ECG features have been previously proposed to augment 
clinicians’ decision during patient evaluation, yet their clinical utility remains unclear.

METHODS AND RESULTS: This was an observational study of consecutive patients evaluated for suspected ACS (Cohort 1 
n=745, age 59±17, 42% female, 15% ACS; Cohort 2 n=499, age 59±16, 49% female, 18% ACS). Out of 554 temporal-spatial 
ECG waveform features, we used domain knowledge to select a subset of 65 physiology-driven features that are mechanisti-
cally linked to myocardial ischemia and compared their performance to a subset of 229 data-driven features selected by mul-
tiple machine learning algorithms. We then used random forest to select a final subset of 73 most important ECG features that 
had both data- and physiology-driven basis to ACS prediction and compared their performance to clinical experts. On testing 
set, a regularized logistic regression classifier based on the 73 hybrid features yielded a stable model that outperformed clini-
cal experts in predicting ACS, with 10% to 29% of cases reclassified correctly. Metrics of nondipolar electrical dispersion (ie, 
circumferential ischemia), ventricular activation time (ie, transmural conduction delays), QRS and T axes and angles (ie, global 
remodeling), and principal component analysis ratio of ECG waveforms (ie, regional heterogeneity) played an important role in 
the improved reclassification performance.

CONCLUSIONS: We identified a subset of novel ECG features predictive of ACS with a fully interpretable model highly adaptable 
to clinical decision support applications.

REGISTRATION: URL: https://www.clini caltr ials.gov; Unique Identifier: NCT04237688.
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The prompt identification of acute coronary syn-
drome (ACS) is a longstanding challenge in emer-
gency practice.1–3 The ECG is readily available 

during initial patient evaluation, and sensitive ECG 
markers of acute myocardial ischemia can expedite 
the current time-consuming, biomarker-driven ap-
proach for ACS diagnosis.4–6 The electrophysiolog-
ical basis of acute myocardial ischemia has been 

thoroughly studied over the past few decades,7 with 
many studies suggesting the abundance of hidden 
signatures of acute myocardial ischemia in the sur-
face ECG signal.8,9 Yet, current guidelines exclusively 
rely on the amplitude of ST segment and T wave for 
ACS detection,10 translating into a diagnostic sensitivity 
of ≈40% for the standard 12-lead ECG.11 Given that 
ECG waveform is among the most extensively studied 
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signals in cardiovascular medicine, existing compu-
tational algorithms can extract hundreds of features 
from a single 10-second 12-lead ECG. Thus, recent 
advances in pattern recognition and machine learning 
could help in identifying an optimal subset of features 
to augment clinicians’ decision in detecting ACS during 
initial evaluation.12

Although it is being widely adopted in various clinical 
applications, machine learning is limited by the relatively 

small size of available clinical data sets and the diffi-
culty of finding comparable external data sets for rep-
lication.13 Accordingly, feature subset selection (FSS) 
plays a significant role in optimizing the accuracy of 
supervised classification systems, including improved 
understandability of the final classifier. In addition to 
available data-driven approaches of FSS, some stud-
ies suggest the need for domain-specific expertise to 
guide feature selection and model development during 
the learning process.13 The electrophysiology of myo-
cardial ischemia is well understood, and it is feasible to 
perform FSS based on cardiac physiology. However, 
there is a paucity of evidence regarding the effect of 
manual FSS on the performance of supervised classi-
fication systems. In fact, manual FSS is counterintuitive 
to the premise of machine learning—the discovery of 
hidden patterns in the data that might not be appar-
ent to clinicians. Accordingly, using 2 prospective clin-
ical cohorts, we sought to (1) compare the accuracy 
of supervised classifiers in detecting ACS using ECG 
feature subsets selected based on either data-driven 
techniques or domain-specific knowledge; and (2) 
whether data-driven FSS techniques can identify ECG 
features indicative of ACS that were overlooked by do-
main-specific human experts.

METHODS
Design and Settings
This was a prospective observational cohort study of 
consecutive patients with chest pain transported by 
emergency medical services to 1 of 3 tertiary care 
hospitals in the United States between 2013 and 2015. 
The methods of this study were previously described 
in detail.14 In short, we collected the prehospital 12-
lead ECGs obtained by paramedics in the field and 
stored them for offline analysis. We then followed up 
patients to adjudicate study outcomes. Clinical data 
were obtained from medical charts by independent 
reviewers. Patients were recruited under a waiver of 
informed consent and the study was approved by the 
institutional review board of University of Pittsburgh. 
The data that support the findings of this study are 
available from the corresponding author upon rea-
sonable request.

The primary study outcome was the presence of 
ACS (myocardial infarction or unstable angina) during 
the primary indexed admission, defined according to 
the fourth Universal Definition of myocardial infarc-
tion consensus statement as the presence of symp-
toms of ischemia (ie, diffuse discomfort in the chest, 
upper extremity, jaw, or epigastric area for more 
than 20  minutes) with the presence of biomarker, 
nuclear, or angiographic evidence of myocardial 
ischemia and/or loss of viable myocardium.10 Study 

CLINICAL PERSPECTIVE

What Is New?
• This study identifies a subset of novel computa-

tional features from the standard 12-lead ECG, 
other than ST-segment and T wave changes, 
which would improve the detection of non-ST 
elevation acute coronary syndrome at the emer-
gency department.

