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The use of in vitro and in vivo extrapolation methods in 
early drug discovery has expanded in an effort to provide 
information on drug clearance and potential drug–drug 
interactions earlier in development. The US Food and Drug 
Administration’s Guidance on Drug–Drug Interactions1 rec-
ommends the use of in vitro studies as a primary means to 
identify cytochrome P450 (CYP) inhibitors and substrates. 
In vitro studies evaluating the interaction between an 
inhibitor (I) and substrate (S) of an enzyme are commonly 
conducted early in drug development. The inhibition param-
eters identified in these studies can be extrapolated using 
semimechanistic or physiologically based pharmacokinetic 
models to estimate the clinical effect of drug–drug interac-
tion. However, these predictions are limited by the reliability 
of the in vitro metabolic parameters.2 For example, despite 
ketoconazole’s well-established inhibition of human CYP3A 
isoforms, quantitative relationships for inhibition potency 
are not well established even for a single substrate, e.g., 
midazolam (Table 2).

Drug metabolism usually follows Michaelis–Menten kinet-
ics such that the rate of metabolism (v) can be defined as:

(1)

where Vmax is the maximum rate of metabolism and Km is the 
substrate concentration at which the reaction rate is at half 
of Vmax. Reversible inhibitors may be classified as competitive 
or noncompetitive inhibitors. Competitive inhibitors directly 

inhibit substrate binding to the enzyme active site, leading to 
a reduction in the apparent Km:

(2)

where Kic is the dissociation rate constant for inhibitor bind-
ing to the substrate site. Noncompetitive inhibitors allow 
substrate binding but prevent product formation, effectively 
reducing Vmax:

(3)

where Kin represents the dissociation constant for inhibitor 
binding to the enzyme–substrate complex. The more general 
mixed model of inhibition (M) assumes simultaneous compet-
itive and noncompetitive mechanisms:

(4)

Historically, nominal concentrations of substrate and 
inhibitor added to microsomal incubations have been used to 
determine in vitro kinetic rate constants. Only more recently 
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In vitro screening for drug–drug interactions is an integral component of drug development, with larger emphasis now placed 
on the use of in vitro parameters to predict clinical inhibition. However, large variability exists in Ki reported for ketoconazole 
with midazolam, a model inhibitor–substrate pair for CYP3A. We reviewed the literature and extracted Ki for ketoconazole as 
measured by the inhibition of hydroxymidazolam formation in human liver microsomes. The superset of data collected was 
analyzed for the impact of microsomal binding, using Langmuir and phase equilibrium binding models, and fitted to various 
inhibition models: competitive, noncompetitive, and mixed. A mixed inhibition model with binding corrected by an independent 
binding model was best able to fit the data (Kic = 19.2 nmol/l and Kin = 39.8 nmol/l) and to predict clinical effect of ketoconazole 
on midazolam area under the concentration–time curve. The variability of reported Ki may partially be explained by microsomal 
binding and choice of inhibition model.
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has the importance of microsomal protein binding been 
recognized. However, fraction unbound is still not routinely 
determined, and many studies continue to use total rather 
than unbound drug concentrations when determining kinetic 
parameters. Correction of kinetic parameters for nonspecific 
binding has been based on either point-binding estimates at 
single microsomal protein concentrations and a nonsaturable 
phase equilibrium model3,4 or a Langmuir type model that 
assumes saturable binding.5,6 In this case, independent bind-
ing (BI) of substrate (S) and inhibitor (I ) are expressed by the 
following equations with a scale factor (P ) representing the 
inactive microsomal protein concentration used as a surro-
gate for the quantity of microsomal binding sites.

(5)

where subscripts f and b refer to free and bound concentra-
tions, Kd represents the dissociation constant for nonspecific 
binding to microsomes, and Bmax  represents the maximum 
bound concentration of substrate or inhibitor per unit mass 
of inactive microsomal protein. If the metabolite structure is 
similar to the substrate, it is reasonable to use the same bind-
ing curve (Eq. 4) to also correct for metabolite binding (BIM).

