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Abstract Nutrient-dependent body size plasticity differs between the sexes in most species,

including mammals. Previous work in Drosophila showed that body size plasticity was higher in

females, yet the mechanisms underlying increased female body size plasticity remain unclear. Here,

we discover that a protein-rich diet augments body size in females and not males because of a

female-biased increase in activity of the conserved insulin/insulin-like growth factor signaling

pathway (IIS). This sex-biased upregulation of IIS activity was triggered by a diet-induced increase

in stunted mRNA in females, and required Drosophila insulin-like peptide 2, illuminating new sex-

specific roles for these genes. Importantly, we show that sex determination gene transformer

promotes the diet-induced increase in stunted mRNA via transcriptional coactivator Spargel to

regulate the male-female difference in body size plasticity. Together, these findings provide vital

insight into conserved mechanisms underlying the sex difference in nutrient-dependent body size

plasticity.

Introduction
In insects, the rate of growth during development is influenced by environmental factors such as

nutrient availability (Boulan et al., 2015; Edgar, 2006; Hietakangas and Cohen, 2009; Nijh-

out, 2003; Nijhout et al., 2014). When nutrients are abundant, the growth rate is high and body

size is large (Beadle et al., 1938; Edgar, 2006; Mirth and Shingleton, 2012; Nijhout, 2003; Rob-

ertson, 1963). When nutrients are scarce, the growth rate is lower and body size is smaller

(Beadle et al., 1938; Edgar, 2006; Mirth and Riddiford, 2007; Mirth and Shingleton, 2012; Nijh-

out, 2003; Robertson, 1963). This ability of an organism or genotype to adjust its body size in line

with nutrient availability is a form of phenotypic plasticity (Agrawal, 2001; Garland, 2006). While

the capacity of individuals to display nutrient-dependent changes to body size depends on many fac-

tors, one important factor that affects phenotypic plasticity is whether an animal is male or female

(Stillwell et al., 2010; Teder and Tammaru, 2005). For example, in Drosophila the magnitude of

changes to wing cell size and cell number in a nutrient-poor diet were larger in females compared

with males (Alpatov, 1930). Similarly, the magnitude of protein- and carbohydrate-induced changes

to several morphological traits was larger in female flies (Shingleton et al., 2017). While these stud-

ies clearly establish a sex difference in nutrient-dependent phenotypic plasticity, the genetic and

molecular mechanisms underlying this increased trait size plasticity in females remain unclear.
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Clues into potential mechanisms underlying the increased nutrient-dependent phenotypic plastic-

ity in female flies have emerged from over 20 years of studies on nutrient-dependent growth in Dro-

sophila (Andersen et al., 2013; Boulan et al., 2015; Edgar, 2006; Koyama and Mirth, 2018;

Mirth and Piper, 2017). In particular, these studies have identified the conserved insulin/insulin-like

growth factor signaling pathway (IIS) as a key regulator of nutrient-dependent growth in Drosophila

(Böhni et al., 1999; Britton et al., 2002; Chen et al., 1996; Fernandez et al., 1995; Grewal, 2009;

Teleman, 2010). In nutrient-rich conditions, insulin-producing cells (IPCs) in the larval brain release

Drosophila insulin-like peptides (Dilps) into the circulation (Brogiolo et al., 2001; Géminard et al.,

2009; Ikeya et al., 2002; Rulifson et al., 2002). These Dilps bind the Insulin-like Receptor (InR;

FBgn0283499) on target cells to induce receptor autophosphorylation and recruitment of adapter

proteins (Almudi et al., 2013; Böhni et al., 1999; Chen et al., 1996; Poltilove et al., 2000;

Werz et al., 2009). These adapter proteins enable the recruitment of the regulatory and catalytic

subunits of the Drosophila homolog of phosphatidylinositol 3-kinase (Pi3K21B; FBgn0020622 and

Pi3K92E; FBgn0015279, respectively), which catalyze the production of phosphatidylinositol (3,4,5)-

trisphosphate (PIP3) from phosphatidylinositol (4,5)-bisphosphate (PIP2) (Leevers et al., 1996).

Increased plasma membrane PIP3 recruits and activates signaling proteins such as phosphoinositide-

dependent kinase 1 (Pdk1; FBgn0020386) and Akt (Akt; FBgn0010379), which influence diverse cellu-

lar processes to enhance cell, tissue, and organismal size (Cho et al., 2001; Grewal, 2009;

Rintelen et al., 2001; Verdu et al., 1999).

In contrast, when nutrients are scarce, Dilp release from the IPCs is reduced (Géminard et al.,

2009), and plasma membrane Pi3K recruitment, PIP3 levels, and Pdk1- and Akt-dependent signaling

are all reduced (Britton et al., 2002; Nowak et al., 2013). Together, these changes diminish cell,

tissue, and organismal size (Arquier et al., 2008; Britton et al., 2002; Géminard et al., 2009;

Honegger et al., 2008; Okamoto et al., 2013; Rulifson et al., 2002; Zhang et al., 2009). Indeed,

the potent growth-promoting ability of IIS activation is shown by the fact that increased IIS activity

augments body size (Arquier et al., 2008; Goberdhan et al., 1999; Honegger et al., 2008;

Ikeya et al., 2002; Nowak et al., 2013; Okamoto et al., 2013; Oldham et al., 2002), whereas

reduced IIS activity limits cell, organ, and body size (Böhni et al., 1999; Brogiolo et al., 2001;

Chen et al., 1996; Colombani et al., 2003; Gao et al., 2000; Grönke et al., 2010; Leevers et al.,

1996; Murillo-Maldonado et al., 2011; Rulifson et al., 2002; Weinkove et al., 1999; Zhang et al.,

2009). Because increased IIS activity bypasses the reduction in cell size in low-nutrient conditions

(Britton et al., 2002; Géminard et al., 2009; Nowak et al., 2013), and mutations that blunt IIS

pathway activity reduce size in nutrient-rich contexts (Böhni et al., 1999; Brogiolo et al., 2001;

Chen et al., 1996; Leevers et al., 1996), Drosophila studies have established IIS as one key pathway

that promotes organismal growth downstream of nutrient input. While this highlights the impact of

Drosophila on our knowledge of how IIS couples nutrient input with growth, it is important to note

that most studies used a mixed-sex population of larvae. Given that cell and body size differ signifi-

cantly between male and female flies (Alpatov, 1930; Brown and King, 1961; Okamoto et al.,

2013; Partridge et al., 1994; Rideout et al., 2015; Sawala and Gould, 2017; Testa et al., 2013),

more knowledge is needed of nutrient-dependent changes to body size and IIS activity in each sex.

Recent studies have begun to make progress in this area by studying IIS regulation and function

in both sexes in a single dietary context (reviewed in Millington and Rideout, 2018). For example,

in late third instar larvae, there are sex differences in dilp mRNA levels, IIS activity, and Drosophila

insulin-like peptide 2 (Dilp2; FBgn0036046) secretion from the IPCs (Rideout et al., 2015;

McDonald et al., 2020). Similarly, transcriptomic studies have detected male-female differences in

mRNA levels of genes associated with IIS function (Mathews et al., 2017; Rideout et al., 2015),

and revealed links between IIS and the sex determination hierarchy gene regulatory network

(Castellanos et al., 2013; Chang et al., 2011; Clough et al., 2014; Fear et al., 2015; Garner et al.,

2018; Goldman and Arbeitman, 2007). As increasing evidence of sex-specific IIS regulation accu-

mulates, several reports reveal sex-limited and sex-biased phenotypic effects caused by changes to

IIS function. Changes to IIS activity in larvae show sex-biased effects on growth and final body size

(Grönke et al., 2010; Rideout et al., 2015; Shingleton et al., 2005; Testa et al., 2013;

Millington et al., 2021), and there are widespread sex-specific and sex-biased changes to gene

expression in adult flies with altered diet and IIS activity (Camus et al., 2019; Graze et al., 2018).

Further, sex differences exist in how changes to diet and IIS activity affect life span (Bjedov et al.,

2010; Clancy, 2001; Giannakou et al., 2004; Grönke et al., 2010; Regan et al., 2016; Tatar et al.,
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2001; Woodling et al., 2020; Wu et al., 2020). Together, these studies illuminate the utility of Dro-

sophila in revealing sex-specific IIS regulation and describing the physiological impact of this regula-

tion. Yet, more studies are needed to discover the molecular mechanisms underlying sex-specific IIS

regulation, and to extend these studies beyond a single nutritional context.

Additional insights into male-female differences in the regulation of cell, tissue, and body size

arise from studies on sex determination genes. In Drosophila, sex is determined by the number of X

chromosomes. In XX females, a functional splicing factor called Sex-lethal (Sxl; FBgn0264270) is pro-

duced (Bell et al., 1988; Bridges, 1921; Cline, 1978; Salz and Erickson, 2010). Sxl-dependent

splicing of transformer (tra; FBgn0003741) pre-mRNA allows a functional Tra protein to be produced

in females (Belote et al., 1989; Boggs et al., 1987; Inoue et al., 1990; Sosnowski et al., 1989). In

XY males, the lack of a functional Sxl protein causes the default splicing of tra pre-mRNA, and no

functional Tra protein is produced in males (Cline and Meyer, 1996; Salz and Erickson, 2010;

Belote et al., 1989; Boggs et al., 1987; Inoue et al., 1990; Sosnowski et al., 1989). The presence

of functional Sxl and Tra proteins in females account for most aspects of female sexual development,

behavior, and physiology (Anand et al., 2001; Billeter et al., 2006; Brown and King, 1961;

Camara et al., 2008; Christiansen et al., 2002; Clough et al., 2014; Dauwalder, 2011; Demir and

Dickson, 2005; Goodwin et al., 2000; Hoshijima et al., 1991; Hudry et al., 2016; Hudry et al.,

2019; Ito et al., 1996; Millington and Rideout, 2018; Neville et al., 2014; Nojima et al., 2014;

Pavlou et al., 2016; Pomatto et al., 2017; Regan et al., 2016; Rezával et al., 2014; Rezával et al.,

2016; Rideout et al., 2010; Ryner et al., 1996; Sturtevant, 1945; von Philipsborn et al., 2014).

Recently, new roles for Sxl and Tra in regulating body size were also described. While female flies

are normally larger than males, females lacking neuronal Sxl were smaller than control females, and

not different in size from males (Sawala and Gould, 2017). Similarly, females lacking a functional Tra

protein were smaller than control females; however, these tra mutant females were still larger than

males (Brown and King, 1961; Mathews et al., 2017; Rideout et al., 2015). Together, these stud-

ies indicate that Tra and Sxl are required to promote a larger body size in females; however, much

remains to be discovered about the mechanisms by which Sxl and Tra impact body size. Moreover,

which sex determination genes contribute to the male-female difference in diet-induced trait size

plasticity remains unknown, as studies on sex determination genes used a single diet.

In the present study, we aimed to improve knowledge of the genetic and molecular mechanisms

that contribute to male-female differences in nutrient-dependent phenotypic plasticity in Drosophila.

Our detailed examination of body size revealed increased phenotypic plasticity in females in

response to a protein-rich diet, in line with studies on plasticity in other traits (Shingleton et al.,

2017). We discovered that a female-biased upregulation of IIS activity was responsible for the larger

body size of females raised on a protein-rich diet. Mechanistically, we show that the nutrient-depen-

dent upregulation of stunted (sun; FBgn0014391) mRNA levels by transcriptional coactivator Spargel

(Srl; FBgn0037248) in females triggers the diet-induced increase in IIS activity, as females with

reduced sun do not augment IIS activity or body size in a protein-rich diet. Importantly, we show

that sex determination gene tra is required for the nutrient-dependent increase in sun mRNA, IIS

activity, and phenotypic plasticity in females, and that Srl represents a key link between Tra and reg-

ulation of sun mRNA levels. In males, ectopic Tra expression confers nutrient-dependent body size

plasticity via Srl-mediated regulation of sun mRNA levels and IIS activity. Together, these results pro-

vide new insight into the molecular mechanisms that govern male-female differences in body size

plasticity, and identify a previously unrecognized role for sex determination gene tra in regulating

nutrient-dependent phenotypic plasticity.

Results

High levels of dietary protein are required for increased nutrient-
dependent body size plasticity in females
Previous studies identified a sex difference in nutrient-dependent plasticity in several morphological

traits (Shingleton et al., 2017; Stillwell et al., 2010; Teder and Tammaru, 2005). To determine

whether sex differences in nutrient-dependent body size plasticity exist in Drosophila, we measured

pupal volume, an established readout for Drosophila body size (Delanoue et al., 2010), in white1118

(w; FBgn0003996) males and females reared on diets of varying nutrient quantity. We found that
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pupal volume in w1118 female larvae raised on the two-acid diet (1X) (Lewis, 1960) was significantly

larger than genotype-matched females raised on a diet with half the nutrient quantity (0.5X) (Fig-

ure 1—figure supplement 1A). In w1118 males, pupal volume was also significantly larger in larvae

raised on the 1X diet compared with the 0.5X diet (Figure 1—figure supplement 1A). No significant

sex-by-diet interaction was detected using a two-way analysis of variance (ANOVA) (sex:diet interac-

tion p=0.7048; Supplementary file 1), suggesting that nutrient-dependent body size plasticity was

not different between the sexes in this context. We next compared pupal volume in w1118 males and

females raised on the 1X diet with larvae cultured on a diet with twice the nutrient content (2X).

