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4-Nitro-3-phenylphenol has both androgenic and anti-androgenic-like 
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Abstract.  To investigate the effect of endocrine disruption of 4-nitro-3-phenylphenol (PNMPP) on immature male Wistar-
Imamichi rats, the rat pituitary was exposed to PNMPP (10–5–10–9 M) for 24 h with or without gonadotropin-releasing 
hormone (GnRH) in experiment I. In addition, the Leydig cells (10–5–10–9 M) were exposed to PNMPP for 24 h with or 
without human chronic gonadotropin (hCG) in experiment II. Our results showed that the PNMPP at 10–5–10–7 M suppressed 
follicle-stimulating hormone (FSH) and luteinizing hormone (LH) productions from GnRH-stimulated pituitary cells. At the 
same time, PNMPP 10–5–10–7 M induced an increase in testosterone production from the Leydig cells treated with or without 
hCG. Based on our results, it can be concluded that that PNMPP might have both androgen agonist action by decreasing FSH 
and LH production in the pituitary and anti-androgenic action by increasing testosterone production in the Leydig cell.
Key words: 4-Nitro-3-phenylphenol, Gonadotropins, Leydig cell, Pituitary, Testosterone

 (J. Reprod. Dev. 61: 134–137, 2015) 

There is currently increased interest in the endocrine disruption of 
diesel exhaust (DE) and diesel exhaust particles (DEPs) [1, 2]. 

Many studies have demonstrated that DE and DEPs induce problems 
of organs and hormones related reproduction in both humans [3] 
and animals [4–10].

It has previously been reported that 4-nitro-3-phenylphenol 
(PNMPP) isolated from DEPs had estrogenic action and affected 
reproductive function. Injection of PNMPP into ovariectomized 
immature female rats induced an increase in uterine weight, oxytocin-
induced myometrium contractility [11], and a significant increase in the 
uterine luminal epithelium [12]. In in vitro studies, PNMPP provoked 
a proliferation of breast cancer cell line MCF-7 [13] and decreased 
the estradiol concentration but did not affect testosterone and cortisol 
secretion in human adrenal H295R cells [14]. Furthermore, PNMPP 
had an anti-androgenic effect by inhibiting 5α-dihydrotestosterone 
(DHT) binding to the androgen receptor (AR) [1].

We hypothesized that PNMPP might affect hormone synthesis 
and secretion in reproduction-related organs. Accordingly, this study 
investigated the effect of PNMPP on gonadotropin synthesis in the 

pituitary and testosterone synthesis on Leydig cells in cell cultures.

Materials and Methods

Chemicals
4-Nitro-3-phenylphenol (PNMPP), as shown in Fig. 1, was 

synthesized by the method described previously [2].

Animals
Immature male Wistar-Imamichi rats at 28 days of age were 

purchased from the Imamichi Institute for Animal Reproduction, 
Ibaraki, Japan. They were maintained under conditions of controlled 
lighting (14 h: light 10 h dark, lights on 0500 h), temperature (22 
± 2 C), and humidity (50 ± 5%). Food (CE-2 commercial diet; 
Clea Japan, Tokyo, Japan) and water were available ad libitum. All 
procedures were carried out in accordance with guidelines established 
by the Tokyo University of Agriculture and Technology, for use of 
laboratory animals.

Experimental procedure
The rats were decapitated, and the anterior pituitary gland and 

Leydig cells were removed immediately.