At high concentrations, substrate and inhibitor may com-
pete for binding sites. Under this competitive binding (BC) 
assumption, binding can be represented by Eqs. 7 and 
8, derived in a manner analogous to competitive enzyme 
inhibition.7

(7)

(8)

The variability of the inhibition parameter, Ki, for ketocon-
azole and various substrates has been recently reviewed.8 
The author attributed 20% of the variation to either incubation 
duration or microsomal concentration. The remaining varia-
tion was hypothesized to be due to such factors as enzyme 
expression levels, inhibition model assumptions, or specific 
differences due to the substrate. Other authors have sug-
gested that microsomal preparation and preservation pro-
cedures as well as incubation buffer composition may also 
contribute as significant factors. To mitigate this variability, it 
has been suggested to use standardized incubation condi-
tions with either low microsomal protein concentrations or 
correction for microsomal binding.9 However, quantitative 
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Table 2  Reported in vitro kinetic parameters for 1′-hydroxymidazolam formation and inhibition by ketoconazole in human liver microsomes

Study Model Vmax (nmol/mg/min) Km (µmol/l) Ki (nmol/l) Data extracted
Data set  

identification/notes

Gascon and Dayer (1991) Noncompetitive 0.43–0.5 4.2–6.1 100 No Data unclear

Wrighton and Ring (1994) Noncompetitive NR 10 110 Yes F

von Moltke et al. (1996) Competitive +  
substrate inhibition

2.81 3.3   3.7 Yes B

Prueksaritanont et al. (1997) Noncompetitive NR NR 100 Yes E

Gibbs et al. (1999) Noncompetitive NR NR 14.9 No No data

Wang et al. (1999) Noncompetitive 0.696 7.46 180 No No data

Perloff et al. (2000) Competitive +  
substrate inhibition

2.43 6.35 5.4 Yes D

Li et al. (2004) Noncompetitive 0.636 4.1 5.2 No No data

Galetin et al. (2005) Noncompetitive NR NR   59 Yes A

Ogasawara et al. (2007) Noncompetitive NR NR   32 Yes C

NR, not reported.   

Table 1  Estimated binding in human liver microsomes

Midazolam Ketoconazole

Phase equilibrium model
S
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Kp (estimate ± SE) 0.789 ± 0.068 0.802 ± 0.155

t Value (Pr > t) 11.59 (0.00003) 5.19 (0.002)

Residual error 0.1728 7.7

Akaike Information Criterion −1.88 51.4

Langmuir model
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Bmax
(estimate ± SE) 42.32 ± 177.3 50.60 ± 9.47

t Value (Pr > t ) 0.239 (0.821) 5.34 (0.003)

Kd (estimate ± SE) 49.43 ± 224.1 12.83 ± 8.98

t Value (Pr > t ) 0.221 (0.834) 1.43 (0.212)

Residual error 0.1876 4.254

Akaike Information Criterion 0.083 43.8

(6)
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examples that apply these recommendations to reduce vari-
ability in Ki are lacking.

The midazolam/ketoconazole system is an important 
model to study due to the combination of the strength and 
selectivity of ketoconazole as an inhibitor of CYP3A and the 
selectivity of midazolam metabolism by CYP3A. The cur-
rent study examines available data on the in vitro inhibition 
of 1′-hydroxymidazolam formation by ketoconazole and the 
impact of microsomal binding and model selection on param-
eter estimation. Available data are extracted from publications 
and re-evaluated following correction for microsomal binding. 
Coupled relationships between nonspecific binding and com-
petitive, noncompetitive, or mixed inhibition models are used 
to evaluate the superset of available data. The resulting inhi-
bition parameters deduced from the superset are compared 
with the results in the individual studies. We also examine the 
sensitivity of a previously published mechanistic–dynamic 
pharmacokinetic model to the three drug–drug interaction 
models and estimated parameters.