Pupal volume in w1118 females was significantly larger in larvae raised on the 2X diet compared with

larvae cultured on the 1X diet (Figure 1—figure supplement 1A). In w1118 males, the magnitude of

the nutrient-dependent increase in pupal volume was smaller compared with female larvae (Fig-

ure 1—figure supplement 1A; sex:diet interaction p<0.0001; Supplementary file 1). This suggests

that in nutrient-rich conditions, there is a sex difference in phenotypic plasticity, where nutrient-

dependent body size plasticity is higher in females. To represent the normal body size responses of

each sex to nutrient quantity, we plotted reaction norms for pupal volume in w1118 males and

females raised on different diets (Figure 1—figure supplement 1B). The body size response to

increased nutrient quantity between 0.5X and 1X was not different between the sexes (Figure 1—

figure supplement 1B); however, the body size response to increased nutrient quantity between 1X

and 2X was larger in females than in males (Figure 1—figure supplement 1B). Importantly, these

findings were not specific to pupal volume, as we reproduced our findings using adult weight as an

additional readout for body size (Figure 1A,B). Thus, our findings demonstrate that while pheno-

typic plasticity is similar between the sexes in some nutritional contexts, body size plasticity is higher

in females than in males in a nutrient-rich environment.

To narrow down macronutrients that account for the increased body size plasticity in females, we

changed individual food ingredients and measured body size in w1118 males and females. We first

altered dietary yeast, as previous studies show that yeast is a key source of protein and an important

determinant of larval growth (Britton et al., 2002; Géminard et al., 2009; Robertson, 1963). In

w1118 females raised on a diet with yeast content that corresponds to the amount in the 2X diet (2Y

diet), pupal volume was significantly larger than in females raised on a diet containing half the yeast

content (1Y) (Figure 1—figure supplement 1C). It is important to note that the yeast and calorie

content of the 1Y diet was within the range of standard diets used in many larval growth studies

(22.65 g/L vs. 21–46 g/L and 586 calories/L vs 459–760 calories/L, respectively) (Ghosh et al., 2014;

Koyama and Mirth, 2016; Marshall et al., 2012; Sawala and Gould, 2017), and therefore does not

represent a nutrient-restricted diet. In w1118 males, the magnitude of the nutrient-dependent

increase in pupal volume was smaller than in females (Figure 1—figure supplement 1C; sex:diet

interaction p=0.0001; Supplementary file 1), suggesting that nutrient-dependent body size plastic-

ity was higher in females in a yeast-rich context. Indeed, when we plotted reaction norms for pupal

volume in both sexes, the magnitude of the yeast-dependent change in pupal volume (Figure 1—

figure supplement 1D) and adult weight (Figure 1C,D) was larger in females than in males. This sex

difference in phenotypic plasticity in a yeast-rich context was reproduced in Canton-S (CS), a wild-

type strain (Figure 1—figure supplement 2A,B), and using wing length as an additional measure of

size (Figure 1—figure supplement 3A). Thus, our findings indicate that the male-female difference

in nutrient-dependent body size plasticity persists across multiple genetic backgrounds, and con-

firms that body size is a robust trait to monitor nutrient-dependent phenotypic plasticity.

Given the sex difference in body size plasticity in response to altered yeast content, we hypothe-

sized that yeast may trigger increased nutrient-dependent body size plasticity in females. To test

this, we raised larvae on diets with altered sugar (Figure 1—figure supplement 4A) or calorie con-

tent (Figure 1—figure supplement 4B). Because we observed no sex:diet interaction for either

manipulation (sex:diet interaction p=0.6536 and p=0.3698, respectively; Supplementary file 1), this

suggests dietary yeast mediates the sex difference in nutrient-dependent body size plasticity. To

test whether protein is the macronutrient in yeast that enables sex-specific phenotypic plasticity, we

pharmacologically limited protein breakdown by culturing larvae on the 2Y diet supplemented with

either a broad-spectrum protease inhibitor (protease inhibitor cocktail; PIC) or a serine protease-spe-

cific inhibitor (4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride; AEBSF). Previous studies sug-

gest that these inhibitors are specific, as the growth-inhibitory effect of these protease inhibitors

was buffered by feeding larvae with bacteria that enhance intestinal protease mRNA levels and gut
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Figure 1. Upregulation of IIS activity is required for increased nutrient-dependent body size plasticity in females in a protein-rich diet. (A) Adult weight

was significantly higher in w1118 males and females cultured on 1X compared with flies raised on 0.5X (p<0.0001 for both sexes; two-way ANOVA

followed by Tukey HSD test). The magnitude of this increase in adult weight was the same in both sexes (sex:diet interaction p=0.3197; two-way

ANOVA followed by Tukey HSD test). Adult weight was significantly higher in w1118 females raised on 2X compared to flies cultured on 1X; however,

Figure 1 continued on next page
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proteolytic activity (Erkosar et al., 2015). While we found a significant body size reduction in both

sexes treated with protease inhibitors (Figure 1—figure supplement 5A,B), in line with previous

studies (Erkosar et al., 2015), the magnitude of the inhibitor-induced decrease in pupal volume was

larger in female larvae than in males (sex:treatment interaction p=0.0029 [PIC] and p<0.0001

[AEBSF]; Supplementary file 1). This indicates that yeast-derived dietary protein is the macronutri-

ent that augments nutrient-dependent body size plasticity in females. While two potential explana-

tions for the male-female difference in body size plasticity are a sex difference in food intake or

length of the growth period, we found no differences in either phenotype between w1118 male and

female larvae cultured on 1Y or 2Y (Figure 1—figure supplement 6A–C). Moreover, the larger body

size of female larvae does not explain their increased nutrient-dependent body size plasticity, as a

genetic manipulation that augments male body size did not enhance phenotypic plasticity (Fig-

ure 1—figure supplement 7A,B). Taken together, our data reveals female larvae have enhanced

body size plasticity in a nutrient-rich context, and identifies abundant dietary protein as a prerequi-

site for females to maximize body size.

The nutrient-dependent upregulation of IIS activity in females is
required to achieve a larger body size in a protein-rich context
In a mixed-sex population of Drosophila larvae, IIS activity is positively regulated by nutrient avail-

ability to promote growth (Böhni et al., 1999; Britton et al., 2002; Chen et al., 1996;

Fernandez et al., 1995; Grewal, 2009; Teleman, 2010). We therefore examined nutrient-depen-

dent changes to IIS activity in larvae raised on 1Y and 2Y (Figure 1E–H). Previous studies show that

high levels of IIS activity repress mRNA levels of several genes via transcription factor Forkhead box,

sub-group O (Foxo; FBgn0038197) (Alic et al., 2011; Jünger et al., 2003; Kang et al., 2017;

Puig and Tjian, 2005; Zinke et al., 2002). We therefore assessed mRNA levels of known Foxo target

Figure 1 continued

male adult weight was not significantly increased (p<0.0001 and p=0.4015, respectively; two-way ANOVA followed by Tukey HSD test), where the diet-

dependent increase in adult weight was higher in females (sex:diet interaction p=0.0003; two-way ANOVA followed by Tukey HSD test). (B) Reaction

norms for adult weight in response to changes in nutrient quantity in w1118 females and males, plotted using the data presented in panel A. n = 6–11

groups of 10 flies. (C) Adult weight was significantly higher in females cultured on 2Y compared with flies raised on 1Y; however, male adult weight was

not significantly higher in flies raised on 2Y compared with males cultured on 1Y (p<0.0001 and p=0.7199, respectively; two-way ANOVA followed by

Tukey HSD test, sex:diet interaction p<0.0001). (D) Reaction norms for adult weight in w1118 females and males reared on either 1Y or 2Y, plotted using

data from panel C. n = 7–11 groups of 10 flies. (E) In females, mRNA levels of Foxo targets (insulin receptor (InR), brummer (bmm), and eukaryotic

initiation factor 4E-binding protein (4E-BP)), were significantly lower in larvae raised on a protein-rich diet (2Y) compared with larvae raised on a diet

containing half the protein content (1Y) (p<0.0001; Student’s t test). n = 8 biological replicates. (F) Quantification of the ratio between cell surface

membrane-associated green fluorescent protein (GFP) and cytoplasmic GFP (GFP ratio [M:C]) in a dissected fat body of female larvae from the GFP-PH

strain. The ratio was significantly higher in female larvae cultured on 2Y compared with larvae raised on 1Y (p=0.001; Student’s t test). n = 18 biological

replicates. (G) In males, there was no significant difference in mRNA levels of Foxo targets between larvae raised on 2Y compared with larvae cultured

on 1Y (p=0.7323; Student’s t test). n = 6–7 biological replicates. (H) In males, the M:C ratio for GFP-PH was not significantly different between males

cultured on 2Y compared with larvae raised on 1Y (p=0.0892; Student’s t test). n = 15–18 biological replicates. (I) Pupal volume was significantly higher

in both w1118 females and InRE19/+ females reared on 2Y compared with genotype-matched females cultured on 1Y (p<0.0001 for both genotypes; two-

way ANOVA followed by Tukey HSD test); however, the magnitude of the nutrient-dependent increase in pupal volume was lower in InRE19/+ females

(genotype:diet interaction p<0.0001; two-way ANOVA followed by Tukey HSD test). n = 58–77 pupae. (J) Pupal volume was significantly higher in both

w1118 males and InRE19/+ males reared on 2Y compared with genotype-matched males cultured on 1Y (p<0.0001 for both genotypes; two-way ANOVA

followed by Tukey HSD test). While we observed a sex:diet interaction in the w1118 control genotype, there was no sex:diet interaction in the InRE19/+

genotype (p<0.0001 and p=0.7104, respectively; two-way ANOVA followed by Tukey HSD test). n = 47–76 pupae. For body size plasticity graphs, filled

circles indicate mean body size, and dashed lines indicate 95% confidence interval. *** indicates p<0.001, **** indicates p<0.0001; ns indicates not

significant; error bars indicate SEM.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Increased female body size plasticity in a protein-rich diet.

Figure supplement 2. Increased nutrient-dependent body size plasticity in Canton-S females.

Figure supplement 3. Increased nutrient-dependent plasticity in female wing size.

Figure supplement 4. No sex-specific effect of altering dietary sugar concentration or calorie content.

Figure supplement 5. Pharmacological inhibition of protein breakdown has female-biased effects on body size.

Figure supplement 6. No sex difference in food intake or time to pupation.

Figure supplement 7. Larger body size does not confer increased body size plasticity.
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genes InR, brummer (bmm, FBgn0036449), and eukaryotic initiation factor 4E-binding protein (4E-

BP, FBgn0261560) together to quantify IIS activity in each sex and dietary context, an established

approach to analyze coregulated genes (Blaschke et al., 2013; Hudry et al., 2019). In w1118

females, mRNA levels of Foxo target genes were significantly lower in larvae reared on 2Y than in

larvae raised on 1Y (Figure 1E). This suggests IIS activity is significantly higher in females raised on

2Y than in females cultured on 1Y. To confirm this, we used the localization of a ubiquitously-

expressed green fluorescent protein (GFP) fused to a pleckstrin homology (PH) domain (GFP-PH) as

an additional readout of IIS activity. Because high levels of IIS activity raise plasma membrane PIP3,

and PH domains bind specifically to PIP3, larvae with elevated IIS activity show increased membrane

localization of GFP-PH (Britton et al., 2002). We observed a significantly higher membrane localiza-

tion of GFP-PH in females cultured on 2Y than in female larvae raised on 1Y (Figure 1F). Together

with increased Foxo target gene repression in 2Y, this GFP-PH data indicates that females reared on

2Y have higher IIS activity than females cultured on 1Y. In males, the magnitude of the nutrient-

dependent change in Foxo target genes was smaller than in females (Figure 1G), as we detected a

significant sex:diet interaction for Foxo target genes (p=0.0007; Supplementary file 1). Indeed,

there was no significant increase in GFP-PH membrane localization between males raised on 2Y and

males reared on 1Y (Figure 1H). Taken together, these results reveal a previously unrecognized

female-biased upregulation of IIS activity in a protein-rich context.

To determine whether increased IIS activity is required in females for the ability to maximize body

size on a protein-rich diet, we measured pupal volume in larvae heterozygous for a hypomorphic

mutation in the InR gene (InRE19/+) that were raised in either 1Y or 2Y. Previous studies have shown

that while overall growth is largely normal in InRE19/+ heterozygous animals, growth that requires

high levels of IIS activity is blunted (Chen et al., 1996; Rideout et al., 2012; Rideout et al., 2015).