Experiment I: Effect of PNMPP on hormone secretion from 
the anterior pituitary

The anterior pituitaries were placed in cold DMEM medium 
containing 10 g/l M5M, 6 g/l HEPES, 10% NaHCO3, and 10 ml/l 
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MEM nonessential amino acid without enzymes. The pituitaries were 
minced and incubated with Dulbecco’s Modified Eagle’s Medium 
(DMEM, Invitrogen, Burlington, ON, Canada) with 2.8 mg/ml 
collagenase, 0.8 mg/ml hyaluronidase, 8 mg/ml bovine serum albumin 
(BSA), and 200 U/ml DNAse in a shaking incubator (150 cycles/min) 
at 34 C for approximately 20 min. Minced pituitary was washed by 
centrifugation at 1,500 rpm for 5 min at room temperature and then 
resuspended with DMEM with 10% Daigo’s GF21 solution (inhibin-
free serum; Wako Pure Chemical Industries, Osaka, Japan), 100 U/
ml penicillin and 100 µg/ml streptomycin (Invitrogen, Burlington, 
ON, Canada). The pituitary suspension was cultured and incubated 
for 78 h in 96-well culture plates at 37 C under an atmosphere of 
95% air and 5% CO2. Then the culture media were changed, and the 
cells were exposed to PNMPP (10–9–10–5 M) dissolved in media. At 
24 h after exposure to PNMPP, the cells were stimulated with and 
without 10 nm gonadotropin-releasing hormone (GnRH); National 
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK, 
Torrance, CA, USA) for 4 h and then collected. The culture media 
were subsequently stored at –20 C until assayed for FSH and LH.

Experiment II: Effect of PNMPP on hormone secretion from 
the Leydig cells

The testes were trimmed free of fat and decapsulated. Then the 
testicular artery was removed from the decapsulated testes to eliminate 
red blood cells. After that, the testes were dissociated by incubation 
in M199 medium (Gibco®) containing 0.71 g/l sodium bicarbonate, 
2.21 g/l HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid), 0.1% BSA, and 25 mg/l soybean trypsin inhibitor (STI), pH 
7.4, with 0.25 mg/ml of collagenase (Worthington Biochemical, 
Freehold, NJ, USA) and then horizontal shaking (90 cycles/min) at 34 
C for approximately 10–20 min. After dissociation, the seminiferous 
tubules were removed by filtration through 100 µm nylon mesh. The 
filtrated was centrifuged at 1,500 rpm for 5 min at room temperature 
to wash the dissociated cells. To separate the Leydig cells, the cells 
were mixed with a Percoll suspension and centrifuged at 3,000 rpm 
for 30 min at room temperature. The Leydig cells were resuspended 
in M199 medium with 1% fetal bovine serum (FBS) and without 
STI and collagenase enzymes. The Leydig cells in the medium (105 

cells/well) were cultured and incubated for 48 h in 96-well culture 
plates at 37 C under an atmosphere of 95% air and 5% CO2 . Then 
the cells were exposed to PNMPP (10–9–10–5 M) for 24 h with or 
without 0.1 IU/ml human chronic gonadotropin (hCG) dissolved 
in media. After 4 h of hCG stimulation, the medium was collected 
for testosterone assay.

Hormonal assays
FSH and LH concentrations were measured using an NIDDK 

radioimmunoassay (RIA) kits (Torrance, CA, USA) for rat FSH and 
LH. The iodinated preparations were rat FSH-I-5 and LH-I-5. The 
antisera used were anti-rat FSH-S-11 and anti-rat LH-S-11. Results 
were expressed as rat FSH RP-2 and rat LH RP-3. The intra- and 
interassay coefficients of variations were 4.8 and 11.4% for FSH 
and 5.4 and 6.9% for LH, respectively.

Testosterone concentration was measured using a double-antibody 
RIA system with 125I-labeled radioligands as described previously [15]. 
Antisera against testosterone (GDN 250), provided by Dr GD Niswender 
(Colorado State University, Fort Collins, CO, USA), were used. The 
intra- and interassay coefficients of variations were 5.9 and 5.8%.

Statistical analysis
The data were expressed as means ± SE. One-way analysis of 

variance (ANOVA) was used to compare means among groups. Post 
hoc multiple comparison analyses were performed with the Least 
Significant Difference (LSD) test when the F ratio for the ANOVA 
was significant at P < 0.05.

Results

Effect of PNMPP on hormone production from the pituitary
As shown in Fig. 2, PNMPP treatment could not increase the 

concentrations of FSH and LH secreted from the pituitary cells 
without GnRH stimulation. Conversely, 10–5–10–7 M of PNMPP 
could increase the FSH and LH concentration when the cells were 
stimulated with GnRH. On the other hand, 10–8–10–9 M of PNMPP 
could not increase FSH and LH concentrations, although the cells 
were stimulated with GnRH.

Effect of PNMPP on hormone production from Leydig cell 
culture

Testosterone concentrations were significantly increased, showing 
an inverted U shape, in cultures of Leydig cells stimulated with and 
without hCG when the cells were treated with PNMPP (Fig. 3).