RESULTS
Nonspecific binding
A literature search identified three studies reporting experi-
mental values for nonspecific binding for ketoconazole and 
four studies for midazolam. All studies used dialysis methods 
to determine the fraction unbound. Data for each drug were 
fitted to a Langmuir-type model (Eqs. 4 and 5; Figure 1) and 
a phase equilibrium model.4 The midazolam data fit quite well 
to a phase equilibrium model, with no advantage being gained 
from the Langmuir-type model as evidenced by the higher 
value for the Akaike Information Criterion (AIC) and the nearly 
identical residual sum of squares (Table 1). By contrast, the 
more general Langmuir model data better fit the ketoconazole 
data. The residual sum of squares was approximately half of 
the value for the phase equilibrium model and the AIC value 
was considerably lower.

In general, the results indicate that a phase equilibrium 
model may not always be the best description for drug bind-
ing to human liver microsomes. The predicted Kp values from 

the phase equilibrium model for midazolam and ketoconazole 
were similar; however, the confidence limits differed for the 
two drugs. In the case of ketoconazole, the phase equilibrium 
model was not able to accommodate the strong dependence 
of the fu curve on the concentration of the drug. Although the 
data better fit a phase equilibrium model for midazolam, the 
concentration range for the data set was narrow, supporting 
only a limited applicability.

By contrast, the Bmax estimates for the two drugs were simi-
lar in magnitude as would be expected for adsorption of simi-
larly sized molecules. Likewise, a significant difference was 
predicted in the Kd estimates for the drugs consistent with the 
expectation of higher binding affinity for ketoconazole. Given 
this consistency and the limitations in both data sets, the Lang-
muir model was chosen for further use in the analysis with the 
caution that further expansion of the data sets would be needed 
to establish tight constraints on the parameter estimates.

In vitro metabolism
Ten reports of in vitro ketoconazole–midazolam inhibi-
tion studies were identified in the literature (Table 2 and 
Supplementary Table S1 online). Of these, six (A–F) con-
tained graphical data that could be extracted for reanalysis.10–15 
The available data were combined and analyzed by combi-
nations of various binding and inhibition models: no binding 
(BN); independent binding (BI); independent binding cor-
rected for metabolite binding (BIM); competitive binding (BC); 
competitive inhibition (C); noncompetitive inhibition (NC); and 
mixed inhibition (M). Summary results of the combined fit of 
the data extracted from studies A–F to the alternative inhibi-
tion and binding models are listed in Table 3. The mixed inhi-
bition model consistently resulted in the overall best fit with the 
lowest AIC value regardless of the assumed binding model. 
The next best model was the noncompetitive model which 
showed little differentiation from the mixed model. Incorpora-
tion of any of the binding models significantly improved the 
fit in comparison with the case with no binding assumption; 
however, the independent binding assumption resulted in the 
lowest overall AIC value. The absolute best fit resulted from 
a mixed inhibition model and an independent binding model 
(M-BIM) for ketoconazole, midazolam, and its metabolite.

The data for studies A–F along with the predictions based 
on the M-BIM model are shown in Figure 2. Data are normal-
ized by the parameter, α, which adjusts the rate, v, in each 
study according to the observed individual study Vmax  com-
pared to the overall V max. The mean (0.81), median (0.87), 
and standard deviation (0.39) of the α parameters in this 
model indicate a skewed, wide distribution with a range of 
(0.20–1.22). The normalization improved the fit significantly 
by reducing the RSS from 8.0 to 1.52 after the first iteration. 
A further 6.5% reduction in the RSS was accomplished with 
up to 35 iterations.

Visually, the fits appear to be comparable with the origi-
nal study fits using a common set of kinetic parameters for 
all the data sets. This is remarkable given the range of incu-
bation conditions used in the studies and the wide variation 
in reported Ki values and inhibition models. No systematic 
structure of the underlying residuals was observed when plot-
ted vs. midazolam concentration, ketoconazole concentra-
tion, study designator, or microsomal protein concentration. 