In w1118 control females, larvae cultured on 2Y were significantly larger than larvae raised on 1Y

(Figure 1I); however, the magnitude of this protein-dependent increase in pupal volume was smaller

in InRE19/+ females (Figure 1I; genotype:diet interaction p<0.0001; Supplementary file 1). This sug-

gests that nutrient-dependent body size plasticity was reduced in InRE19/+ females. Indeed, while

we observed a sex difference in phenotypic plasticity in the w1118 control genotype (sex:diet interac-

tion p<0.0001 Supplementary file 1), the sex difference in nutrient-dependent body size plasticity

was abolished in the InRE19/+ genotype (Figure 1I,J; sex:diet interaction p=0.7104;

Supplementary file 1). Together, these results indicate that the nutrient-dependent upregulation of

IIS activity in females is required for them to achieve a larger body size in a protein-rich context, and

that the sex difference in body size plasticity arises from the female-biased upregulation of IIS activ-

ity in a protein-rich context.

dilp2 is required for the nutrient-dependent upregulation of IIS activity and a larger body size in

females raised on a protein-rich diet.

Previous studies have identified changes to the production and release of Dilps as important

mechanisms underlying nutrient-dependent changes to IIS activity and body size (Colombani et al.,

2003; Géminard et al., 2009; Zhang et al., 2009). For example, mRNA levels of Drosophila insulin-

like peptide 3 (dilp3; FBgn0044050) and Drosophila insulin-like peptide 5 (dilp5; FBgn0044048), but

not dilp2, decrease in response to nutrient withdrawal (Colombani et al., 2003; Géminard et al.,

2009; Ikeya et al., 2002), and the release of Dilps 2, 3, and 5 from the IPCs is altered by changes in

nutrient availability (Géminard et al., 2009; Kim and Neufeld, 2015). Levels of Dilp2 also fluctuate

during larval development (Slaidina et al., 2009). Interestingly, a recent study suggests that late

third-instar female larvae have increased Dilp2 secretion compared with age-matched males when

the larvae were raised in a diet equivalent to 2Y (Rideout et al., 2015). Given that Dilp2 is an impor-

tant growth-promoting Dilp (Grönke et al., 2010; Ikeya et al., 2002), we tested whether dilp2 was

required in females for the nutrient-dependent upregulation of IIS activity. In control w1118 females,

mRNA levels of Foxo target genes were significantly lower in larvae raised on 2Y than in larvae

reared on 1Y (Figure 2A), suggesting a nutrient-dependent increase in IIS activity. In contrast,

mRNA levels of Foxo target genes were not significantly lower in dilp2 mutant female larvae raised

on 2Y compared with genotype-matched females cultured on 1Y (Figure 2A), suggesting that loss

of dilp2 in females eliminated the nutrient-dependent increase in IIS activity. The magnitude of the

nutrient-dependent decrease in Foxo target gene expression was smaller in w1118 males compared

with w1118 females (Figure 2B, sex:diet interaction p=0.0511; Supplementary file 1), but not in

dilp2 mutant males compared with genotype-matched females (sex:diet interaction p=0.6754;
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Figure 2. Drosophila insulin-like peptide 2 is required for the nutrient-dependent upregulation of insulin pathway activity and increased female body

size plasticity. (A) In control w1118 females, mRNA levels of Foxo targets (insulin receptor (InR), brummer (bmm), and eukaryotic initiation factor 4E-

binding protein (4E-BP)), were significantly lower in larvae cultured on a protein-rich diet (2Y) compared with larvae raised on a diet containing half the

protein (1Y) (p<0.0001; Student’s t test). In dilp2 mutant females, there was no significant difference in mRNA levels of Foxo targets in larvae cultured

Figure 2 continued on next page
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Supplementary file 1). This indicates that dilp2 loss blocks the female-biased upregulation of IIS

activity in a protein-rich diet.

To determine whether the inability to augment IIS activity on 2Y affects the nutrient-dependent

increase in female body size, we measured body size in w1118 and dilp2 mutant larvae cultured on

either 1Y or 2Y. In w1118 control females, adult weight was significantly higher in flies cultured on 2Y

compared with flies raised on 1Y (Figure 2C); however, this nutrient-dependent increase in adult

weight was not observed in dilp2 mutant females (Figure 2C; genotype:diet interaction p=0.0024;

Supplementary file 1). In w1118 control males and dilp2 mutant males, there was no significant

increase in adult weight in flies raised on 2Y compared with genotype-matched flies cultured on 1Y

(Figure 2D; genotype:diet interaction p=0.935; Supplementary file 1). Indeed, in contrast to the

sex difference in nutrient-dependent body size plasticity in the w1118 genotype (sex:diet interaction

p<0.0001; Supplementary file 1), the sex difference in phenotypic plasticity was abolished in the

dilp2 mutant genotype (sex:diet interaction p=0.0827; Supplementary file 1). Importantly, we repli-

cated all these findings using pupal volume (Figure 2E,F), reproduced the female-specific effects of

dilp2 loss by globally overexpressing a UAS-dilp2-RNAi transgene (Figure 2G), and show that dilp2

loss does not alter feeding behavior (Figure 2—figure supplement 1A). While we did not determine

a sex difference in circulating Dilp2 levels in larvae with an endogenously tagged dilp2 allele due to

body size plasticity defects in this strain (Park et al., 2014; Figure 2—figure supplement 2A,B), an

experiment that will be important to repeat in future using alternative ways of measuring circulating

Dilp2, we show that changes to dilp mRNA levels in males and females lacking dilp2 (Figure 2—fig-

ure supplement 3A,B), and nutrient-dependent changes to dilp mRNA levels (Figure 2—figure sup-

plement 4A,B), were similar in both sexes. Together, our data reveals a previously unrecognized

female-specific requirement for dilp2 in triggering a nutrient-dependent increase in IIS activity and

body size in a protein-rich context.

Figure 2 continued

on 2Y compared with larvae raised on 1Y (p=0.2231 Student’s t test). n = 8 biological replicates. (B) In control w1118 and dilp2 mutant males, mRNA

levels of Foxo targets were significantly lower in larvae cultured on 2Y compared with larvae raised on 1Y (p=0.0066 and p=0.0023 respectively;

Student’s t test). n = 7–8 biological replicates; however, the magnitude of the reduction in Foxo target gene expression in w1118 males was smaller than

in genotype-matched females. (C) Adult weight was significantly higher in w1118 females raised on 2Y compared with flies cultured on 1Y (p<0.0001;

two-way ANOVA followed by Tukey HSD test); however, adult weight was not significantly different between dilp2 mutant females reared on 2Y versus

1Y (p=0.1263; two-way ANOVA followed by Tukey HSD test). n = 7–11 groups of 10 flies. (D) Adult weight in control w1118 and dilp2 mutant males was

not significantly higher in flies reared on 2Y compared with males raised on 1Y (p=0.8366 and p=0.8817, respectively; two-way ANOVA followed by

Tukey HSD test). There was a significant sex:diet interaction in the control w1118 genotype (p<0.0001), but not in the dilp2 mutant genotype (p=0.0827;

two-way ANOVA followed by Tukey HSD test). n = 10–12 groups of 10 flies. (E) Pupal volume was significantly higher in w1118 females but not in dilp2

mutant females reared on 2Y compared with genotype-matched females cultured on 1Y (p<0.0001 and p=0.6486 respectively; two-way ANOVA

followed by Tukey HSD test). The magnitude of the nutrient-dependent increase in pupal volume was higher in w1118 females (genotype:diet interaction

p<0.0001; two-way ANOVA followed by Tukey HSD test). n = 74–171 pupae. (F) Pupal volume was significantly higher in w1118 males and dilp2 mutant

males reared on 2Y compared with genotype-matched males cultured on 1Y (p<0.0001 for both genotypes; two-way ANOVA followed by Tukey HSD

test). The magnitude of the nutrient-dependent increase in pupal volume was not different between genotypes (genotype:diet interaction p=0.6891;

two-way ANOVA followed by Tukey HSD test). n = 110–135 pupae. (G) Pupal volume was significantly reduced in females upon RNAi-mediated

knockdown of dilp2 in 2Y when compared to both control genotypes (p<0.0001 [da>+], and p=0.002 [+>UAS-dilp2-RNAi], respectively; two-way

ANOVA followed by Tukey HSD test), but not in males in 2Y (p<0.0001 [da>+], and 0.9634 [+>UAS-dilp2-RNAi], respectively; two-way ANOVA followed

by Tukey HSD test). The magnitude of the effect of RNAi-mediated knockdown of dilp2 on pupal volume was higher in females (sex:genotype

interaction p=0.003; two-way ANOVA followed by Tukey HSD test). n = 44–59 pupae. For all body size plasticity graphs, filled circles indicate mean

body size, and dashed lines indicate 95% confidence interval. ** indicates p<0.01, **** indicates p<0.0001; ns indicates not significant; error bars

indicate SEM.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. No sex difference in food intake in dilp2 mutant larvae.

Figure supplement 2. HA- and FLAG-tagged dilp2 transgenic flies exhibit impaired nutrient-dependent body size plasticity.

Figure supplement 3. Genotype-dependent changes to dilp mRNA levels.

Figure supplement 4. Diet-dependent changes to dilp mRNA levels.
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A nutrient-dependent increase in stunted mRNA levels is required for
enhanced IIS activity and a larger body size in females cultured in a
protein-rich diet
Nutrient-dependent changes in Dilp secretion from the IPCs, and consequently IIS activity, are medi-

ated by humoral factors that are regulated by dietary nutrients (Britton and Edgar, 1998;

Delanoue et al., 2016; Koyama and Mirth, 2016; Rajan and Perrimon, 2012; Rodenfels et al.,

2014; Sano et al., 2015). For example, in a mixed-sex population of larvae, dietary protein aug-

ments mRNA levels of Growth-blocking peptides 1 and 2 (Gbp1, FBgn0034199; Gbp2,

FBgn0034200), CCHamide-2 (CCHa2; FBgn0038147), unpaired 2 (upd2; FBgn0030904), and sun

(Delanoue et al., 2016; Koyama and Mirth, 2016; Rajan and Perrimon, 2012; Sano et al., 2015).

Increased levels of these humoral factors promote the secretion of IPC-produced Dilps to enhance

IIS activity and growth (Delanoue et al., 2016; Koyama and Mirth, 2016; Meschi et al., 2019;

Rajan and Perrimon, 2012; Sano et al., 2015). To determine whether any humoral factors contrib-

ute to the sex-biased increase in IIS activity in a protein-rich diet, we examined mRNA levels of each

factor in larvae of both sexes raised on either 1Y or 2Y. In w1118 females, sun mRNA levels in larvae

reared on 2Y were significantly higher than in larvae cultured on 1Y (Figure 3A). In contrast, mRNA

levels of Gbp1, Gbp2, CCHa2, and upd2 were not significantly higher in female larvae reared on 2Y

compared with 1Y (Figure 3B). Thus, while previous studies have shown that mRNA levels of all

humoral factors were severely reduced by a nutrient-restricted diet or nutrient withdrawal

(Delanoue et al., 2016; Koyama and Mirth, 2016; Rajan and Perrimon, 2012; Sano et al., 2015),

our study suggests that for most factors, augmenting dietary protein beyond a widely used level

does not further enhance mRNA levels. In males, there was no significant increase in sun mRNA lev-

els (Figure 3C), or any other humoral factors (Figure 3D), in larvae reared on 2Y compared with 1Y.

Thus, there is a previously unrecognized sex difference in the regulation of sun mRNA levels in a pro-

tein-rich context, which we confirm leads to a sex difference in circulating Sun levels (Figure 3—fig-

ure supplement 1A).

Given that a comprehensive series of genetic, molecular, and organ co-culture experiments have

established that Sun promotes IIS activity by enhancing Dilp2 secretion (Delanoue et al., 2016), we

hypothesized that the female-specific increase in sun mRNA levels in 2Y triggers the nutrient-depen-

dent upregulation of IIS activity in females. To test this, we overexpressed UAS-sun-RNAi in the lar-

val fat body using r4-GAL4, and cultured the animals on either 1Y or 2Y. Importantly, overexpression

of the UAS-sun-RNAi transgene significantly decreased sun mRNA levels in both sexes (Figure 3—

figure supplement 2A,B), where GAL4 expression was similar between the sexes in 1Y and 2Y (Fig-

ure 3—figure supplement 2C). In control r4>+ and +>UAS-sun-RNAi females, we observed a signif-

icant decrease in Foxo target gene expression in larvae cultured on 2Y compared with genotype-

matched larvae reared on 1Y (Figure 3E). In contrast, the nutrient-dependent decrease in Foxo tar-

get gene expression was absent in r4>UAS-sun-RNAi females (Figure 3E; diet:genotype interaction

p<0.0001; Supplementary file 1), suggesting sun is required in females for the nutrient-dependent

increase in IIS activity. In males, the magnitude of the nutrient-dependent decrease in Foxo target

gene expression was smaller than in genotype-matched females for the r4>+ and +>UAS-sun-RNAi

control strains (p=0.0166 [r4>+]; p=0.0119 [+>UAS-sun-RNAi]; Supplementary file 1), but not in the

r4>UAS-sun-RNAi strain (Figure 3F) (sex:diet interaction p=0.1121 [r4>UAS-sun-RNAi];

Supplementary file 1). Importantly, the lack of a diet:genotype interaction among males indicates

that there was no effect of genotype on Foxo target gene expression (p=0.1068;

Supplementary file 1). Together, this data suggests that in females a protein-rich diet stimulates a

nutrient-dependent increase in sun mRNA that promotes IIS activity. In males, the 2Y diet did not

augment sun mRNA levels, suggesting one reason for the female-biased increase in IIS activity in a

protein-rich diet.