• While maintaining higher negative predictive value, 
a machine learning model based on these novel 
features achieved 47% gain in sensitivity com-
pared with commercial interpretation software 
and 32% compared with experienced clinicians.

• This model also successfully classified challeng-
ing ECGs deemed nondiagnostic for ischemia 
because of secondary repolarization changes 
(left ventricular hypertrophy, left bundle branch 
block, pacing, etc).

What Are the Clinical Implications?
• Our machine learning model is fully interpreta-

ble and can be easily incorporated into existing 
ECG software or embedded into ECG interpre-
tation platforms for decision support.

• These algorithms can help clinicians in identify-
ing non-ST elevation acute coronary syndrome 
in real time, which has been a longstanding 
challenge in clinical practice.

• Given that our model has higher sensitivity and 
negative predictive value compared with expe-
rienced clinicians, it is well suited as an initial 
screening tool (ie, rule out); this has the potential 
to better allocate hospital resources by avoiding 
prolonged observations, unnecessary admis-
sions, or invasive testing.

Nonstandard Abbreviations and Acronyms

ANN artificial neural network
FSS features subset selection
LR logistic regression
PCA principal component analysis
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outcomes were adjudicated by 2 independent phy-
sician reviewers and disagreement was resolved by 
a third physician reviewer. Patients discharged from 
the emergency department were classified as neg-
ative for ACS if they had no 30-day adverse events. 
Patients presenting ventricular tachycardia or fibril-
lation on prehospital ECG were excluded from this 
analysis.

ECG Preprocessing and Feature 
Extraction
Each ECG was manually overread by an independent 
reviewer. ECGs with excessive noise or artifact (n=24, 
2%) were substituted by the next serial ECG obtained 
during emergency evaluation. ECGs with ventricu-
lar tachycardia or fibrillation were excluded from this 
analysis (n=7, 0.5%). All other available ECGs, includ-
ing those with secondary repolarization changes (ie, 
pacing, bundle branch block, coarse atrial fibrillation, 
or left ventricular hypertrophy with strain, n=178, 14%) 
were included in the analysis. We decided to keep 
these ECGs because their removal had no effect on 
the performance of subsequent predictive models. 
Besides, the ability to classify these challenging ECGs 
would have huge clinical utility during emergency care.

Then, 10-second, 12-lead ECG signals (500  s/s, 
HeartStart MRx, Philips Healthcare) were preprocessed 
at Philips Healthcare Advanced Algorithm Research 
Center (Andover, MA). Raw ECG signals were decom-
pressed to extract individual ECG leads. Noise, artifact, 
and ectopic beats were then removed, and representa-
tive average beats were computed for each ECG lead to 
eliminate residual baseline noise and artifacts. This tech-
nique yields high signal-to-noise ratio and stable average 
waveform signal for each of the 12 leads.

Next, fiducial points from these representative beats 
were identified and corresponding ECG features were 
extracted. The details of feature extraction from this data 
set was previously described in detail.12 In short, a total 
of 554 features were extracted from each 12-lead ECG. 
First, duration, amplitude, and area of various waveform 
deflections were calculated from each of the 12 leads, 
yielding 444 temporal ECG features (Figure 1A). Second, 
the 12 representative beats were superimposed, and 
global intervals and subintervals were computed, yield-
ing 6 more temporal ECG features (Figure  1B). Third, 
principal component analysis (PCA) on time-voltage data 
was performed on orthogonal leads I, II, and V1–V6 to 
compute PCA ratios of the eigenvalues of various ECG 
waveforms, yielding 13 spatial ECG features (Figure 1C). 
Finally, axes, angles, loops, and gradients of QRS and T 
vectors from xy, xz, yz, and xyz planes were computed, 
yielding 91 more spatial ECG features (Figure 1D).

All extracted ECG features were then Z score nor-
malized. Missing data, representing <0.2% of the total 

features’ values available in our data set, were imputed 
using the mean or the mode of the corresponding 
feature.