Figure 1  Nonspecific binding of (a) midazolam and (b) ketocona
zole. Fraction unbound, fu, is the ratio of the free concentration, 
Sf, to the total concentration, St. Circles, triangles, and plus marks 
represent concentrations of 1, 2, and 7.5 µmol/l of midazolam. 
Circles and triangles represent observed data at 1 and 100 µmol/l 
of ketoconazole. Lines indicate predicted binding at the different 
concentrations of midazolam (solid line: 1 µmol/l; dashed line: 
2 µmol/l; dotted line: 7.5 µmol/l) or ketoconazole (solid line: 1 µmol/l; 
dashed line: 100 µmol/l).
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The  model fit and residuals analyses give support for the 
interpretation that the separate experimental conditions were 
similar enough to support the combined analysis.

Studies A–D, conducted at low microsomal protein con-
centration, show consistent maximum measured rates 
between the studies. This reflects the relative insensitivity of 
the metabolite binding to microsomal protein concentration 
at low concentrations. Studies E and F, conducted at higher 
protein concentration, show the effect of metabolite binding 
at high microsomal protein concentrations. In these studies, 
a greater fraction of the metabolite is bound so the observed 
(free) rate decreases at higher substrate concentrations. This 
characteristic is the principal feature distinguishing model 
M-BIM from the other competing models M-BI and NC-BI 
which predict equivalent maximum observed (free) rates, 
independent of microsomal protein concentration (data not 
shown).

There are a few notable data points from the individual stud-
ies that appear to be inconsistent with the model fit, notably 
the points corresponding to high midazolam/inhibitor concen-
trations and the data point at 100 µmol/l midazolam and no 
inhibitor in study B. The latter point was explained in the origi-
nal study as an effect related to substrate-induced inhibition 
at higher midazolam concentrations. No other study observed 
this effect at a lower substrate concentration, supporting trun-
cation of the data sets at 100 µmol/l midazolam. The former 
data points no doubt contributed to the interpretation of a 
competitive inhibition model in study B; however, other than 
these few data points, other outliers may be explained by 
experimental error in the original studies.

In vitro and in vivo extrapolation of drug–drug interactions
The sensitivity of a previously published semimechanistic 
metabolism model to the different inhibition models was 

Table 3  Parameter estimates for microsomal binding and inhibition models

Binding model BN BI BC BIM

Inhibition model C NC M C NC M C NC M C NC M

Vmax (nmol/mg/min) 2.31 ± 0.11 2.79 ± 0.15

Km (µmol/l) (±8%) 4.31 3.85 4.27 3.23 3.32 3.45 3.47 3.12 3.51 3.30 3.35 3.48

Kic (nmol/l) (±8%) 10.8 – 33.1 4.1 – 18.9 5.4 – 14.2 4.2 – 19.2

Kin (nmol/l) (±6%) – 91.7 135.4 – 33.2 39.6 – 43.8 71.6 – 33.5 39.8

RSS 3.14 1.87 1.71 3.27 1.49 1.44 2.68 1.97 1.60 3.25 1.47 1.42

Akaike Information Criterion 125 71.2 64.0 130 47.9 46.5 109 77.0 57.0 129 46.2 45.1

BC, competitive binding; BI, independent binding; BIM, metabolite binding; BN, no binding; C, competitive inhibition; M, mixed inhibition; NC, noncompetitive inhibi-
tion.