We next asked whether the female-specific increase in sun mRNA and its impact on IIS activity

contribute to the nutrient-dependent increase in female body size in a protein-rich context. In r4>+

and +>UAS-sun-RNAi control females, adult weight was significantly higher in flies cultured on 2Y

compared with genotype-matched flies raised on 1Y (Figure 3G). In contrast, the nutrient-depen-

dent increase in adult weight was abolished in r4>UAS-sun-RNAi females (Figure 3G; genotype:diet

interaction p=0.0014; Supplementary file 1). This indicates r4>UAS-sun-RNAi females have reduced

nutrient-dependent body size plasticity, a finding that cannot be explained by changes to feeding
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Figure 3. stunted is required for the nutrient-dependent upregulation of insulin pathway activity and increased female body size plasticity. (A) In

females, mRNA levels of stunted (sun)RA, but not sunRB, were significantly higher in larvae cultured on a protein-rich diet (2Y) compared with larvae

raised on a diet containing half the protein (1Y) (p=0.0055 and p=0.2327, respectively; Student’s t test). n = 8 biological replicates. (B) mRNA levels of

Growth-blocking peptide 1 (Gbp1) were significantly different in females cultured on 2Y compared with females raised in 1Y (p=0.0245; Student’s t test);

Figure 3 continued on next page
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behavior (Figure 3—figure supplement 3A). In r4>+, +>UAS-sun-RNAi, and r4>UAS-sun-RNAi

male flies raised on 2Y, adult weight was not significantly higher than in genotype-matched males

raised on 1Y (Figure 3H; genotype:diet interaction p=0.9278; Supplementary file 1). Importantly, in

contrast to the sex difference in nutrient-dependent body size plasticity we observed in the r4>+

and +>UAS-sun-RNAi control genotypes (sex:diet interaction p=0.011 and p=0.0005, respectively;

Supplementary file 1), the sex difference in phenotypic plasticity was abolished in the r4>UAS-sun-

RNAi genotype (sex:diet interaction p=0.8749; Supplementary file 1), findings we reproduced using

pupal volume (Figure 3—figure supplement 4A,B). While we observed no phenotypic plasticity

effects in larvae with whole-body, pan-neuronal, or IPC loss of Sun receptor methuselah (mth;

Fbgn0023000; Delanoue et al., 2016; Figure 3—figure supplement 5A–F), likely due to use of dif-

ferent dilp2-GAL4 lines, minor variation in rearing conditions, and sex-specific plasticity defects in

the dilp2-GAL4 strain, we reproduced the female-specific effects of sun knockdown on body size

using an additional fat body GAL4 line (Figure 3—figure supplement 6A). Further, we show that

this role for sun in mediating the nutrient-dependent increase in female body size in a protein-rich

context is unique to sun, as no other humoral factors caused sex-specific effects on body size (Fig-

ure 3—figure supplement 6B,C).

Our data suggests a model in which the nutrient-dependent increase in sun mRNA levels is one

important reason that females raised in a protein-rich context have a larger body size. To determine

whether increased sun mRNA levels could augment body size, we overexpressed sun specifically in

the fat body in larvae of each sex reared on 1Y and 2Y. We found that fat body sun overexpression

was sufficient to increase body size in both sexes, in both the 1Y and 2Y diets (Figure 3—figure sup-

plement 7A,B). This demonstrates that increased sun mRNA levels are sufficient to enhance body

Figure 3 continued

however, mRNA levels of Growth-blocking peptide 2 (Gbp2), CCHamide-2 (CCHa2), and unpaired 2 (upd2) were not significantly different between

female larvae raised on 1Y and 2Y (p=0.0662, 0.1416, and 0.7171, respectively; Student’s t test). n = 7–8 biological replicates. (C) In males, mRNA levels

of sunRA and sunRB were not significantly different in larvae raised on 2Y compared with larvae raised on 1Y (p=0.5832 and p=0.2017, respectively;

Student’s t test). n = 7–8 biological replicates. (D) Levels of Gbp1 and upd2 were not significantly different between male larvae raised on 2Y compared

with larvae reared on 1Y (p=0.1487, and p=0.1686, respectively; Student’s t test); whereas levels of Gbp2 and CCHa2 were significantly different

between males raised in 2Y and 1Y (p=0.0214, and p=0.0272, respectively; Student’s t test). n = 7–8 biological replicates. (E) In control r4>+, and

+>sun-RNAi females, mRNA levels of Foxo targets (insulin receptor (InR), brummer (bmm), and eukaryotic initiation factor 4E-binding protein (4E-BP)),

were significantly lower in larvae cultured on 2Y compared with larvae raised on 1Y (p<0.0001, for both comparisons; Student’s t test). However, in

r4>sun-RNAi females, there was no significant difference in Foxo target mRNA levels (p=0.2792; Student’s t test). n = 8 biological replicates. (F) In

control r4>+, and +>sun-RNAi males, mRNA levels of Foxo targets were significantly lower in larvae cultured on 2Y compared with larvae raised on 1Y

(p<0.0001 and p=0.0001, respectively; Student’s t test). While r4>sun-RNAi males showed no significant difference in Foxo target mRNA levels

(p=0.2469; Student’s t test), there was no genotype:diet interaction among males (p=0.1068), suggesting that genotype had no impact on Foxo target

genes. Importantly, there was a significant sex:diet interaction for Foxo target mRNA levels in both the r4>+ control (p=0.0166; two-way ANOVA

followed by Tukey HSD test) and +>sun-RNAi control (p=0.0119; two-way ANOVA followed by Tukey HSD test), but not in r4>sun-RNAi larvae

(p=0.1121; two-way ANOVA followed by Tukey HSD test). n = 7–8 biological replicates. (G) Adult weight was significantly higher in female flies raised in

2Y compared with females raised in 1Y in r4>+ and +>UAS-sun-RNAi controls (p<0.0001 for both genotypes; two-way ANOVA followed by Tukey HSD

test); however, adult weight was not significantly different between r4>UAS-sun-RNAi females reared on 2Y compared with genotype-matched females

raised on 1Y (p=0.5035; two-way ANOVA followed by Tukey HSD test). n = 7–10 groups of 10 flies. (H) Adult weight was not significantly higher in male

flies reared in 2Y compared with males cultured in 1Y for r4>+ and +>UAS-sun-RNAi controls or r4>UAS-sun-RNAi males (p=0.8883, 0.6317, and 0.554,

respectively; two-way ANOVA followed by Tukey HSD test). There was a significant sex:diet interaction in the r4>+ and +>UAS-sun-RNAi control

genotypes (p=0.011 and p=0.0005, respectively; two-way ANOVA followed by Tukey HSD test), but no sex:diet interaction in the r4>UAS-sun-RNAi

genotype (p=0.8749; two-way ANOVA followed by Tukey HSD test). n = 6–9 groups of 10 flies. For all body size plasticity graphs, filled circles indicate

mean body size, and dashed lines indicate 95% confidence interval. * indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001 **** indicates

p<0.0001; ns indicates not significant; error bars indicate SEM.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Increased circulating levels of Stunted (Sun) in females.

Figure supplement 2. Validation of stunted (sun) knockdown.

Figure supplement 3. No sex difference in food intake in fat body stunted (sun) knockdown larvae.

Figure supplement 4. Nutrient-dependent increased female body size plasticity requires stunted (sun).

Figure supplement 5. methuselah (mth) is dispensable for nutrient-dependent increased female body size plasticity.

Figure supplement 6. Most humoral factors have non-sex-specific effects on body size.

Figure supplement 7. stunted (sun) overexpression augments body size but does not confer increased body size plasticity in males.

Figure supplement 8. stunted (sun) overexpression augments body size in the diet used in Delanoue et al., 2016 in males.

Millington et al. eLife 2021;10:e58341. DOI: https://doi.org/10.7554/eLife.58341 12 of 36

Research article Developmental Biology Genetics and Genomics

https://doi.org/10.7554/eLife.58341


size in these contexts. While this finding contrasts with data from a previous study using a different

diet and a mixed-sex experimental group (Delanoue et al., 2016), when we replicated their experi-

mental conditions we found a significant increase in body size that was obscured by pooling data

from males and females (Figure 3—figure supplement 8A,B). Together, this data supports a model

in which increased fat body sun mRNA levels enhance body size in multiple nutritional contexts, an

effect that was previously overlooked due to minor variation between lab diets and use of a mixed-

sex experimental group. It is important to note, however, that despite the larger body size of sun-

overexpressing males and females, phenotypic plasticity was not increased in the sun-overexpressing

larvae (Figure 3—figure supplement 7A,B; diet:genotype interaction p=0.4959; and p=0.0895,

respectively; Supplementary file 1). This is likely due to the fact that the nutrient-dependent

increase in sun mRNA levels was still absent in the context of sun overexpression in males (Figure 3—

figure supplement 8C), as our model suggests it is the ability to upregulate sun mRNA in response

to dietary protein, rather than absolute sun mRNA levels, that allows females raised on a protein-rich

diet to achieve a larger body size.

Sex determination gene transformer promotes nutrient-dependent
body size plasticity in females
To gain a more complete understanding of the sex difference in phenotypic plasticity, we wanted to

identify genetic factors in females that confer the ability to upregulate sun mRNA levels in response

to dietary protein. One candidate was sex determination gene tra, as tra was previously found to

impact IIS activity and body size in a diet equivalent to 2Y (Rideout et al., 2015; Mathews et al.,

2017). Thus, we performed loss- and gain-of-function studies with tra and monitored changes to IIS

activity, sun mRNA, and body size in both the 1Y and 2Y diets. In control w1118 females, Foxo target

gene expression was significantly lower in larvae raised on 2Y compared with larvae cultured on 1Y

(Figure 4A); however, this nutrient-dependent decrease in Foxo target gene expression was abol-

ished in tra mutant females (tra1/Df(3L)st-j7) (Figure 4A; diet:genotype interaction p=0.0081;

Supplementary file 1). Similarly, while sun mRNA levels in w1118 control females were significantly

higher in larvae raised on 2Y compared with 1Y (Figure 4B), this nutrient-dependent increase in sun

mRNA levels was absent in tra mutant females (Figure 4B). This indicates that tra is required in

females for the nutrient-dependent increase in sun mRNA levels and IIS activity in a protein-rich

context.

To determine whether lack of tra also impacts nutrient-dependent body size plasticity, we mea-

sured body size in w1118 controls and tra mutants raised in 1Y and 2Y. In control w1118 females, adult

weight was significantly higher in flies raised on 2Y compared with flies cultured on 1Y (Figure 4C);

however, this nutrient-dependent increase in adult weight was blocked in tra mutant females

(Figure 4C; genotype:diet interaction p<0.0001; Supplementary file 1), a finding we reproduced

using pupal volume (Figure 4—figure supplement 1A). Given that we confirmed this result using an

additional tra mutant allele (traKO) (Hudry et al., 2016; Figure 4—figure supplement 1B), and that

this finding cannot be explained by changes to food intake (Figure 4—figure supplement 1C), this

indicates that tra mutant females have reduced nutrient-dependent body size plasticity compared

with control females (genotype:diet interaction p<0.0001 [tra1/Df(3L)st-j7]; p<0.0001 [traKO];

Supplementary file 1). In control w1118 and tra mutant males, adult weight was not significantly

higher in flies raised on 2Y compared with genotype-matched flies reared on 1Y (Figure 4D; geno-

type:diet interaction p=0.4507, Supplementary file 1). Given that we observed a sex difference in

nutrient-dependent body size plasticity in the w1118 genotype (sex:diet interaction p<0.0001;

Supplementary file 1), but not in the tra mutant strains (sex:diet interaction p=0.6598 [tra1/Df(3L)st-

j7]; p=0.5068 [traKO]; Supplementary file 1), findings we replicated with pupal volume (Figure 4—

figure supplement 1D,E), our data reveals a previously unrecognized requirement for tra in regulat-

ing the sex difference in nutrient-dependent phenotypic plasticity. To determine whether tra affects

phenotypic plasticity via regulation of sun, we overexpressed sun in the fat body of tra mutant

females. We found that the reduced body size of tra mutant females in 2Y was rescued by fat body

sun overexpression (Figure 4—figure supplement 2A). This supports a model in which the smaller

body size of tra mutant females reared in 2Y was due at least in part to lower sun mRNA levels.