FSS Using Domain-Specific Human 
Expertise
Two research scientists trained in cardiac electrophysi-
ology reviewed the 554 extracted ECG features and 
agreed on a reduced set of 65 features that had strong 
physiological basis as plausible markers of acute myo-
cardial ischemia, including 24 classical measures (am-
plitude of J+80 point and T wave from each of the 12 
leads), and 41 supplemental features that may correlate 
with acute cardiac ischemia: depolarization and repo-
larization times (ie, QRS duration, JTend, JTpeak, Tpeak-end, 
and QT interval, k=6); depolarization and repolarization 
vectors (QRS and T axes and angles, k=8); repolari-
zation velocity (ie, T wave peak inflection, amplitude, 
and slope, k=5); global electrical dispersion (PCA ra-
tios between QRS, ST-T, J, and T eigenvalues, k=13); 
repolarization characteristics (ie, T wave morphology 
and T loop features, k=7); and high frequency signal 
noise values (k=2). The selection of these candidate 
features was based on review of literature15 and our 
previous work.8,16,17

FSS Using Data-Driven Algorithms
We used 3 different data-driven algorithms to iden-
tify a list of features most important for optimizing the 
performance of the classification algorithm. First, we 
used Cohen’s d effect size, which compares how dis-
tinguishable ACS versus non-ACS distributions of a 
given feature are in terms of the distance between the 
means. All distributions were evaluated for normality of 
distributions and homogeneity of variances. Features 
corresponding to an effect size lower than 0.35 are 
assumed to fail to differentiate between the 2 popula-
tions and were excluded from our data set. Using this 
cutoff value, only 23 features out of 554 remained (4%). 
Second, we used recursive features elimination as part 
of logistic regression (LR). We evaluated 20 features 
per iteration and used F1 scores to evaluate model 
performance. F1 scores provide the best tradeoff be-
tween precision and recall using imbalanced data sets 
like ours, which had a 6:1 ratio of non-ACS to ACS 
subgroups. The selection of the optimal set of features 
went through a 10-fold cross-validation process. Using 
this technique, 156 features out of 554 (28%) were se-
lected. Finally, we used least absolute shrinkage and 
selection operator (LASSO) regression to select the 
most important features with non-zero coefficients. We 
used the L1 norm method to penalize the least square 
error between the outcome and an affine function of 
the input variables. The regularization parameter alpha 
was set by the means of a 10-fold cross-validation. 
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Using this technique, 96 features out of 554 (17%) were 
selected.

Next, given that the 3 FSS techniques described 
here use complementary, noncompeting approaches, 
we identified the features that received at least 1 vote 
(ie, appeared in at least 1 FSS algorithm). This yielded 
a total of 229 features. We used these data-driven 
features in subsequent training and testing of ma-
chine learning classifiers in order to compare against 
the domain-specific manually selected features. It is 
noteworthy that this step-by-step process for FSS was 
selected after a comprehensive evaluation of our data 
set. This is important to note because the performance 
of machine learning algorithms is dependent on the in-
herent properties of the data set used. Several studies 

have used multiple FSS procedures to tackle 1 specific 
disease diagnosis.18

FSS Using a Hybrid Data- and Physiology-
Driven Approach
To identify any important ECG features that were 
missed by domain-specific experts, we mapped the 
229 data-driven features against the major compo-
nents of the 12-lead ECG signal, identifying the overlap 
between the data-driven features and the ones se-
lected by domain-specific experts. We identified perti-
nent data-driven features that could be mechanistically 
linked to ischemia and yet missed by human experts. 
This yielded a total of 100 hybrid features that are both 

Figure 1. Computation of ECG features.
This figure shows the computation of 554 features from each 12-lead ECG. A, Duration, amplitude, and 
area of various waveform deflections are calculated from the median beat of each of the 12 leads. B, The 
12 median beats are superimposed, and global intervals and subintervals are computed. C, Principal 
component analysis (PCA) on time-voltage data is performed on the orthogonal leads I, II, V1–V6 to 
compute PCA ratios of the eigenvalues of various ECG waveforms. D, Axes, angles, loops, and gradients 
of QRS and T vectors from xy, xz, yz, and xyz planes are computed. aVL indicates augmented vector left; 
and aVR, augmented vector right.
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data driven and judged by clinicians as presumably 
contributing as signatures of myocardial ischemia. To 
reduce the apparent redundancy in these features, we 
used random forest to identify and keep the important 
features for the task of ACS detection. This yielded a 
final novel subset of 73 features that we used in subse-
quent tuning of machine learning classifiers. Figure 2 
summarizes the sequential steps for ECG features se-
lection used in this study.

Machine Learning and Statistical Methods
LR and artificial neural networks (ANN) have been pref-
erentially used in previous studies focusing on ECG-
based prediction of ACS.19–21 Considering the size of 
our data set and the expected reduction of model com-
plexity achieved through FSS, we started with LR as the 
machine learning classifier of choice to address the aims 
of our study. We then used ANN to explore whether FSS 
approaches would have a similar effect on more sophis-
ticated, nonlinear machine learning classifiers.

Our LR and ANN classifiers were trained using a 
10-fold cross-validation on Cohort 1 and, afterwards, 
tested on an independent Cohort 2 being completely 
blinded to its outcomes. We started with all 556 avail-
able features (554 ECG features with age and sex) 
without any FSS (ie, LR554 and ANN554). Next, we built 
models using the 65 manual features selected by do-
main-specific human experts (ie, LR65 and ANN65), 
the 229 data-driven features (ie, LR229 and ANN229), 
and the 73 hybrid data- and physiology-driven fea-
tures (ie, LR73 and ANN73). The algorithms were 
trained using 10-fold cross-validation and then evalu-
ated on an independent testing set that was blinded 
to the outputs.