Figure 2  Model (M-BIM) fits of the data from studies A-F (a–f, respectively) for the inhibition of α-hydroxymidazolam formation by ketoconazole 
in human liver microsomes. Data are normalized by the parameter, α, which adjusts the rate, v, in each study according to the ratio of the 
observed study Vmax and the average Vmax for all studies. Midazolam concentration is the total concentration, whereas the rate is based on the 
measured (free) concentration of the metabolite. Each curve represents a different total concentration level of inhibitor as reported in each study.
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evaluated. Kic and Kin from the independent BIM results 
were incorporated into midazolam clearance (Eqs. 8–10). 
The model was used to simulate a study in which 200 mg 
of ketoconazole was administered daily for 7 days before 
the administration of intravenous midazolam.16 All mid-
azolam concentrations were normalized to a dose of 1 mg. 
Predicted midazolam concentrations in the absence of 
the inhibitor were similar to those observed in the trial 
(Figure  3a). The  predicted area under the concentration–
time curve  (AUC) of midazolam in the absence of inhibitor 
was 0.031 ng/ml/h, which was comparable with the observed 
value of 0.032 ng/ml/h.

The mixed inhibition model most accurately predicted the 
change in the AUC of IV midazolam following 200-mg keto-
conazole daily for 6 days (Figure 3b). The predicted AUC 
ratios (AUCRs) using the competitive and noncompetitive 
models were outside of the 80–120% acceptance criteria 

(Table 4). Using the mixed inhibition model, the predicted 
AUCR was 13% lower than the observed AUCR, well within 
the 80–120% acceptance criteria.

DISCUSSION

Midazolam and ketoconazole are the prototypical CYP3A 
substrate and inhibitor used for in vitro drug interaction stud-
ies of new drug compounds. In vitro studies examining the 
inhibition potency of ketoconazole on midazolam report 
approximately a 50-fold range in Ki (Table 2). In addition, the 
mechanism of inhibition is described as competitive in some 
reports, whereas others find it to be noncompetitive. To quan-
titatively predict the clinical effect of inhibition, it is important 
to identify accurate in vitro inhibition parameters. We thus 
conducted a literature review and reanalysis of available data 
to identify the optimal in vitro inhibition model and parameters 
for ketoconazole. This reanalysis incorporated normalization 
of data for binding and fitting of competitive, noncompetitive 
and mixed inhibition model functions.

The normalization procedure decreased the error in the fit-
ting procedure due to the variation in CYP3A expression, inter-
preted as the variation of apparent Vmax between studies. The 
value of Vmax reported here for the M-BIM model is consistent 
with two of the originally reported estimates (studies B and D). 
These studies were conducted at relatively low microsomal 
protein concentration and based on the M-BIM model showed 
similar expression levels as compared with the average with 
α values of 0.88 and 0.87, respectively. Both of these condi-
tions favor the generation of similar predictions by the M-BIM 
model to the original studies. Although some studies report-
ing dissimilar Vmax values17–19 were not included in the analysis, 
other representative studies with varying apparent Vmax values 
were included, namely studies C (ref. 15) and E (ref. 12) with α 
values of 0.21 and 0.55, respectively. Of note, study E used a 
much higher microsomal protein concentration (1 mg/ml) than 
used in the other studies or, in the case of study C, only evalu-
ated a small range of inhibitor concentrations. Exclusion of this 
individual study from the data set did not alter the overall results.

The Km range of the original studies varied from 3.3 to 
10 µmol/l (Table 2). On the basis of data sets extracted from 
six reports, we estimated Km using various binding models. 
The Km values estimated by these models were similar 
(range: 3.12–3.51 µmol/l). Of note, when not corrected for 
binding, the Km estimates were higher (3.85–4.31 µmol/l). 
However, these values are still lower than several reported 
Km estimates for midazolam (Table 2). Although some of 
the shift can be explained in terms of the incorporation of 
the substrate and inhibitor binding models for those stud-
ies using higher microsomal protein concentrations,20 the 

Figure 3  Predicted and observed concentration vs. time plots of (a) 
i.v. midazolam alone and (b) in the presence of 200 mg ketoconazole. 
(a) Gray lines indicate observed concentrations of midazolam, blue 
line represents model prediction for midazolam alone. (b) Gray lines 
indicate observed concentrations of midazolam, blue line indicates 
predicted concentrations based on the competitive inhibition model, 
red line indicates predicted concentrations based on the mixed 
inhibition model, and green line indicates predicted concentrations 
based on the noncompetitive inhibition model.
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Table 4  AUCRs of i.v. midazolam following 200-mg ketoconazole