To determine whether lack of a functional Tra protein in males explains their reduced nutrient-

dependent body size plasticity, we overexpressed UAS-traF in all tissues using daughterless (da)-

GAL4. We first asked whether Tra overexpression impacted the nutrient-dependent regulation of
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Figure 4. Sex determination gene transformer (tra) regulates increased nutrient-dependent body size plasticity in females. (A) In control w1118 females,

mRNA levels of Foxo targets (insulin receptor (InR), brummer (bmm), and eukaryotic initiation factor 4E-binding protein (4E-BP)), were significantly lower

in larvae cultured on a protein-rich diet (2Y) compared with larvae raised on a diet containing half the protein (1Y) (p=0.0057; Student’s t test). In tra

mutant (tra1/Df(3L)st-j7) females, there was no significant difference in mRNA levels of Foxo targets in larvae cultured on 2Y compared with larvae raised

Figure 4 continued on next page
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sun mRNA and IIS activity. In control da>+ and +>UAS-traF males, there was no significant decrease

in Foxo target gene expression in larvae reared in 2Y compared with larvae raised in 1Y (Figure 4E).

In da>UAS-traF males, however, there was a significant nutrient-dependent decrease in mRNA levels

of Foxo target genes (Figure 4E). Because we observed a significant diet:genotype interaction

(p<0.0001; Supplementary file 1), the magnitude of the nutrient-dependent increase in IIS activity

in the da>UAS-traF genotype was larger than in control males. Similarly, while sun mRNA levels in

control da>+ and +>UAS-traF males were not significantly different in larvae raised on 2Y compared

with larvae reared on 1Y (Figure 4F), there was a nutrient-dependent increase in sun mRNA levels in

da>UAS-traF males (Figure 4F). In da>+, +>UAS-traF, and da>UAS-traF females, we observed a sig-

nificant decrease in Foxo target gene expression, and a significant increase in sun mRNA levels (Fig-

ure 4—figure supplement 3A,B). Thus, the presence of a functional Tra protein in males confers the

ability to upregulate sun mRNA levels and IIS activity, revealing that the lack of Tra in normal males

accounts for the lack of a nutrient-dependent increase in sun mRNA and IIS activity.

We next tested whether the presence of a functional Tra protein in males would augment nutri-

ent-dependent body size plasticity. We observed a significant increase in adult weight between

da>UAS-traF males reared on 2Y compared with genotype-matched males raised on 1Y (Figure 4G;

genotype:diet interaction p=0.0038; Supplementary file 1). This nutrient-dependent increase was

not present in either control da>+ or +>UAS-traF males (Figure 4G), a finding we reproduced using

pupal volume (Figure 4—figure supplement 3C). Because one study suggested high levels of Tra

expression may cause lethality (Siera and Cline, 2008), we repeated the experiment using males

from a recently published strain of flies in which flies carry a cDNA encoding the female-specific Tra

Figure 4 continued

on 1Y (p=0.2291 Student’s t test). n = 8 biological replicates. (B) In control females, mRNA levels of sunRA were significantly higher in larvae cultured on

2Y compared with larvae raised on 1Y (p=0.0011; Student’s t test); however, in tra1/Df(3L)st-j7 females there was no significant difference in sunRA

mRNA levels between larvae cultured on 2Y compared with larvae raised on 1Y (p=0.1644; Student’s t test). n = 8 biological replicates. (C) Adult weight

was significantly higher in w1118 females raised on 2Y compared with females reared on 1Y (p<0.0001; two-way ANOVA followed by Tukey HSD test);

however, there was no significant difference in adult weight between tra1/Df(3L)st-j7 females cultured on 2Y compared with genotype-matched females

raised on 1Y (p=0.9617; two-way ANOVA followed by Tukey HSD test). n = 7–8 groups of 10 flies. (D) Adult weight was not significantly higher in either

w1118 control or tra1/Df(3L)st-j7 mutant males in flies raised on 2Y compared with males reared on 1Y (p=0.7808 and p=0.9983, respectively; two-way

ANOVA followed by Tukey HSD test). There was a significant sex:diet interaction in the w1118 control genotype (p<0.0001; two-way ANOVA followed by

Tukey HSD test); however, there was no sex:diet interaction in the tra1/Df(3L)st-j7 genotype (p=0.6598; two-way ANOVA followed by Tukey HSD test).

n = 6–8 groups of 10 flies. (E) In control da>+, and +>traF males, mRNA levels of Foxo targets were significantly higher in larvae cultured on

2Y compared with larvae raised on 1Y a diet containing half the protein content (1Y) (p=0.0108 and p<0.0001, respectively; Student’s t test). However, in

da>traF males, there was a significant decrease in Foxo target mRNA levels (p<0.0001; Student’s t test). n = 8 biological replicates. Importantly, there

was a significant sex:diet interaction for Foxo target mRNA levels in both the da>+ control (p=0.0004; two-way ANOVA followed by Tukey HSD test)

and +>traF control (p<0.0001; two-way ANOVA followed by Tukey HSD test), but not in da>traF larvae (p=0.3095; two-way ANOVA followed by Tukey

HSD test). n = 7–8 biological replicates. (F) In control da>+ and +>UAS-traF males, mRNA levels of sunRA were not significantly different between larvae

cultured on 2Y compared with larvae raised on 1Y (p=0.2064 and p=0.0711, respectively; Student’s t test). In contrast, da>UAS-traF males showed a

significant increase in mRNA levels of sunRA in larvae cultured on 2Y compared with males raised on 1Y (p=0.0013; Student’s t test). n = 6–8 biological

replicates. (G) Adult weight was not significantly higher in da>+ and +>UAS-traF control males reared on 2Y compared with genotype-matched males

flies cultured on 1Y (p=0.5186 and p=0.8858, respectively; two-way ANOVA followed by Tukey HSD test); however, there was a significant increase in

adult weight between da>UAS-traF males cultured on 2Y compared with genotype-matched flies raised on 1Y (p<0.0001; two-way ANOVA followed by

Tukey HSD test). n = 7–8 groups of 10 flies. (H) Adult weight was significantly higher in r4-GAL4 control males with traF K-IN, which express physiological

levels of a functional Tra protein, when reared on 2Y compared with 1Y ((p<0.0001 [r4,Df(3L)st-j7/traF K-IN]); two-way ANOVA followed by Tukey HSD

test). In contrast, the nutrient-dependent increase in adult weight was abolished upon fat body knockdown of sun in a traF K-IN male ((p=0.9915 [UAS-

sun-RNAi/+;r4,Df(3L)st-j7/traF K-IN]); two-way ANOVA followed by Tukey HSD test). Adult weight was not different in tra mutant r4-GAL4 males (r4,Df(3L)

st-j7/traKO) reared on 2Y compared with genotype-matched males cultured on 1Y (p=0.9980; two-way ANOVA followed by Tukey HSD test). Adult

weight was not reduced in 1Y with fat body knockdown of sun in a tra mutant male ((UAS-sun-RNAi/+;r4,Df(3L)st-j7/traKO) (p=0.9998 [UAS-sun-RNAi/+;

r4,Df(3L)st-j7/traKO v r4,Df(3L)st-j7/traKO]); two-way ANOVA followed by Tukey HSD test). n = 9–11 groups of 10 flies. For all body size plasticity graphs,

filled circles indicate mean body size, and dashed lines indicate 95% confidence interval. * indicates p<0.05, ** indicates p<0.01, **** indicates

p<0.0001; ns indicates not significant; error bars indicate SEM.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Increased nutrient-dependent body size plasticity in females requires transformer.

Figure supplement 2. Fat body stunted (sun) overexpression is sufficient to rescue the reduced body size of transformer (tra) mutant females in a

protein-rich (2Y) diet.

Figure supplement 3. Sex determination gene transformer (tra) regulates increased nutrient-dependent body size plasticity.
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protein knocked into the tra locus (traF K-IN). These males express Tra at a physiological level

(Hudry et al., 2019). As with da>UAS-traF males, we found traF K-IN males had increased nutrient-

dependent body size plasticity compared with control w1118 males and traKO males (Figure 4—fig-

ure supplement 3D; genotype:diet interaction p<0.0001; Supplementary file 1). Thus, males

expressing a functional Tra protein have increased phenotypic plasticity compared with control

males, revealing a new role for tra in conferring the ability to adjust body size in response to a pro-

tein-rich diet. In females, we observed a significant increase in both adult weight and pupal volume

in da>+, +>UAS-traF, and da>UAS-traF flies raised on the 2Y diet compared with genotype-matched

females cultured on the 1Y diet (Figure 4—figure supplement 3E,F); however, lack of a significant

genotype:diet interaction indicates that phenotypic plasticity in da>UAS-traF females was not differ-

ent from controls (p=0.5912; Supplementary file 1), findings we reproduced with the traF K-IN allele

(Figure 4—figure supplement 3G; genotype:diet interaction p<0.0001 Supplementary file 1).

Importantly, the sex difference in nutrient-dependent body size plasticity that we observed in the

w1118 control genotype (sex:diet interaction p<0.0001; Supplementary file 1) was abolished

between traF K-IN males and their genotype-matched females (p=0.3168; Supplementary file 1). To

determine whether the nutrient-dependent upregulation of sun mRNA was required for Tra to

enhance male body size in a protein-rich context, we overexpressed the UAS-sun-RNAi transgene in

the fat body of traF K-IN males. We found that the nutrient-dependent body size increase in traF K-IN

males was blocked in males with fat body sun loss (Figure 4H), a finding we reproduced in traF K-IN

females (Figure 4—figure supplement 3H). This indicates that the nutrient-dependent upregulation

of sun mRNA in larvae with a functional Tra protein is required for phenotypic plasticity. Together,

these data demonstrate a new role for Tra in regulating the sex difference in nutrient-dependent

body size plasticity, and identify fat body sun as one downstream factor that mediates Tra’s effects

on phenotypic plasticity.

Transcriptional coactivator spargel represents one link between
transformer and regulation of sun mRNA levels
While sex determination gene tra impacts sexual differentiation via regulation of confirmed target

genes doublesex (dsx; FBgn0000504) and fruitless (fru; FBgn0004652), neither dsx nor fru affect

body size (Rideout et al., 2015). Given the key role of sun in mediating the nutrient-dependent

increase in body size downstream of Tra, we wanted to identify the link between Tra and regulation

of sun mRNA levels. Previous studies show that transcriptional coactivator spargel (srl,

FBgn0037248), the Drosophila homolog of peroxisome proliferator-activated receptor gamma coac-

tivator 1-alpha (PGC-1a) (Tiefenböck et al., 2010), coordinates sun mRNA levels with dietary protein

(Delanoue et al., 2016). To test whether Srl mediates the sex difference in nutrient-dependent upre-

gulation of sun mRNA levels, we examined mRNA levels of sun in female larvae heterozygous for a

strong hypomorphic allele of srl (srl1/+) (Tiefenböck et al., 2010). In females, we found that the

nutrient-dependent upregulation of sun mRNA levels in w1118 control larvae was blunted in srl1/+ lar-

vae (Figure 5A; diet:genotype interaction p<0.0001; Supplementary file 1). To determine whether

a smaller nutrient-dependent increase in sun mRNA levels affects the ability of srl1/+ larvae to

achieve a larger body size in a protein-rich context, we raised srl1/+ larvae on 1Y and 2Y. While we

confirmed that srl1/+ larvae have no generalized developmental defects, as there was no decrease in

body size in srl1/+ female or male larvae reared on 1Y (Figure 5B,C), we showed that the nutrient-

dependent increase in body size in srl1/+ females was eliminated (Figure 5B). Given that adult

weight was significantly higher in control w1118 females raised on 2Y compared with genotype-

matched females cultured on 1Y (Figure 5B), this indicates that srl1/+ females have reduced nutri-

ent-dependent body size plasticity (genotype:diet interaction p<0.0001; Supplementary file 1). In

control w1118 and srl1/+ males, adult weight was not significantly higher in flies raised on 2Y com-

pared with genotype-matched flies reared on 1Y (Figure 5C; genotype:diet interaction p=0.8323).

This result suggests that Srl mediates the nutrient-dependent upregulation of sun mRNA levels and

increased nutrient-dependent body size plasticity in female larvae in a protein-rich context, where

future studies will need to determine whether Srl also impacts the sex difference in circulating Sun.

Indeed, while Sun is also regulated at the level of secretion by fat body Target-of-Rapamycin (TOR)

signaling (Delanoue et al., 2016), we found no sex difference in fat body TOR activity in either 1Y or

2Y (Figure 5—figure supplement 1A–D). Given that TOR activity does not affect sun mRNA levels

(Delanoue et al., 2016), which we confirm (Figure 5—figure supplement 1E), our data indicates
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Figure 5. Sex determination gene transformer (tra) requires transcriptional coactivator spargel (srl) for increased nutrient-dependent body size plasticity

in females. (A) In control w1118 females and females with heterozygous loss of srl (srl1/+), mRNA levels of sunRA were significantly higher in larvae

cultured on a protein-rich diet (2Y) compared with larvae raised on a diet with half the protein (1Y) (p<0.0001 and p=0.0301; Student’s t test); however,

there was a significant genotype:diet interaction indicating that the protein-dependent upregulation of sunRA was blunted in srl1/+ females (p<0.0001;

Figure 5 continued on next page
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that the sex difference in nutrient-dependent upregulation of sun mRNA levels is due to Srl, and not

TOR. This aligns with our previous finding that treating larvae with TOR inhibitor Rapamycin did not

cause sex-biased effects on larval growth (Rideout et al., 2015).