The classification performance of each classifier 
was evaluated using the area under the receiver op-
erating characteristic (ROC) curve. This tool is power-
ful because it reflects the ability of binary classifiers to 
distinguish between 2 populations. We used DeLong’s 
test to compare the difference between the mean area 

Figure 2. Flow diagram of the features selection steps used in this study.
This diagram summarizes the steps used to select features using domain knowledge, data-driven algorithms, and the hybrid 
combination of both approaches. AUROC indicates area under the receiver operating characteristic curve; K, number of features in 
each step; LASSO, least absolute shrinkage and selection operator; and RFE, recursive features elimination.
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under the curve of 2 correlated ROC curves of different 
classifiers,22 and we opted for pairwise comparisons. 
We set alpha at P<0.05 for 2-tailed hypothesis testing.

ECG Reference Standards
We compared the performance of the final LR73 clas-
sifier against 2 current ECG reference standards: (1) 
clinical experts’ interpretation and (2) commercial in-
terpretation software. To get these annotations, each 
12-lead ECG was over-read by 2 experienced clini-
cians. Each reviewer classified each ECG according 
to the likelihood of underlying ACS (yes/no) taking into 
account diagnostic ST-T changes as per the fourth 
Universal Definition of Myocardial Infarction consen-
sus statement,10 and the presence of other suspicious 
ECG findings (ie, contiguous territorial involvement, 
evidence of reciprocal changes, changes beyond 
those caused by secondary repolarization, and lack of 
ECG evidence of nonischemic chest pain etiologies). 
Disagreements were resolved by a board-certified 
cardiologist. Next, we used Philips diagnostic 12/16-
lead ECG analysis program (Philips Healthcare) for 
automated ECG interpretation. This software is com-
mercially available and is used in practice to denote 
the diagnostic likelihood of ACS on the ECG printout 
(ie, “***Acute MI***”).

We computed and compared the sensitivity, spec-
ificity, and positive and negative predictive values for 
the final machine learning classifier and the reference 
standards. We also computed the net reclassifica-
tion improvement index for our final machine learning 
classifier against each reference standard. Finally, in 
subsequent sensitivity analyses, we reevaluated the 
diagnostic performance of our final machine learning 
classifier in detecting patients with non−ST-segment 
elevation ACS (NSTE-ACS) after excluding patients with 
confirmed ST-segment–elevation myocardial infarction 
on their prehospital ECG and who were sent to the 
catheterization laboratory emergently.

RESULTS
Baseline Characteristics
Our sample consisted of 1244 patients from 2 study 
cohorts: a training cohort (n=745, age 59±17, 42% fe-
male, 40% Black) and a testing cohort (n=499, age 
59±16, 49% female, 40% Black). Most patients were 
evaluated for chest pain (90%) or shortness of breath 
(39%); most patients presented in normal sinus rhythm 
(88%) or atrial fibrillation (9%); and the rate of 30-day 
cardiovascular death was 4.6%. Table 1 summarizes 
the baseline characteristics of each cohort. The 2 
cohorts were comparable in terms of demographics, 
past medical history, chief complaint, baseline ECG 
characteristics, and clinical outcomes.

Performance of Machine Learning 
Classifiers
The primary study outcome was ACS, which oc-
curred in 114 out of 745 patients (15.3%) in the train-
ing cohort and 92 out of 499 patients (18.4%) in the 
testing cohort. Figure 3 compares the area under the 
ROC curves of the different LR and ANN classifiers 
considered in this study. On training set (Figure 3A, 
left panel), both manual FS and data-driven FSS 
techniques had better performance compared with 
no FSS, with the best performance (lowest bias) 
achieved using the data-driven approach. However, 
on independent testing (Figure 3A, right panel), data-
driven FS approach generalized poorly (high vari-
ance). Manual FSS, on the other hand, generalized 
well to the testing set, suggesting a better bias-vari-
ance tradeoff. Comparing the area under ROC curve 
of manual FSS and data-driven FSS yielded a statisti-
cally significant difference for the LR model with a P 

Table 1. Baseline Study Characteristics

Cohort 1 (N=745) 
(Training Set)

Cohort 2 (N=499) 
(Testing Set)

Demographics

Age in y 59±17 59±16

Sex (female) 317 (42%) 243 (49%)

Race (Black) 301 (40%) 202 (40%)

Past medical history

Hypertension 519 (69%) 329 (66%)

Diabetes mellitus 196 (26%) 132 (26%)

Old myocardial 
infarction

205 (27%) 122 (24%)

Known coronary artery 
disease

248 (33%) 179 (36%)

Known heart failure 130 (17%) 74 (15%)

Prior PCI/CABG 207 (28%) 124 (25%)

Clinical presentation

Chest pain 665 (89%) 454 (91%)

Shortness of breathing 250 (34%) 234 (47%)

Normal sinus rhythm 648 (87%) 442 (88%)