AUCR Bias

Competitive model 4.5 45%

Noncompetitive model 2.0 −35%

Mixed model 2.5 −20%

Observed data 3.1 (2.8–3.3) −

AUCR, area under the concentration–time curve ratio.
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reasons for the remaining variation in the original studies 
is unclear. It has been proposed that part of the varia-
tion could be due to varying ratios of expression levels of 
CYP3A4 and CYP3A5 isoforms.21 However, this explana-
tion does not explain reported values for Km > 6.10,13,15 Given 
the good fit of the M-BIM model and the consistency of Km 
across the other models considered in this study, it is likely 
that previous reported higher values of Km were artifacts of 
limited individual data sets and the least squares fitting of 
the hyperbolic Michaelis–Menten equations.7 The present 
estimate for Km of 3.48 µmol/l benefits from the wide rang-
ing data sets, incorporation of drug binding, varying micro-
somal protein concentrations, and incubation times directly 
in the M-BIM model.

With regard to the Ki values, much of the variability in the 
original studies also appears to be explained in terms of the 
present models. For example, the Kic values from the com-
petitive inhibition models which incorporated binding were 
consistent. When not corrected for binding, the Kic was much 
higher and inconsistent with previously reported values. Like-
wise, the Kin values from the noncompetitive inhibition models 
which incorporated binding were consistent and did not vary 
to the great extent reported in the original studies. Although 
our analysis identified the mixed inhibition model to best fit 
the data, the noncompetitive model fit similarly well. Of note, 
these models determined similar Kin.

The variability of model choice and the reported range of 
inhibition constants in the original reports are likely due to the 
limited data sets, uncertainties in least squares fitting, and the 
different experimental conditions (Supplementary Table S1 
online).

The in vitro parameter estimates identified using the BIM 
model were applied to the in vivo pharmacokinetic interac-
tion model proposed by Chien et al.22 CYP3A inhibition was 
modeled using competitive, noncompetitive, and mixed inhi-
bition models, and predictions were compared with the data 
observed in a healthy volunteer study of i.v. midazolam fol-
lowing a 200-mg daily dosage regimen of ketoconazole. The 
mixed inhibition model predicted a 1.8- and 2.3-fold greater 
inhibition of midazolam clearance as compared with the com-
petitive or noncompetitive models, respectively, indicating 
that choice of inhibition model can influence drug interaction 
predictions.

CONCLUSION

Determination of Michaelis–Menten parameters for drug 
substrate and inhibitor pairs is subject to challenges related 
to the size of data sets, control of experimental conditions, 
assumed mechanisms for drug, substrate, and metabolite 
binding to liver microsomes, assumed drug inhibition mech-
anisms, and the least squares fitting procedure. Much of 
the variation between studies may be explained by incorpo-
rating additional factors such as relative expression levels, 
microsomal protein concentration, and incubation time into 
coupled binding and inhibition models. For the midazolam/
ketoconazole system, a mixed inhibition model coupled 
with independent binding of the drug, inhibitor, and metabo-
lite is sufficient to explain the variation of reported Vmax, Km, 

and inhibitor constants across a range of reported studies. 
The appropriate choice of inhibition model and parameters 
is important for in vitro and in vivo extrapolation models pre-
dicting clinical drug interactions.

Care should be taken when relying on parameters 
derived from small studies or studies that do not account for 
microsomal binding of drug substrate, inhibitor, and metab-
olite binding. Studies conducted at low microsomal protein 
concentration are likely reliable in describing the data; how-
ever, incorporation of a range in concentration improves the 
robustness of the least-squares fitting procedures and may 
provide for improved accuracy in the underlying parameters.