To determine whether Srl mediates the Tra-dependent regulation of sun mRNA levels, we mea-

sured sun mRNA levels in males with ectopic Tra expression (da>UAS-traF). While da>UAS-traF

males show a significant nutrient-dependent upregulation of sun mRNA levels compared with da>+

and +>UAS-traF control males (Figure 4F), we found that sun mRNA levels were no longer higher in

da>UAS-traF males heterozygous for the srl1 allele raised on 2Y compared with genotype-matched

males reared on 1Y (Figure 5D). Similarly, we observed no decrease in Foxo target genes between

da>UAS-traF males heterozygous for the srl1 allele raised on 2Y compared with genotype-matched

males reared on 1Y (Figure 5E), indicating the nutrient-dependent upregulation of IIS activity in

da>UAS-traF males was abolished in the context of reduced Srl function. Given that we observed no

Tra-dependent changes to TOR activity (Figure 5—figure supplement 1F,G), when taken together

our data indicates that Srl function is required for the Tra-dependent increase in sun mRNA levels in

a protein-rich context. Srl therefore represents an additional link between sex determination gene

tra and the regulation of gene expression. Moreover, we show that the Srl-dependent regulation of

sun downstream of Tra is significant for phenotypic plasticity, as the nutrient-dependent increase in

body size was blocked in da>UAS-traF females and males heterozygous for the srl1 allele (Figure 5F,

G; genotype:diet interaction p=0.0146 and p=0.0008, respectively). While we find that Srl targets

other than sun were also regulated in a sex-specific manner by nutrients and Tra function (Figure 5—

figure supplement 2A–D), other functionally similar Srl targets did not reproduce sex-specific

changes to nutrient-dependent body size plasticity that we observed upon loss of fat body sun (Fig-

ure 5—figure supplement 2E–H). Although we cannot rule out all Srl targets, our data indicates a

key role for sun among Srl targets in mediating the effects of Tra on nutrient-dependent body size

plasticity. This reveals a previously unrecognized role for Srl in mediating sex-specific changes to

gene expression, and identifies Srl as a new link between Tra and nutrient-dependent changes to

gene expression.

Increased nutrient-dependent body size plasticity in females promotes
fecundity in a protein-rich context
Previous studies have shown that plentiful nutrients during development maximize body size to pro-

mote fertility in Drosophila females (Bergland et al., 2008; Green and Extavour, 2014;

Grönke et al., 2010; Hodin and Riddiford, 2000; Klepsatel et al., 2020; Mendes and Mirth,

Figure 5 continued

two-way ANOVA followed by Tukey HSD test). n = 7–8 biological replicates. (B) Adult weight was significantly higher in w1118 females raised on 2Y

compared with females reared on 1Y (p<0.0001; two-way ANOVA followed by Tukey HSD test); however, there was no significant difference in adult

weight between srl1/+ females cultured on 2Y compared with genotype-matched females raised on 1Y (p>0.9999; two-way ANOVA followed by Tukey

HSD test). n = 5–7 groups of 10 flies. (C) Adult weight was not significantly higher in either w1118 control or srl1/+ mutant males in flies raised on 2Y

compared with males reared on 1Y (p=0.9906 and p>0.9999, respectively; two-way ANOVA followed by Tukey HSD test). n = 4–5 groups of 10 flies. (D)

mRNA levels of sunRA were not significantly different in da>traF males with heterozygous loss of srl (UAS-traF/+;da-GAL4/srl1) cultured on 1Y compared

to genotype matched males cultured on 2Y (p=0.1405; Student’s t test). n = 8 biological replicates. (E) In control da>traF males with heterozygous loss

of srl, mRNA levels of Foxo targets (insulin receptor (InR), brummer (bmm), and eukaryotic initiation factor 4E-binding protein (4E-BP)), were significantly

higher in larvae cultured on 2Y compared with larvae raised on 1Y (p=0.0266; Student’s t test). n = 8 biological replicates. (F) Adult weight was higher in

da>UAS-traF males raised on 2Y compared with da>UAS-traF males reared on 1Y (p<0.0001; two-way ANOVA followed by Tukey HSD test). In contrast,

the nutrient-dependent increase in adult weight was abolished in da>UAS-traF males heterozygous for srl1 (p=0.2811; two-way ANOVA followed by

Tukey HSD test). n = 6–8 groups of 10 flies. (G) Adult weight was higher in da>UAS-traF females raised on 2Y compared with da>UAS-traF females

reared on 1Y (p<0.0001; two-way ANOVA followed by Tukey HSD test). In contrast, the nutrient-dependent increase in adult weight was absent in

da>UAS-traF females heterozygous for srl1 (p=0.2927; two-way ANOVA followed by Tukey HSD test). n = 6–7 groups of 10 flies. For all body size

plasticity graphs, filled circles indicate mean body size, and dashed lines indicate 95% confidence interval. * indicates p<0.05, **** indicates p<0.0001;

ns indicates not significant; error bars indicate SEM.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. No nutrient- or transformer-dependent sex difference in fat body Target-of-rapamycin (TOR) signaling activity.

Figure supplement 2. transformer (tra) is required for nutrient-dependent upregulation of spargel (srl) target expression in females, but not all srl

targets are not required for increased female nutrient-dependent body size plasticity.
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2016; Robertson, 1957a; Robertson, 1957b; Sarikaya et al., 2012; Tu and Tatar, 2003), and that

high levels of IIS activity are required for normal egg development, ovariole number, and fecundity

(Green and Extavour, 2014; Grönke et al., 2010; Mendes and Mirth, 2016; Richard et al., 2005).

In line with these findings, w1118 female flies reared on 2Y produced significantly more eggs com-

pared with genotype-matched females cultured on 1Y (Figure 6A). This aligns with findings from

many studies showing that increased nutrients promote fertility (Green and Extavour, 2014;

Grönke et al., 2010; Mendes and Mirth, 2016; Richard et al., 2005) and suggests that the ability

to augment IIS activity and body size in response to a protein-rich diet allows females to maximize

fecundity in conditions where nutrients are plentiful. To test this, we measured the number of eggs

produced by InRE19/+ females and w1118 controls raised in either 1Y or 2Y. In contrast to w1118

females, the nutrient-dependent increase in egg production was absent in InRE19/+ females

(Figure 6A). Similarly, there was no diet-induced increase in egg production in dilp2 mutant females

(Figure 6B). These findings suggest that the nutrient-dependent increase in IIS activity and body size

are important to promote fecundity in a protein-rich context. This result aligns with findings from a

previous study showing that lifetime fecundity was significantly lower in dilp2 mutants raised in a

yeast-rich diet (Grönke et al., 2010). To extend our findings beyond dilp genes, we next examined

fecundity in females with an RNAi-mediated reduction in sun. We found that the nutrient-dependent

increase in egg production in r4>UAS-sun-RNAi females was eliminated, in contrast to the robust

diet-induced increase in fecundity in r4>+ and +>UAS-sun-RNAi control females (Figure 6C).

Together, this data suggests that dilp2 and fat body-derived sun play a role in maximizing IIS activity

and body size to promote egg production in a protein-rich context. Future studies will need to

determine which aspect of ovary development is affected by these genetic manipulations

(Green and Extavour, 2014; Grönke et al., 2010; Mendes and Mirth, 2016; Richard et al., 2005),

whether this phenotype is specific to dilp2, and whether the effects require InR function in the ovary

or in other tissues.

In males, which have a reduced ability to augment body size in response to a protein-rich diet,

we also investigated the relationship between nutrient content, body size, and fertility. When we

compared fertility in w1118 males reared on 1Y compared with males raised on 2Y, we found no sig-

nificant difference in the number of offspring produced (Figure 6D). Thus, neither male body size

nor fertility were enhanced by rearing flies in a protein-rich environment. Given that previous studies

suggest that a larger body size in males promotes reproductive success (Ewing, 1961;

Partridge et al., 1987; Partridge and Farquhar, 1983), we next asked whether genetic manipula-

tions that augment male body size also increased fertility. One way to augment male body size in 1Y

is heterozygous loss of phosphatase and tensin homolog (pten, FBgn0026379; pten2L100/+) (Fig-

ure 1—figure supplement 7B). Interestingly, fertility was not significantly higher in pten2L100/+

males compared with w1118 controls raised in 1Y (Figure 6D), suggesting that a larger body size

does not always augment fertility in males. Similarly, when we measured fertility in r4>UAS-sun

males, which are larger than control males (Figure 3—figure supplement 7B), fertility was not signif-

icantly different from r4>+ and +>UAS-sun control males (Figure 6E). Interestingly, when we exam-

ined fertility in pten2L100/+ and r4>UAS-sun males in 2Y, fertility was significantly increased in

pten2L100/+ males compared with genotype-matched controls cultured in 1Y (Figure 6D), an obser-

vation we did not repeat in r4>UAS-sun males (Figure 6E). Ultimately, this less robust and more

complex relationship between body size and fertility in males suggests a possible explanation for

their decreased nutrient-dependent body size plasticity compared with females.

Discussion
In many animals, body size plasticity in response to environmental factors such as nutrition differs

between the sexes (Fairbairn, 1997). While past studies have identified mechanisms underlying

nutrient-dependent growth in a mixed-sex population, and revealed factors that promote sex-spe-

cific growth in a single nutritional context, the mechanisms underlying the sex difference in nutrient-

dependent body size plasticity remain unknown. In this study, we showed that females have higher

phenotypic plasticity compared with males when reared on a protein-rich diet, and elucidated the

molecular mechanisms underlying the sex difference in nutrient-dependent body size plasticity in

this context. Our data suggests a model in which high levels of dietary protein augment female

body size by stimulating an increase in IIS activity, where we identified a requirement for dilp2 and
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Figure 6. Increased nutrient-dependent body size plasticity in females promotes fertility. (A) In control w1118 females, there was a significant increase in

the number of eggs laid by females raised on a protein-rich diet (2Y) compared with females reared on a diet with half the protein (1Y) (p=0.0009;

Student’s t test); however, there was no significant difference in the number of eggs laid between InRE19/+ females cultured on 2Y compared with

genotype-matched females raised on 1Y (p=0.617; Student’s t test). n = 19–20 biological replicates. (B) In control w1118 females, there was a significant

increase in the number of eggs laid by females raised on 2Y compared with females cultured on 1Y (p<0.0001; Student’s t test); however, there was no

significant difference in the number of eggs laid between dilp2 mutant females cultured on 2Y compared with females raised on 1Y (p=0.4105;

Student’s t test). n = 28–30 biological replicates. (C) In control r4>+ and +>UAS-sun-RNAi females, there was a significant increase in the number of

eggs laid by females raised on 2Y compared with control females cultured on 1Y (p<0.0001 for both genotypes; Student’s t test). In r4>UAS-sun-RNAi

females, the number of eggs laid by females cultured on 2Y was lower than females raised on 1Y (p=0.0243; Student’s t test). n = 20 biological

replicates. (D) In control w1118 males, there was no significant difference in the number of offspring produced between a 1Y and 2Y diet (p=0.3662;

Student’s t test). There was also no significant difference in the number of offspring produced between control w1118 males and males heterozygous for

a loss-of-function allele of phosphatase and tensin homolog (pten; genotype pten2L100/+) raised on 1Y (p=0.4003; Student’s t test). Unlike control males,

pten2L100/+ males reared on 2Y produced significantly more offspring than genotype-matched males raised on 1Y (p=0.0137; Student’s t test). n = 11

biological replicates. (E) In control r4>+ and +>UAS-sun and r4>UAS-sun males, there was no significant effect on the number of offspring produced

between a 1Y and 2Y diet (p=0.9222, 0.0595, and 0.32 respectively; Student’s t test). There was also no significant difference in the number of offspring

produced between control r4>+, +>UAS-sun males and r4>UAS-sun males raised on 1Y (p=0.9723 and p=0.9969 respectively; one-way ANOVA

Figure 6 continued on next page
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sun in promoting this nutrient-dependent increase in IIS activity. Importantly, we discovered tra as

the factor responsible for stimulating sun mRNA levels and IIS activity in a protein-rich context,

revealing a novel role for sex determination gene tra in regulating phenotypic plasticity. Mechanisti-

cally, tra enhanced sun mRNA levels and body size in protein-rich conditions via transcriptional coac-

tivator Srl, identifying Srl as one link between tra and the nutrient-dependent regulation of gene

expression. Together, these findings provide new insight into how Drosophila females achieve

increased nutrient-dependent body size plasticity compared with males.