Atrial fibrillation 71 (9%) 46 (9%)

Course of hospitalization

Length of stay, median 
[interquartile range]

2.3 [1.0–3.0] 1.2 [0.6–2.5]

Confirmed ACS (all 
events)

114 (15.3%) 92 (18.4%)

Non−ST-segment 
elevation-ACS

83 (11.1%) 74 (14.8%)

Treated by primary PCI/
CABG

74 (10%) 65 (13%)

30-d cardiovascular 
death

33 (4.4%) 24 (4.8%)

ACS indicates acute coronary syndrome; CABG, coronary artery bypass 
graft; and PCI, primary percutaneous coronary intervention.
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value equal to 0.0105. The same trend was observed 
using ANN. The data-driven FSS approach per-
formed best on the training set (Figure 3B, left panel), 
but generalized poorly to the testing set (Figure 3B, 
right panel), again suggesting more overfitting com-
pared with manual FSS approach, with a P value 
equal to 0.0411.

Overlap in Features Between FSS 
Approaches
Among the 229 data-driven features, 31 features 
(14%) were among the ones manually selected by 
human experts. These data-driven features with physi-
ological plausibility for ACS classification included (1) 
lead-specific ST and T wave amplitudes; (2) Tpeak–Tend 
interval; (3) frontal and horizontal QRS and T axes; (4) 
spatial QRS-T angle and total-cosine R-to-T angle; (5) 
T loop morphology dispersion; (6) PCA ratio of QRST 
waveform, ST-T waveform, and T wave; and (7) the 
nondipolar component of J wave. Among these fea-
tures, Tpeak–Tend was specifically selected by all 3 data-
driven FSS algorithms and was also ranked by LR 

classifiers as the most important feature among the 
ones selected by human experts. Finally, to discern 
which data-driven features contributed to noise versus 
contributed to true prognostic value in ACS prediction, 
we mapped the 229 data-driven features against the 
major components of the 12-lead ECG signal (Table 2). 
This table highlights a potential subset of features that 
data-driven algorithms ranked as important for the 
task of ACS detection but were not selected by do-
main-specific experts.

Performance of Hybrid Subset of Novel 
Features
The final hybrid subset included 73 features that had 
both data- and physiology-driven basis. Figure  4A 
compares the area under the ROC curves of the 
3 LR classifiers based on data-driven basis alone, 
domain-expertise alone, and hybrid data- and 
physiology-driven basis. As seen in this panel, the 
hybrid features model generalized well to the test-
ing set, outperforming the other 2 models. Similar 
trends were seen with ANN algorithms, but without 

Figure 3. Classification performance using LR and ANN classifiers.
These plots show the performance of (A) logistic regression (LR) and (B) artificial neural network (ANN) 
classifiers on training data (Cohort 1) and testing data (Cohort 2) using all available ECG features (k=554), 
data-driven subset of ECG features (k=229), or physiology-driven subset of ECG features (k=65). P values 
are based on nonparametric method by Delong. AUC indicates area under the curve.
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any additional gain compared with LR algorithms 
(LR73 0.79 versus ANN73 0.76). Thus, we compared 
the diagnostic accuracy of the final LR73 against the 
reference standards (Table 3). As seen in this table, 
our LR classifier had higher sensitivity compared 
with expert clinicians and the commercial software 
while maintaining higher negative predictive value 
(ie, superior rule-out performance). Although the LR 
classifier had lower specificity than other reference 
standards, it achieved positive overall net reclas-
sification improvement (0.10 [−0.02–0.23] and 0.21 
[0.10–0.32], respectively).

Finally, in our sensitivity analyses, we reevaluated 
the diagnostic performance of our final machine learn-
ing classifier in detecting patients with NSTE-ACS. 
Figure 4B and Table 3 show the area under the ROC 
of LR73 and its corresponding diagnostic accuracy val-
ues as compared with the reference standards. Similar 
to previous results, our classifier had higher sensitivity 

compared with expert clinicians and the commercial 
software while maintaining higher negative predic-
tive value (ie, superior rule-out performance), achiev-
ing positive overall net reclassification improvement 
for NSTE-ACS detection (0.19 [0.04–0.33] and 0.29 
[0.15–0.42], respectively). Figure 5 displays the impor-
tance ranking of the novel ECG features for the task of 
NSTE-ACS detection. Intriguingly, classical ST and T 
wave amplitudes had the least predictive importance, 
with metrics of nondipolar electrical dispersion, ven-
tricular activation time, QRS and T axes and angles, 
and PCA ratio of ECG waveforms playing a more im-
portant role.