METHODS

Model description. Literature reports have classified the 
in vitro inhibition mechanism of ketoconazole as competitive 
(C) and noncompetitive (NC) or mixed (Eqs. 2–4).

To estimate free substrate and inhibitor concentrations, the 
binding curves (Eqs. 5–8) were solved and the free concen-
trations determined by subtracting out the bound portion. For 
a given data set, P is usually held constant so the number of 
enzyme-binding sites is dependent only on the correspond-
ing expression level of the samples in a given study. Differ-
ences in expression levels between studies have not normally 
been considered. The inhibitor disassociation constants, Kic 
or Kin, are usually of the most interest, and protein expres-
sion levels are normally considered to be constant within a 
single study. To correct for potential differences in expres-
sion  levels between studies, Vmax, in Eqs. 2–4 is replaced 
by αV max, where V

max represents the overall average Vmax 
across studies and α is a study-dependent scaling parameter. 
The study α parameter can be interpreted as the observed 
relative expression level of active enzyme as compared with 
the average study. Other kinetic parameters are assumed to 
be appropriately corrected by adjustment for binding Eqs. 5 
and 6 and equal across studies.

Literature search. Studies reporting in vitro Ki values for 
the inhibition of midazolam 1′-hydroxylation by ketocon-
azole determined in human liver microsomes were identi-
fied through the Metabolism and Transport Drug Interaction 
Database (http://www.druginteractioninfo.org), PubMed, 
and reference lists of relevant papers. For each Ki, the type 
of inhibition and other information on incubation conditions, 
including substrate (midazolam) and inhibitor (ketoconazole) 
concentrations, buffer composition, microsomal protein 
concentrations, incubation time, and nicotinamide adenine 
dinucleotide phosphate source were recorded and are shown 
in Supplementary Table S1 online. Table 2 provides a sum-
mary of the reported parameters, inhibition model, and notes 
on the studies which were excluded from the analysis. One 
study was excluded due to uncertainty in extraction of data 
from figures and potentially nonrepresentative microsomal 
protein concentration.17 Other excluded studies were a result 
of the absence of raw data in the original report.18,19,21 Studies 
reporting nonspecific binding of midazolam9,23–26or ketocon-
azole3,27 in human liver microsomal systems were identified 
either through PubMed or relevant literature references.

http://www.druginteractioninfo.org
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Data extraction. Representative studies reporting discrete 
data points either in the form of a table or graph for in vitro 
metabolism or nonspecific binding were included in the analy-
sis. Data in table format were extracted visually, whereas data 
in graphs were extracted electronically utilizing the software 
g3data28 with reproducibility in general better than 2%. The 
precision and reproducibility of the data extractions were 
comparable with a prior software validation.29 In cases where 
data were originally plotted as reciprocals, error was greater 
near the axes. Data points with a precision >6% were omitted 
due to this limitation in the presentation of the original data.

Binding analysis. Extracted binding data for both midazolam 
and ketoconazole were fit to Eqs. 4–7 utilizing the statistics 
software R version 2.12 (ref. 30) and the nonlinear least 
squares function to determine the binding parameters for 
either an BI or BC model. The goodness of fit and confi-
dence in the parameter estimates were interpreted based on 
the output of the nonlinear least squares function and visual 
inspection of the fitted curves and residuals. R code and raw 
data are included in the Supplementary Data online.

In vitro metabolism analysis. Three cases of binding were 
considered according to the BI, BC, or BIM models. In the first 
two cases, free concentrations of midazolam and ketocon-
azole were determined from the reported total concentrations 
according to the binding parameters derived from either bind-
ing model BI or BC. In the third case, total metabolite forma-
tion rates for each study were determined from the reported 
(free) metabolite formation rates, v, where applicable, by the 
use of the midazolam-independent binding curve, BIM, with 
scaling to concentration units via the study microsomal pro-
tein concentration and incubation time.

