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Abstract

Objective—Raman spectroscopy is a non-invasive laser-based technique that identifies molecular 

chemical composition of tissues and cells. The objective of the work was to demonstrate that 

unique Raman spectroscopic fingerprints of B-cell non-Hodgkin lymphoma cells could be 

distinguished from normal B-cells.

Methods—Normal B-cells and B-cell non-Hodgkin lymphoma cells were mounted on aluminum 

slides and analyzed by Raman spectroscopy using Asymmetric Least Squares and Principal 

Component Analysis.

Results—Clustering by Principal Component Analysis differentiated normal B-cells from B-cell 

non-Hodgkin lymphoma cells as well as between the different B-cell non-Hodgkin lymphoma cell 

types.

Conclusions—Raman spectroscopy technology provided a different paradigm in analyzing 

tumor cells which could be used for diagnosis as well as contribute new information on unique 

characteristics of cancer cells to understand pathogenesis and potential novel treatments.
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Introduction

Often times, tools and criteria that are used to diagnose cancer from specimens lead to 

understanding pathogenic mechanisms which potentially provide insight into novel 

interventions. Recent advances in targeted therapy for childhood Non-Hodgkin lymphoma 

(NHL) stemmed from refinements in diagnosis and understanding NHL biology [1,2]. 

Although NHL treatment results in relatively good prognosis for children and adolescents, 

challenges continue to exist to further improve outcome [3,4]. Identifying novel tools to 

interrogate malignant cells could provide new paradigms for discovering innovative 

interventions. New technologies which provide biochemical analysis of specimens without 

fixatives, markers or stains could also pave the way to improve diagnostic paradigms.

Raman spectroscopy (RS) has been used to analyze malignant tissues and could be 

employed to advance NHL discovery and treatment [5-9]. RS is a laser-based technique that 

characterizes chemical molecular composition [10]. The laser effect on tissue results in 

inelastic scattering of photons by molecular bond vibrations and a portion of the incident 

photons is scattered resulting in a shift toward lower frequencies. The resulting energy 

difference between the incident and scattered photons corresponds to the vibrational energy 

of tissue-specific molecular bonds. The RS obtained from specimens results in intrinsic 

molecular fingerprints revealing information about DNA, protein and lipid content.

Raman spectroscopy relies on Raman scattering of radiation fractions by molecules from an 

incident beam based on chemical structures of molecules [11,12]. It has been used in 

cervical cancer studies not only as a diagnostic tool but in understanding disease at the 

molecular level [5,12-14]. It is possible to calculate the vibrational energy difference by the 

frequency of incident light and measuring frequency of Raman scattered light. This energy, 

the Raman shift, is expressed in wavenumbers (cm−1) in a plot known as the Raman 

spectrum. Ramos et al. recorded the Raman spectrum of a cervical cancer cell line which 

provided a unique fingerprint makeup of chemicals and molecules of the cancer cells [12].

As a non-destructive rapid diagnostic tool, RS has the potential to differentiate malignancies 

[5,6,10]. Small-round blue cell tumors in children include NHL, neuroblastoma, Ewing 

Sarcoma and rhabdomyosarcoma which typically require a combination of 

immunohistochemical staining, fluorescence in situ hybridization and karyotyping for 

definitive diagnosis [15]. Occasionally, NHL diagnosis involves further assessment to 

identify the subtype (B-cell, T-cell, large cell) of NHL [1,2,4]. RS detects chemical 

signatures of cells and tissue and could potentially be used to quickly and accurately 

diagnose NHL subtypes in real-time [6,8]. In this feasibility study, RS was used to compare 

unique RS fingerprints of B-cell non-Hodgkin lymphoma (B-NHL) cells from normal B-

cells. This type of lymphoma is one of the most common in children thus will provide the 

initial background as the foundation for future studies if unique RS fingerprints are 

discovered [1].
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Methods

Cells and specimen preparation

The study was approved in accordance with the University of Hawaii Institutional Review 

Board. B-NHL cell lines (Ramos and CA46) were obtained from American Type Culture 

Collection (ATCC, Manassa, VA) and cultured with RPMI 1640 medium and fetal calf 

serum. The cells were washed and re-suspended in 0.9% saline solution. Normal B-cells 

were isolated from peripheral blood using a negative selection Robosep kit (EasySep Human 

B-Cell Isolation Kit, Stemcell Technologies, Cambridge, MA) and re-suspended in saline 

solution as noted above.