DISCUSSION
This study evaluated the effect of 2 FSS techniques 
on the accuracy of machine learning classifiers in 

Table 2. Overlap in Features Between Data-Driven and Human-Expert Techniques

12-Lead ECG Component

Number of Features Selected Comparison Between Techniques

Human Expert Data-Driven Overlap in Features
Features Overlooked by 

Clinicians

ECG normalization (k=2) 2 2 Age and sex …

P duration, amplitude, or area 
(k=72)

0 25 … Lead-specific P duration and 
amplitude

PR interval metrics (k=26) 1 11 Global PR interval Lead-specific PR interval

Q duration or amplitude (k=24) 0 10 … Lead-specific Q wave presence

R duration or amplitude (k=48) 0 23 … Lead-specific R amplitude

S duration or amplitude (k=48) 0 16 … S amplitude in precordial leads

Other QRS complex metrics 
(k=74)

1 31 Global QRS duration QRS notch; ventricular activation 
time; lead-specific QRS duration 

or area

Selvester Score (k=19) 1 0 Total scar size …

ST amplitude, duration, or slope 
(k=72)

12 31 Lead-specific ST 
amplitude

Lead-specific ST duration and 
slope

ST deviation morphology (k=14) 0 7 … Presence of concaved ST 
deviation

T duration, amplitude, or area 
(k=76)

14 33 Lead-specific T 
amplitude, T-to-R relative 

amplitude

Lead-specific T duration or area; 
presence of notched T wave

QT interval and subintervals 
(k=23)

4 12 Global QTc, Tpeak−Tend Lead-specific QT interval

QRS axis (k=12) 1 7 Frontal plane QRS axis Horizontal and spatial QRS axis

T axis (k=11) 4 6 T axis in frontal, 
horizontal, and spatial 

planes

…

QRS and T vector angles (k=5) 2 3 QRS-T angle and TCRT …

T loop morphology (k=6) 4 4 T asymmetry and 
dispersion

…

Principal components analysis 
(k=16)

16 6 Principal component 
analysis ratio of J, T, and 

ST-T

…

Noise signal (k=8) 3 2 Noise and baseline 
wander

…
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augmenting the ECG detection of ACS. Using 2 pro-
spective clinical cohorts, our data show that machine 
learning classifiers have better bias-variance trade-
off when built based on features manually selected 
by human experts as compared with no FSS or using 
data-driven techniques alone. On independent testing, 
our data show that using a hybrid subset of 73 novel 
ECG features based on data- and physiology-driven ap-
proaches yields not only more powerful and interpret-
able model but also outperforms clinical experts and 
commercial rule-based software in detecting any ACS 
event, as well as NSTE-ACS events. More interestingly, 
feature importance ranking demonstrates the presence 
of novel and plausible markers of ischemia that are highly 
adaptable to clinical decision support applications.

Effect of FSS Approach on Classifiers 
Performance
Our data show that, compared with no FSS, phys-
iology-driven features optimized our LR classifier 
and yielded a generalizable model. This finding is 
expected given that using domain-specific knowl-
edge not only tremendously reduced the dimen-
sionality (65 out of 556 features) but also intuitively 
reduced the redundancy in the data, both of which 
are compatible with linear classifiers. On the other 
hand, our data show that the initial gain observed 
by using data-selected features generalized poorly 
to an independent unseen cohort. Our training set 
results are similar to the ones reported by Green 
et al.20 In their work, they built the model based on 

Figure 4. Classification performance using different subsets of novel ECG features.
These plots show the performance of logistic regression (LR) classifiers on testing data (Cohort 2) 
for predicting (A) acute coronary syndrome (ACS) and (B) non–ST-segment elevation-acute coronary 
syndrome (NSTE-ACS) using data-driven subset of ECG features (k=229), physiology-driven subset of 
ECG features (k=65), or hybrid subset with novel features (k=73). AUC indicates area under the curve.

Table 3. Diagnostic Accuracy Measures of Machine Learning Classifiers Against Gold Standard Reference on the Testing 
Set (n=499)

Clinical Experts Interpretation Commercial Software Read Novel ECG Features (LR73)

Predicting Any ACS Event

Sensitivity 0.40 (0.30–0.51) 0.25 (0.17–0.35) 0.72 (0.61–0.81)

Specificity 0.94 (0.92–0.96) 0.98 (0.96–0.99) 0.73 (0.68–0.77)

Positive predictive value 0.63 (0.51–0.73) 0.79 (0.62–0.90) 0.38 (0.33–0.42)

Negative predictive value 0.88 (0.86–0.89) 0.85 (0.83–0.87) 0.92 (0.89–0.94)

NRI index Reference … 0.10 (−0.02–0.23)

… Reference 0.21 (0.10–0.32)

Predicting Non−ST-segment elevation-ACS event

Sensitivity 0.26 (0.16–0.37) 0.12 (0.06–0.22) 0.72 (0.60–0.82)

Specificity 0.94 (0.92–0.97) 0.98 (0.96–0.99) 0.68 (0.63–0.72)

Positive predictive value 0.46 (0.33–0.60) 0.60 (0.35–0.80) 0.29 (0.25–0.33)

Negative predictive value 0.87 (0.85–0.89) 0.85 (0.84–0.87) 0.93 (0.90–0.95)

NRI index Reference … 0.19 (0.04–0.33)

… Reference 0.29 (0.15–0.42)

ACS indicates acute coronary syndrome; NRI, net reclassification improvement index; and LR73, logistic regression model based on the 73 hybrid features.