One key feature of this increased phenotypic plasticity in females was a female-biased increase in

IIS activity in a protein-rich context. This reveals a previously unrecognized sex difference in the cou-

pling between IIS activity and dietary protein. In females, there was tight coupling between

increased nutrient input and enhanced IIS activity across a wide protein concentration range in all

control genotypes. In males, this close coordination between dietary protein and IIS activity was

weaker in a protein-rich context. Our data shows that sex-biased nutrient-dependent change to IIS

activity during development is physiologically significant, as it supports an increased rate of growth

and consequently larger body size in females but not in males raised on a protein-rich diet. In future

studies, it will be important to determine whether the sex difference in coupling between nutrients

and IIS activity exists in other contexts. For example, previous studies on the extension of life span

by dietary restriction have shown that male and female flies differ in the concentration of nutrients

that produces the maximum life span extension, and in the magnitude of life span extension pro-

duced by dietary restriction (Magwere et al., 2004; Regan et al., 2016). Similar sex-specific effects

of dietary restriction and reduced IIS on life span have also been observed in mice

(Holzenberger et al., 2003; Kane et al., 2018; reviewed in Regan and Partridge, 2013;

Selman et al., 2008) and humans (Van Heemst et al., 2005). Future studies will be needed to deter-

mine whether a male-female difference in coupling between nutrients and IIS activity account for

these sex-specific life span responses to dietary restriction. Indeed, given that sex differences have

been reported in the risk of developing diseases associated with overnutrition and dysregulation of

IIS activity such as obesity and type 2 diabetes (Kautzky-Willer et al., 2016; Mauvais-Jarvis, 2018;

Tramunt et al., 2020), more detailed knowledge of the male-female difference in coupling between

nutrients and IIS activity in other models may provide insights into this sex-biased risk of disease.

In addition to revealing a sex difference in the nutrient-dependent upregulation of IIS activity, our

data identified a female-specific requirement for dilp2 and sun in mediating the diet-induced

increase in IIS activity in a protein-rich context. While previous studies have shown that both dilp2

and sun positively regulate body size (Ikeya et al., 2002; Grönke et al., 2010; Delanoue et al.,

2016), we describe new sex-specific roles for dilp2 and sun in nutrient-dependent phenotypic plas-

ticity. Elegant studies have shown that sun is a secreted factor that stimulates Dilp2 release from the

IPCs (Delanoue et al., 2016). Together with our data, this suggests a model in which females are

able to achieve a larger body size in a protein-rich diet because they have the ability to upregulate

sun mRNA levels, whereas males do not. Indeed, we show that higher sun mRNA levels are sufficient

to augment body size. This model aligns well with findings from two previous studies on Dilp2 secre-

tion in male and female larvae. The first study, which raised larvae on a protein-rich diet equivalent

to the 2Y diet, found increased Dilp2 secretion in females compared to males (Rideout et al., 2015).

The second study, which raised larvae on a diet equivalent to the 1Y diet, found no sex difference in

Dilp2 secretion and no effects of dilp2 loss on body size (Sawala and Gould, 2017). Thus, while

these previous studies differed in their initial findings on a sex difference in Dilp2 secretion, our data

reconcile these minor differences by identifying context-dependent effects of dilp2 on body size. It

is important to note that absolute confirmation of a sex difference in hemolymph Dilp2 levels will be

needed in future studies because the body size plasticity defects in the dilp2-HF strain precluded its

use as a tool to quantify circulating Dilp2 levels in our study. Future studies will also need to deter-

mine whether these sex-specific and context-dependent effects of dilp2 are observed in other phe-

notypes regulated by dilp2 and other dilp genes. For example, flies carrying mutations in dilp genes

show changes to aging, metabolism, sleep, and immunity, among other phenotypes (Bai et al.,

Figure 6 continued

followed by Tukey HSD test). n = 8–10 groups of 10 flies. * indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001, **** indicates p<0.0001; ns

indicates not significant; error bars indicate SEM.
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2012; Brown et al., 2020; Cong et al., 2015; Grönke et al., 2010; Liu et al., 2016; Nässel and

Vanden Broeck, 2016; Okamoto et al., 2009; Okamoto and Nishimura, 2015; Post et al., 2018;

Post et al., 2019; Slaidina et al., 2009; Stafford et al., 2012; Zhang et al., 2009; Brogiolo et al.,

2001; Cognigni et al., 2011; Linneweber et al., 2014; Semaniuk et al., 2018; Suzawa et al., 2019;

Ugrankar et al., 2018). Further, it will be interesting to determine whether the sex-specific regula-

tion of sun is observed in any other contexts, and whether it will influence sex differences in pheno-

types associated with altered IIS activity, such as life span.

While our findings on sun and dilp2 provide mechanistic insight into the molecular basis for the

larger body size of females reared on a protein-rich diet, a key finding from our study was the identi-

fication of sex determination gene tra as the factor that confers plasticity to females. Normally, nutri-

ent-dependent body size plasticity is higher in females than in males in a protein-rich context. In

females lacking a functional Tra protein, however, this increased nutrient-dependent body size plas-

ticity was abolished. In males, which normally lack a functional Tra protein, ectopic Tra expression

conferred increased nutrient-dependent body size plasticity. While a previous study showed that on

the 2Y diet Tra promotes Dilp2 secretion (Rideout et al., 2015), our current study extends this find-

ing in two ways: by identifying sun as one link between Tra, Dilp2, and changes to IIS activity; and by

showing that Tra regulates sun mRNA via conserved transcriptional coactivator Srl. While previous

studies discovered Srl as the factor that promotes sun mRNA levels in response to dietary protein in

a mixed-sex larval population (Delanoue et al., 2016), our findings reveal a previously unrecognized

sex-specific role for Srl in regulating transcription. Because loss of Tra reduces Srl transcriptional

activity, this new link between Tra and Srl suggests an additional way in which Tra may impact gene

expression beyond its canonical downstream targets dsx and fru. While this builds on recent studies

that reveal a number of additional Tra-regulated genes (Clough et al., 2014; Hudry et al., 2016;

Hudry et al., 2019), it will be important to determine whether these additional Tra-regulated genes

including sun represent direct targets of Tra/Srl. Future studies will also be needed to elucidate how

Tra impacts Srl transcriptional activity in a context-dependent manner. However, uncovering a con-

nection between a sex determination gene and a key regulator of genes involved in mitochondrial

function suggests an additional mechanism that may contribute to sex differences in phenotypes

affected by mitochondrial function (e.g. lifespan) (Tiefenböck et al., 2010; Cho et al., 2011;

Tower, 2015; Tower, 2017). In addition, it will be critical to explore how the presence of Tra allows

an individual to couple dietary protein with body size. Because the tra locus is regulated both by

alternative splicing and transcription (Belote et al., 1989; Boggs et al., 1987; Grmai et al., 2018;

Inoue et al., 1990; Sosnowski et al., 1989), and Tra protein is regulated by phosphorylation

(Du et al., 1998), our study highlights the importance of additional studies on the regulation of the

tra genomic locus and Tra protein throughout development to gain mechanistic insight into its

effects on nutrient-dependent body size plasticity.

While the main outcome of our work was to reveal the molecular mechanisms that regulate the

sex difference in nutrient-dependent body size plasticity, we also provide some insight into how

genes that contribute to nutrient-dependent body size plasticity affect female fecundity and male

fertility. Our findings align well with previous studies demonstrating that increased nutrient availabil-

ity during development and a larger female body size confers increased ovariole number and fertility

(Green and Extavour, 2014; Klepsatel et al., 2020; Mendes and Mirth, 2016; Robertson, 1957a;

Robertson, 1957b), as females lacking either dilp2 or fat body-derived sun were unable to augment

egg production in a protein-rich context. Given that previous studies demonstrate IIS activity influen-

ces germline stem cells in the ovary in adult flies (Hsu et al., 2008; Hsu and Drummond-Barbosa,

2009; Kao et al., 2015; LaFever and Drummond-Barbosa, 2005; Lin and Hsu, 2020; Su et al.,

2018), there is a clear reproductive benefit that arises from the tight coupling between nutrient

availability, IIS activity, and body size in females. In males, however, the relationship between fertility

and body size remains less clear. While larger males are more reproductively successful both in the

wild and in laboratory conditions (Ewing, 1961; Partridge and Farquhar, 1983), other studies

revealed that medium-sized males were more fertile than both larger and smaller males

(Lefranc and Bundgaard, 2000). Given that our study revealed no significant increase in the number

of progeny produced by larger males, the fertility benefits that accompany a larger body size in

males may be context-dependent. For example, a larger body size increases the ability of males to

outcompete smaller males (Flatt, 2020; Partridge et al., 1987; Partridge and Farquhar, 1983).

Thus, in crowded situations, a bigger body may provide significant fertility gains. On the other hand,
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in conditions where nutrients are limiting, an imbalance in the allocation of energy from food to

growth rather than to reproduction may decrease fertility (Bass et al., 2007; Camus et al., 2017;

Jensen et al., 2015; Wood et al., 2018). Future studies will need to resolve the relationship

between body size and fertility in males, as this will suggest the ultimate reason(s) for the sex differ-

ence in nutrient-dependent body size plasticity.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Genetic reagent
(Drosophila
melanogaster)

Canton-S Bloomington
Drosophila stock
center

BDSC: 64349

Genetic reagent
(Drosophila
melanogaster)

w1118 Bloomington
Drosophila stock
center

BDSC: 3605

Genetic reagent
(Drosophila
melanogaster)

tra1 Bloomington
Drosophila stock
center

BDSC: 675

Genetic reagent
(Drosophila
melanogaster)

Df(3L)st-j7 Bloomington
Drosophila stock
center

BDSC: 5416

Genetic reagent
(Drosophila
melanogaster)

srl1 Bloomington
Drosophila stock
center

BDSC: 14965

Genetic reagent
(Drosophila
melanogaster)

InRE19 Bloomington
Drosophila stock
center

BDSC: 9646

Genetic reagent
(Drosophila
melanogaster)

TRiP Control Bloomington
Drosophila stock
center

BDSC: 36303

Genetic reagent
(Drosophila
melanogaster)

UAS-dilp2-RNAi Bloomington
Drosophila stock
center

BDSC: 32475

Genetic reagent
(Drosophila
melanogaster)

UAS-upd2-RNAi Bloomington
Drosophila stock
center

BDSC: 33949

Genetic reagent
(Drosophila
melanogaster)

UAS-traF Bloomington
Drosophila stock
center

BDSC: 4590

Genetic reagent
(Drosophila
melanogaster)

UAS-rheb Bloomington
Drosophila stock
center

BDSC: 9688

Genetic reagent
(Drosophila
melanogaster)

UAS-cyt-c-p-RNAi Bloomington
Drosophila stock
center

BDSC: 64898

Genetic reagent
(Drosophila
melanogaster)

UAS-Idh-RNAi Bloomington
Drosophila stock
center

BDSC: 41708

Genetic reagent
(Drosophila
melanogaster)

mth1 Bloomington
Drosophila stock
center

BDSC: 27896

Genetic reagent
(Drosophila
melanogaster)

y1,w1 Bloomington
Drosophila stock
center

BDSC: 1495

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Genetic reagent
(Drosophila
melanogaster)

UAS-sun-RNAi Vienna
Drosophila
resource center

VDRC: GD23685

Genetic reagent
(Drosophila
melanogaster)

UAS-Gbp1-RNAi Vienna
Drosophila
resource center

VDRC: KK108755

Genetic reagent
(Drosophila
melanogaster)

UAS-Gbp2-RNAi Vienna
Drosophila
resource center

VDRC: GD16696

Genetic reagent
(Drosophila
melanogaster)

UAS-CCHa2-RNAi Vienna
Drosophila
resource center

VDRC: KK102257

Genetic reagent
(Drosophila
melanogaster)

UAS-mth-RNAi Vienna
Drosophila
resource center

VDRC: KK106399

Genetic reagent
(Drosophila
melanogaster)

dilp2 Grönke et al.,
2010

Genetic reagent
(Drosophila
melanogaster)

pten2L100 Oldham et al.,
2002

Genetic reagent
(Drosophila
melanogaster)

UAS-sun Delanoue et al.,
2016

Genetic reagent
(Drosophila
melanogaster)

traKO Hudry et al.,
2016

Genetic reagent
(Drosophila
melanogaster)

traF K-IN Hudry et al.,
2019

Genetic reagent
(Drosophila
melanogaster)

y,w;;ilp2HF Park et al.,
2014

Genetic reagent
(Drosophila
melanogaster)

tGPH (GFP-PH) Britton et al.,
2002

Genetic reagent
(Drosophila
melanogaster)

da-GAL4 Bloomington
Drosophila stock
center

BDSC: 55849 Note. Discontinued stock, equivalent stocks available

Genetic reagent
(Drosophila
melanogaster)

r4-GAL4 Bloomington
Drosophila stock
center

BDSC: 33832

Genetic reagent
(Drosophila
melanogaster)

cg-GAL4 Bloomington
Drosophila stock
center

BDSC: 7011

Genetic reagent
(Drosophila
melanogaster)

elav-GAL4 Bloomington
Drosophila stock
center

BDSC: 458

Genetic reagent
(Drosophila
melanogaster)

dilp2-GAL4 Rulifson et al.,
2002

Antibody Anti-sun guinea pig polyclonal Delanoue et al.,
2016

(1:50)

Antibody Anti-Cv-d guinea pig polyclonal Palm et al.,
2012

(1:1000)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Antibody Anti-pS6k rabbit polyclonal Cell Signaling:
9209

(1:1000)

Antibody Anti-Actin mouse monoclonal Santa Cruz: 8432 (1:1000)

Fly husbandry
Larvae were raised at a density of 50 animals per 10 ml food at 25˚C on Drosophila growth medium

consisting of: 0.5x: 5.125 g/L sucrose, 17.725 g/L D-glucose, 12.125 g/L cornmeal, 11.325 g/L yeast,

4.55 g/L agar, 0.5 g CaCl2.2H2O, 0.5 g MgSO4.7H2O, 11.77 mL acid mix (propionic acid/phosphoric

acid). 1x: 10.25 g/L sucrose, 25.45 g/L D-glucose, 24.25 g/L cornmeal, 22.65 g/L yeast, 4.55 g/L

agar, 0.5 g CaCl2.2H2O, 0.5 g MgSO4.7H2O, 11.77 mL acid mix (propionic acid/phosphoric acid).