Discussion

In the present study, PNMPP (10–5–10–7 M) reduced GnRH-
stimulated FSH and LH secretions from anterior pituitary cells, but did 
not have any effect on the pituitary cells without GnRH stimulation. 
This result indicated that PNMPP played a role in decreasing FSH and 
LH secretion via GnRH stimulation. As we known, AR is found in 
the pituitary and affected by androgen administration and castration 
[16–20]. Androgen also has a role in control of GnRH released from 
the hypothalamus, as shown by the effect of testosterone treatment 
on reducing GnRH mRNA [17] and GnRH release [18]. In in vitro 

Fig. 1. Chemical structure of 4-nitro-3-phenylphenol (PNMPP), a 
component of diesel exhaust particles.



TRISOMBOON et al.136

studies, androgen was found to suppress pituitary responsiveness to 
a hypothalamic extract and changed FSH and LH release from the 
anterior pituitary [20, 21]. Androgen acts by binding at receptor sites 
and then has a negative feedback action that decreases FSH and LH 
secretions by slowing the GnRH pulse generator and suppressing 
FSH and LH syntheses in the pituitary [22].

A single treatment of 3-methyl-4-nitrophenol (4-nitro-m-cresol; 
PNMC), which was extracted from DEPs, suppressed the plasma LH 
concentration in Japanese quails [6]. PNMC increased the plasma 
testosterone concentration and decreased the plasma FSH and LH 
concentrations, indicating that it acts on the hypothalamus-pituitary 
axis in adult male rats [23] and immature male rats [24].

Our previous study found that the chemical structure of PNMPP 
comprises a benzene ring, which is similar to steroid hormones 
including estrogen and androgen [1]. Hence, in the study of a pituitary 
cell culture containing GnRH, we might assume that PNMPP acts 
as androgen and reduce the effect of GnRH action on the secretions 
of FSH and LH, which would be the same as the effect of PNMC 
found in previous papers [1, 23, 24].

In the present study, PNMPP induced high secretion of testosterone 
in the Leydig cells cultured with and without hCG when compared 
with the control. From previous in vitro studies, DEPs have been 
reported to slightly increase the gene expression of the steroidogenic 
acute regulatory (StAR) protein in mouse Leydig cells [25]. Exposure 
to nanoparticle-rich diesel exhaust (NR-DE) enhanced cholesterol 
synthesis and increased the expression of gene that regulate steroid 
synthesis along with the testosterone concentration in testicular 
culture [26]. Consistent with the study in vitro, exposures to NR-DE 

for 1 or 2 months significantly increased StAR and cytochrome P450 
side-chain cleavage (P450scc) mRNA and their protein expressions 
and increased the testosterone concentration in male rats and mice 
[26, 27]. Either NR-DE or DEPs have a direct effect on testosterone 
production by increasing mRNA expression and genes associated 
with testosterone cholesterol synthesis in Leydig cells [23, 27, 28]. 
Accordingly, we assume that PNMPP may have a direct effect on 
increasing the testosterone concentration in Leydig cells.

Furthermore, addition of procymidone, an anti-androgenic 
substance, to a Leydig cell culture stimulated with hCG increased 
testosterone production by elevating several steroidogenic enzymes 
including StAR, P450scc and cytochrome P450c17α (P450c17) 
[29]. Flutamide, an androgen receptor antagonist, also enhanced 
StAR mRNA expression from Leydig cells of adult rats treated with 
hCG [30]. Furthermore, it was shown previous that anti-androgen 
caused hypergonadotropic activation of testicular steroidogenesis [2]. 
PNMPP has been reported to inhibit DHT action by binding to the 
androgen receptor in a recombinant yeast screen assay [2]. It can be 
assumed that PNMPP had an anti-androgenic effect on testosterone 
production in the Leydig cells.

In summary, the present study clearly demonstrated that PNMPP 
had androgen agonist action by suppressing the effect of GnRH and 
then decreasing the FSH and LH concentrations in the pituitary 
cell culture. In addition, PNMPP had a direct effect on the increase 
in testosterone concentration in Leydig cell culture without hCG 
stimulation; moreover, it had androgen antagonist action by increasing 
the testosterone concentration in Leydig cell culture.
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