J Am Heart Assoc. 2021;10:e017871. DOI: 10.1161/JAHA.120.017871 10

Bouzid et al Novel ECG Features of Ischemia

Figure 5. Importance rank of subset of novel ECG features for the task 
of NSTE-ACS detection.
This plot shows the feature importance ranking obtained using a random 
forest model on a hybrid data set including novel ECG features with prehospital 
ECG data after excluding patients with STEMI. AUC indicates area under the 
curve; NDPV, nondipolar voltage; NSTE-ACS, non–ST-segment elevation-
acute coronary syndrome; PCA, principal component analysis; RMS, root 
mean square; and STEMI, ST-segment–elevation myocardial infarction.
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16 ECG features chosen using the PCA approach. 
Their cohort consisted of a comparable sample size 
(634 patients) and ACS prevalence (130 patients with 
ACS, ie, ≈20.5%).20 However, Green et al did not have 
an independent testing set for validation. In our data, 
we showed that data-driven FSS lacked generaliz-
ability on a new test example, indicating overfitting of 
training data coupled with a substantial variability of 
classifier performance. Although this finding was sur-
prising, the small data set size as well as the inclusion 
of patients with confounders in our data sets could 
provide a simple rationale for this unexpected find-
ing. Besides, some strict requirements about data 
nature, such as the homogeneity of variances for the 
Cohen’s d effect size algorithm, were not satisfied, 
which may jeopardize the predictive performance, 
including its generalizability.

We observed similar trends in results when we ap-
plied ANN as a nonlinear classifier. These findings are 
a little bit counterintuitive given that ANN is expected 
to better capture the underlying characteristics of the 
data set when fed with more features. This divergence 
can be attribute to the small sample size, especially 
for training data, which is incompatible with learning 
a complex model without increasing the risk of over-
fitting.23 This was observed as a significant reduction 
in ANN classifiers performance using all available fea-
tures (k=554) or the data-selected ones (k=229). Again, 
we speculate the reduced dimensionality and data re-
dundancy when using physiology driven features re-
duced the complexity of the ANN classifiers, yielding a 
more generalizable model.

Finally, it is worth noting that using ANN classifi-
ers consistently yielded higher classification accuracy 
when compared with LR classifiers, with or without 
any FSS (Figure 3). However, this gain in accuracy was 
negligible when using the physiology-driven features 
(ANN65=0.77 versus LR65=0.76 [for test set]). Given 
that LR classifiers are easily interpretable, our results 
suggest that using an LR65 classifier with physiolo-
gy-driven features can yield a fully understandable de-
cision support tool for clinical use.

Overlap Between Data- and Physiology-
Driven Features
The secondary aim of this study was to explore 
whether data-driven FSS techniques might iden-
tify ECG features indicative of ACS that were over-
looked by domain-specific human experts. Table  2 
mapped the 229 data-driven features against the 
major components of the 12-lead ECG signal, iden-
tifying the overlap between the data-driven features 
and the ones selected by domain-specific expertise. 
More interestingly, this table summarizes the clus-
ter of data-driven features that were overlooked by 

human-experts. Some of these overlooked data-
driven features are contextually understandable, like 
ST slope, ST deviation morphology, and T wave at-
tributes, but some other features were more challeng-
ing to classify. Upon careful annotation, we classified 
the overlooked data-driven features in 1 of these 3 
broad categories: (1) noise attributed to existing co-
morbidities or patient medications (ie, lead-specific P 
duration, P amplitude, and PR interval); (2) redundant 
information quantified by simultaneous ECG features 
(ie, lead-specific Q, R, and S wave attributes that are 
redundant with scar size and lead-specific QRS du-
ration and QT interval that are redundant with princi-
pal component analysis); and (3) features that could 
be mechanistically linked to myocardial ischemia and 
can serve as plausible features of ACS (ie, presence 
of fragmented QRS and lead-specific ventricular ac-
tivation time).

Novel ECG Features of Ischemia
The novel features identified in this study as plausible 
markers of ACS that are potentially mechanistically 
linked to myocardial ischemia bring a valuable addi-
tion to clinical knowledge. Intriguingly, although the 
classical ST and T wave amplitude measures were 
among the predictive features, they ranked as the 
least important when compared with the contribution 
of other novel features (Figure  5). Some of the ob-
served patterns and clusters of the most important 
features can be summarized in the following major 
categories:

1. Features of the nondipolar voltage, which quantifies 
the spatial electrical dispersion in the fourth to 
eighth eigenvalues. In the context of ST, T, and J 
components, the nondipolar voltage would indicate 
the magnitude of diffusion or widespread global 
changes,24 a probable measure of circumferential 
ischemia in ACS.

2. Ventricular activation time, which quantifies the time 
from Q onset to R peak. Whereas depolarization of 
the whole ventricular myocytes is assessed through 
global QRS duration, localized regional depolariza-
tion can be assessed using individual leads facing 
that myocardial region. Thus, ventricular activation 
time measured from anterior and inferior leads would 
primarily indicate transmural conduction delays in the 
left ventricle and apex,25 a probable consequence of 
localized ischemia in these regions.