Initial estimates of the kinetic parameters for the super-
set of data were determined assuming equal Vmax values 
between studies for each inhibition model corresponding to 
Eqs. 1–3, using R and the nonlinear least squares library. 
The initial estimate for Vmax was taken as the overall V max 
in subsequent recursions. The initial parameter set was 
applied and constrained in a secondary fit for each study 
subset to obtain an initial α estimate for each study. In sub-
sequent recursions, the y ordinates, corresponding to v, 
were linearly transformed as v/α to scale for different study 
Vmax values, and the whole superset of data were again fit-
ted to Eqs. 1–3. Recursion was repeated until convergence 
was achieved. Residuals were calculated in the normal 
manner relative to the unscaled rate, v, and the total mid-
azolam/ketoconazole concentration, S and I. Comparison 
of the AIC were used to compare model fits corresponding 
to a matrix of combinations of inhibition and binding models 
(C-BI, C-BIM, C-BC, NC-BI, NC-BIM, NC-BC, M-BI, M-BIM, 
and M-BC) as well as to the fits assuming no binding (C-BN, 
NC-BN, and M-BN).

Note in this analysis scheme that only V max is constrained 
to the initial fit. The Km, Kic, Kin, and α parameters reflect the 
overall fits with linear scaling of the rates to account for differ-
ences in average expression levels between studies. R code 
and raw data are available in Supplementary Data online.

In vitro and in vivo extrapolation. The sensitivity of in vivo 
drug–drug interaction prediction to inhibition model was 

examined using a mechanistic dynamic interaction model. 
The mechanistic dynamic model for competitive inhibition 
has been previously published.22 In the case of a competitive 
inhibitor, midazolam intrinsic clearance (CLint) by CYP3A is 
estimated by Eq. 9:

(9)

where fm is the fraction metabolized by CYP3A; CMDZ and 
CKTZ indicate the concentration of midazolam and ketocon-
azole, respectively, in the liver; fu,MDZ and fu,KTZ are the frac-
tion unbound of midazolam and ketoconazole which were 
assumed to be 0.04 and 0.01, respectively.22

Assuming ketoconazole acts as a noncompetitive inhibitor 
would alter CLint such that:

(10)

A mixed inhibitor would affect the CLint such that

(11)

All other equations and parameters were consistent with 
Chien et al.’s report. A single subject was simulated for each 
inhibition type using the mean parameters and the Kin, Kic, 
and Km calculated using the BIM binding model. The mod-
els were written in R (see Supplementary Data online). 
The extent of clinical interaction is estimated by the ratio of 
the AUC (AUCR) of the substrate (midazolam) in the pres-
ence of inhibitor (ketoconazole) to its AUC in the absence 
of inhibitor. The predicted AUCR was compared with the 
observed AUCR obtained in a clinical study of midazolam 
and ketoconazole.16 Acceptance criteria were based on the 
predicted AUCR falling within 80–120% of the observed 
AUCR. The model was also evaluated by visual inspection 
of concentration vs. time plots.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?

33 A nearly 50-fold range exists in the reported Ki 
of ketoconazole for midazolam in human liver 
microsomes. Study conditions such as incuba-
tion time and protein concentration play a role 
in this variability.

WHAT QUESTION THIS STUDY ADDRESSED?

33 We aimed to identify an optimal Ki for ketocon-
azole. Published data were corrected for protein 
binding of midazolam and ketoconazole and fit-
ted to competitive, noncompetitive, and mixed 
inhibition models.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

33 After correcting for binding, a mixed inhibition 
model best fit the data.

HOW THIS MIGHT CHANGE CLINICAL 
PHARMACOLOGY AND THERAPEUTICS

33 This study demonstrates the importance of cor-
recting for protein binding in in vitro studies and 
demonstrates the utility of a phase equilibrium 
model for binding correction. We also demon-
strate that the in vitro–in vivo extrapolation of a 
mixed inhibition model.
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