2x: 20.5 g/L sucrose, 70.9 g/L D-glucose, 48.5 g/L cornmeal, 45.3 g/L yeast, 4.55 g/L agar, 0.5 g

CaCl2.2H2O, 0.5 g MgSO4.7H2O, 11.77 mL acid mix (propionic acid/phosphoric acid). 1Y: 20.5 g/L

sucrose, 70.9 g/L D-glucose, 48.5 g/L cornmeal, 22.65 g/L yeast, 4.55 g/L agar, 0.5 g CaCl2.2H2O,

0.5 g MgSO4.7H2O, 11.77 mL acid mix (propionic acid/phosphoric acid). 2Y: 20.5 g/L sucrose, 70.9

g/L D-glucose, 48.5 g/L cornmeal, 45.3 g/L yeast, 4.55 g/L agar, 0.5 g CaCl2.2H2O, 0.5 g

MgSO4.7H2O, 11.77 mL acid mix (propionic acid/phosphoric acid). Details for diets manipulating

dietary sugar (1S) and calorie content (2Y calories) are found in Supplementary file 3. Our diets

were also deposited in the Drosophila Dietary Composition Calculator (DDCC) (Lesperance and

Broderick, 2020). Animals were collected as indicated in figure legends, and sexed by gonad size.

When gonad size could not be used to determine sex (e.g. tra mutants, da-GAL4>UAS-traF), chro-

mosomal females were identified by the presence of an X-linked GFP. Adult flies were maintained at

a density of 20 flies per vial in single-sex groups.

Fly strains
The following fly strains from the Bloomington Drosophila Stock Center were used: Canton-S

(#64349), w1118 (#3605), tra1 (#675), Df(3L)st-j7 (#5416), srl1 (#14965), InRE19 (#9646), TRiP control

(#36303), UAS-ilp2-RNAi (#32475), UAS-upd2-RNAi (#33949), UAS-traF (#4590), y,w (#1495), da-

GAL4 (ubiquitous), r4-GAL4 (fat body), cg-GAL4 (fat body), dilp2-GAL4 (IPCs), elav-GAL4 (post-

mitotic neurons), UAS-rheb (#9688), UAS-cyt-c-p-RNAi (#64898), UAS-Idh-RNAi (#41708), mth1

(#27896). The following fly strains from the Vienna Drosophila Resource Center were used in this

study: UAS-sun-RNAi (GD23685), UAS-Gbp1-RNAi (KK108755) UAS-Gbp2-RNAi (GD16696), UAS-

CCHa2-RNAi (KK102257), UAS-mth-RNAi (KK106399). Additional fly strains include: dilp2

(Grönke et al., 2010), pten2L100, UAS-sun, tGPH (GFP-PH), traKO (Hudry et al., 2016), traF

K-IN(Hudry et al., 2019), y,w;;ilp2HF (Park et al., 2014). All genotypes used in the manuscript are

listed in Supplementary file 4.

Body size
Pupal volume was measured in male and female pupae as previously described (Delanoue et al.,

2010; Marshall et al., 2012; Rideout et al., 2012; Rideout et al., 2015). For adult weight, 5-day-

old virgin male and female flies were weighed in groups of 10 in 1.5 ml microcentrifuge tubes on an

analytical balance. Wing length was measured as previously described (Garelli et al., 2012).

Developmental timing
Larvae were placed into the experimental diet ±2 hr post-hatching. Percent pupation was calculated

by comparing the number of pupae at 12 hr intervals to the total pupae in the vial after all animals

pupated.

Feeding behavior
Feeding behavior was quantified in sexed larvae by counting mouth hook contractions for 30 s.
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Protease feeding experiments
We treated larvae with a broad-spectrum protease inhibitor (PIC; Sigma-Aldrich #P2714) or a serine

protease-specific inhibitor (AEBSF; Sigma-Aldrich #A8456) by adding the inhibitors to the food at

final concentrations of 100 ml of 1x PIC per L, and 4 mM AEBSF as previously described

(Erkosar et al., 2015).

RNA extraction and cDNA synthesis
One biological replicate represents ten larvae frozen on dry ice and stored at �80˚C. Each experi-

ment contained three to four biological replicates per sex, per genotype, and per diet, and each

experiment was repeated twice. RNA was extracted using Trizol (Thermo Fisher Scientific;

15596018) according to manufacturer’s instructions, as previously described (Marshall et al., 2012;

Rideout et al., 2012; Rideout et al., 2015; Wat et al., 2020). cDNA synthesis was performed using

the QuantiTect Reverse Transcription Kit according to manufacturer’s instructions (Qiagen; 205314).

Quantitative real-time PCR (qPCR)
qPCR was performed as previously described (Rideout et al., 2012; Rideout et al., 2015;

Wat et al., 2020). To determine changes in Foxo target gene expression, we plotted and analyzed

the fold change in mRNA levels for each of three known Foxo target genes (InR, bmm, and 4E-BP)

together to quantify IIS activity in each sex and dietary context, an established approach to analyze

co-regulated genes (Blaschke et al., 2013; Hudry et al., 2019). A complete primer list is available in

Supplementary file 5.

Preparation of protein extract
Dissected fat bodies were prepared for SDS-PAGE by homogenizing sets of ten larval fat bodies 108

hr after egg laying in an appropriate volume of lysis buffer (20 mM Hepes (pH 7.8), 450 mM NaCl,

25% glycerol, 50 mM NaF, 0.2 mM EDTA, 1 mM DTT, 1� Protease Inhibitor Cocktail (Roche,

04693124001), 1x Phosphatase Inhibitor Cocktail (Roche, 4906845001) using the Omni Bead Ruptor

(VWR). Cellular fragments were pelleted, and supernatant collected by centrifugation for 5 min at

10,000 rpm at 4˚C (Thermo Scientific, Heraeus Pico 21 centrifuge). Protein concentration was deter-

mined by Bradford assay (Bio-Rad #550–0205) prior to SDS-PAGE).

SDS-PAGE and Western blotting
A total of 20 mL of sample with 20 mg protein was loaded into each well. Proteins were separated

using a 12% gel SDS-PAGE gel in SDS running buffer, and transferred to a nitrocellulose membrane

(Bio-Rad) for 2 hr at 40 V on ice. Membranes were incubated for 1 hr in blocking buffer (5% milk or

5% BSA in TBST 0.1%) then incubated with primary antibodies overnight at 4˚C. Membranes were

washed (3 � 2 min) in TBST 0.1% then probed with secondary antibodies in blocking buffer for 1 hr

at room temperature. After washes (3 � 2 min, 2 � 15 min, 1 � 5 min) in TBST 0.1%, membranes

were treated with Pierce ECL (Thermo Scientific #32134) or Immobilon Forte (Millipore

#WBLUF0100). Images were quantified using Image Studio (LI-COR). Primary antibodies: Anti-pS6K

(#9209; Cell Signalling), and anti–actin (#8432; Santa Cruz), were used at 1:1000. HRP-conjugated

secondary antibodies were used at 1:5000 for pS6k (anti-rabbit #65–6120; Invitrogen) and 1:3000 for

actin (anti-mouse #7076; Cell Signalling).

Hemolymph Western blotting
Hemolymph Western blotting was performed as previously described (Delanoue et al., 2016).

Briefly, hemolymph from 40 larvae was collected in 40 mL of PBS with protease and phosphatase

inhibitors (Roche 04693124001, Roche 4906845001), and hemocytes were removed by centrifuga-

tion according to the published protocol (Delanoue et al., 2016). Antibody concentrations used to

detect hemolymph proteins were 1:50 for anti-Sun and 1:1000 for anti-Cv-d. Anti-guinea pig HRP-

conjugated secondary was used at 1:2000.

Fecundity and fertility
For female fecundity, single 6-day-old virgin female flies raised as indicated were crossed to three

age-matched CS virgin males for a 24 hr mating period. Flies were transferred to fresh food vials
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with blue 2Y food to lay eggs. The number of eggs laid over 24 hr was quantified. For male fertility,

single 6-day-old virgin males were paired with three 6-day-old virgin CS females to mate, and

females were allowed to lay eggs for 24 hr. The number of progeny was quantified by counting via-

ble pupae.

Microscopy
GFP-PH larvae were picked into 1Y or 2Y food. Larvae were dissected 108 hr after egg laying (AEL)

and inverted carcasses were fixed for 30 min in 4% paraformaldehyde in phosphate buffered saline

(PBS) at room temperature. Carcasses were rinsed twice with PBS, once in 0.1% Triton-X in PBS

(PBST) for 5 min, then incubated with Hoechst (5 mg/mL, Life Technologies H3570), , and phalloidin

fluor 647 (1:1000, Abcam ab176759) in PBST for 40 min. The stained carcasses were washed with

PBS and mounted in SlowFade Diamond (Thermo Fisher Scientific S36972). Images were acquired

with a Leica SP5 (20X). Mean GFP intensity was quantified at the cell membrane (marked by phalloi-

din) and in the cytoplasm using Fiji (Schindelin et al., 2012). Three cells per fat body were mea-

sured, and at least five fat bodies per sex and per diet were measured.

Statistics and data presentation
Statistical analyses and data presentation were carried out using Prism GraphPad 6 (GraphPad Prism

version 8.4.3 for Mac OS X). Statistical tests are indicated in figure legends and all p-values are listed

in Supplementary file 1.
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Jünger MA, Rintelen F, Stocker H, Wasserman JD, Végh M, Radimerski T, Greenberg ME, Hafen E. 2003. The
Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced
insulin signaling. Journal of Biology 2:20. DOI: https://doi.org/10.1186/1475-4924-2-20, PMID: 12908874

Kane AE, Sinclair DA, Mitchell JR, Mitchell SJ. 2018. Sex differences in the response to dietary restriction in
rodents. Current Opinion in Physiology 6:28–34. DOI: https://doi.org/10.1016/j.cophys.2018.03.008,
PMID: 31231711

Kang P, Chang K, Liu Y, Bouska M, Birnbaum A, Karashchuk G, Thakore R, Zheng W, Post S, Brent CS, Li S, Tatar
M, Bai H. 2017. Drosophila kruppel homolog 1 represses lipolysis through interaction with dFOXO. Scientific
Reports 7:16369. DOI: https://doi.org/10.1038/s41598-017-16638-1, PMID: 29180716

Kao SH, Tseng CY, Wan CL, Su YH, Hsieh CC, Pi H, Hsu HJ. 2015. Aging and insulin signaling differentially
control normal and tumorous germline stem cells. Aging Cell 14:25–34. DOI: https://doi.org/10.1111/acel.
12288, PMID: 25470527

Kautzky-Willer A, Harreiter J, Pacini G. 2016. Sex and gender differences in risk, pathophysiology and
complications of type 2 diabetes mellitus. Endocrine Reviews 37:278–316. DOI: https://doi.org/10.1210/er.
2015-1137, PMID: 27159875

Kim J, Neufeld TP. 2015. Dietary sugar promotes systemic TOR activation in Drosophila through AKH-dependent
selective secretion of Dilp3. Nature Communications 6:6846. DOI: https://doi.org/10.1038/ncomms7846,
PMID: 25882208
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Meschi E, Léopold P, Delanoue R. 2019. An EGF-Responsive neural circuit couples insulin secretion with nutrition
in Drosophila. Developmental Cell 48:76–86. DOI: https://doi.org/10.1016/j.devcel.2018.11.029,
PMID: 30555002

Millington JW, Brownrigg GP, Basner-Collins PJ, Sun Z, Rideout EJ. 2021. Genetic manipulation of insulin/insulin-
like growth factor signaling pathway activity has sex-biased effects on Drosophila body size. G3 Genes|
Genomes|Genetics . DOI: https://doi.org/10.1093/g3journal/jkaa067

Millington JW, Rideout EJ. 2018. Sex differences in Drosophila development and physiology. Current Opinion in
Physiology 6:46–56. DOI: https://doi.org/10.1016/j.cophys.2018.04.002

Mirth CK, Piper MD. 2017. Matching complex dietary landscapes with the signalling pathways that regulate life
history traits. Current Opinion in Genetics & Development 47:9–16. DOI: https://doi.org/10.1016/j.gde.2017.
08.001, PMID: 28822885

Mirth CK, Riddiford LM. 2007. Size assessment and growth control: how adult size is determined in insects.
BioEssays 29:344–355. DOI: https://doi.org/10.1002/bies.20552, PMID: 17373657

Mirth CK, Shingleton AW. 2012. Integrating body and organ size in Drosophila: recent advances and outstanding
problems. Frontiers in Endocrinology 3:49. DOI: https://doi.org/10.3389/fendo.2012.00049, PMID: 22654869
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