3. QRS and T axes and corresponding angles, which 
characterize the propagation direction of depolari-
zation and repolarization signals and, hence, global 
electrical dispersion. In the context of ACS, these 
features can reflect the altered electromechanical 
forces in the ventricular myocardium and probably 
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the resulting global remodeling after myocardial 
injury.26

4. Waveform eigenvalues and corresponding ratios, 
which quantifies the principal components of ECG 
signal in perpendicular space. The altered signal 
propagation speed and velocity between healthy 
and ischemic myocardium leads to spatial heteroge-
neity and significantly impacts these features.9 Thus, 
in the context of ACS, these eigenvalues would 
resemble regional myocardial ischemia (or injury 
vectors).8

5. Other T wave metrics that quantify duration (eg, Tpeak 
Tend), amplitude (eg, relative R-to-T), area (eg, JTpeak 
area), morphology (eg, T asymmetry), and loop char-
acteristics (eg, loop dispersion). Some studies have 
demonstrated that such simple T wave metrics may 
better predict early ischemia as compared with ST 
segment,27 a finding that is supported by our current 
results.

6. Residual high frequency noise in the signal. Although 
this might be a simple incidental finding reflective of 
acuity of illness at the time of ECG acquisition, we 
previously demonstrated that such noise highly cor-
relates with beat-to-beat repolarization lability.16 This 
lability can resemble the alternans of intracellular 
Ca+2 transient in adjacent cells during acute myocar-
dial ischemia.

Clinical Implications
Unlike the majority of previous studies that primarily 
used the limited, open-source MIT-PTB diagnostic 
ECG database (https://physi onet.org/conte nt/ptbdb/ 
1.0.0/), our results are based on 2 large clinical cohorts 
with real-world ECG data. Thus, our study has some 
immediate clinical implications. Our machine learning 
algorithms are fully interpretable and can be easily in-
corporated into existing ECG software or embedded 
into ECG interpretation platforms for decision sup-
port. These algorithms can help clinicians in identify-
ing NSTE-ACS events in real time, which constitutes a 
longstanding challenge in clinical practice. Given that 
our algorithm has higher sensitivity and negative pre-
dictive value compared with experienced clinicians, 
our models are well suited as an initial screening tool 
(ie, rule out). This has the potential to better allocate 
hospital resources by avoiding prolonged observa-
tions, unnecessary admissions, or invasive testing. 
With an average net reclassification improvement of 
20%, our approach can positively affect the initial tri-
age of 1.4 out of the 7  million Americans evaluated 
at the emergency department for chest pain every 
year. This is inclusive of the challenging group of pa-
tients whom baseline ECGs are typically deemed un-
interpretable for ischemia (eg, pacing, bundle branch 
block, left ventricular hypertrophy, etc). Finally, given 

that our machine learning models are less dependent 
on classical ST and T wave amplitude measures, they 
can be used to augment (rather than replace) com-
mercial rule-based ECG software that follow published 
recommendations by American Heart Association/
American College of Cardiology guidelines. This im-
plies that future translational research should focus on 
embedding these intelligent analytics in existing ECG 
carts and clinical workflow, with prospective evalua-
tion on clinical decision making and patient outcomes.

Study Limitations
Strengths of our current study include the quality of 
our prehospital ECG data set, using 2 independent 
training and validation sets, the selection of features 
mechanistically linked to ischemia, the emphasis on 
the interpretability and clinical relevance, and the com-
parison against a reference standard. Yet, our study 
had some limitations. Even though the data were col-
lected from multiple healthcare centers, both train-
ing and testing sets were still restricted to 1 region. 
Thus, the study may be biased by disparities inherent 
to the distributions of sex, race, and other factors in 
the community. Our algorithms need to be tested on 
a more diverse population including data from more 
geographically distant healthcare centers. Besides, 
the patient to feature ratio, which reaches almost 1:1 
value for one of the classifiers, is low. This fact, aggre-
gated with the unbalanced data set presenting only 
15.3% prevalence of outcome, would considerably in-
fluence the performance of the classifiers, especially 
ANN. Future research needs to include more patients 
in the study while ensuring the collection of similar 
proportions of diseased and healthy patients with re-
spect to the primary outcome of the study.

CONCLUSIONS
In this prospective analysis, we explored the value of 
different algorithms to identify an optimal subset of 
ECG features that can augment the diagnosis of ACS 
at the emergency department. In this context, we ar-
rived at the conclusion that LR classifiers guided with 
domain-specific expertise yield the most reliable clas-
sification performance and are consequently more 
adapted to developing clinically relevant decision sup-
port tools. However, data-driven classifiers identified a 
subset of novel ECG features that would improve ACS 
detection by providing important insights for develop-
ing cardiac electrical biomarkers that are mechanisti-
cally linked to ischemia and can be clinically relevant.
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