Raman spectroscopy of cells

RS was measured using a micro-Raman RXN system (KOSI, Inc., Ann Arbor, MI) utilizing 

a 785 nm laser and automated xyz microscope stage with cells mounted on aluminum 

reflective slides [7,9]. Polished aluminum sheets (Anomet. Inc., Ontario, Canada) of 0.5 mm 

thickness were cut and cleaned with methanol [16]. Cells were placed directly on the 

aluminum substrates for RS analysis. A 50 μm slit width was used for measuring the RS of 

cells. Each RS was collected for 60 seconds with 10mW laser power. Raman images were 

created by measuring RS at 100 points on a 120 μm × 80 μm grid at each point recorded 

twice with 30 mW of laser power and 10 second integration time.

Data analysis

Asymmetric Least Squares (AsLS) and Principal Component Analysis (PCA) were applied 

to the spectral data (n=20 spectra per cell type). RS were collected within the Running title: 

Raman spectroscopy of B-cell lymphoma Page 6 spectral region from 600 to 1800 cm−1, 

which represented the molecular fingerprint region that provides information on biological 

constituents of cells [10,17]. Spectra were background corrected and individual spectra were 

then normalized with respect to the total area under the Raman curve. The spectra from each 

cell type were averaged to obtain a mean RS of the cell type. Subsequently, PCA was 

performed to extract inherent structures of the spectra from cells and to compare different B-

NHL cells and normal B-cells against each other. A scree plot and eigenvalue of ≥ 1 were 

used to identify the number of PC. Additionally, k-nearest neighboring (KNN) method was 

applied to confirm the discrimination capability results from PCA [18]. A continuous 

baseline correction was performed on each Raman spectrum using AsLS, thereafter spectra 

were smoothed [6,11,19]. Raman spectra were collected from several cells of samples and 

representative of the response from each cell line subtypes, were used to identify the most 

significant bands.

PCA analysis was performed on spectra after the baseline correction, smoothing and area 

normalization procedures. The result of a PCA analysis performed on a given data set is a 

vector which contains the relevance of principal components classified as a function of their 

variance. Usually, most of the variance is contained in the first three principal components 

PC1, PC2 and PC3. Thereafter, analytical algorithm is applied to the PCA results in order to 

separate the data into statistically similar groups. Statistical analysis was performed using 

custom scripts written in Matlab©.
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Results

RS fingerprints were obtained from cell lines and normal cells. When compared and 

processed, the RS of cells and media identified distinct peaks however differences between 

cell types were difficult to visualize (Figure 1). The RS peaks represented fingerprints 

ranging from DNA/protein concentrations and saccharide bonds [10]. However to better 

delineate unique RS fingerprint differences between cell types, additional analyses were 

performed.

Asymmetric least squares (AsLS) and principal component analysis (PCA)

The RS from normal B-cells and B-NHL cells were baselined using AsLS followed by PCA 

which the scree plot identified 3 PCs to account for 97.45% of variability in the data [20]. 

The first PC explained the greatest amount of variance (87.0%) while the second PC 

explained 10.0% of variance (Figure 2A and 2B) identified the distinct cells as defined by 

the scree plot showing clear clusters amongst the distinct cells. KNN was then used to 

confirm the discrimination capability results from the three PCs [18]. KNN showed an 

accuracy and specificity of 100%.

Discussion

RS is a technique which has been used to identify malignant tissue [5,7]. However, applying 

RS technology to tissue requires probing relatively large specimen volumes to average the 

information from large numbers of cells [21,22]. RS fingerprints contain spectral bands 

representing molecular modes of vibration of molecules within the tissue. Identifying unique 

RS fingerprints of malignant cells and normal cells will be important to further understand 

pathogenesis and mechanisms of malignant transformation in order to discover novel 

treatment strategies. The current study provides data which could supplement cancer 

diagnosis by using unique RS fingerprints to not only distinguish cancer cells but possibly 

learn more about the pathogenic characteristic of the malignant cell [5,6,13,14]. Integrating 

RS diagnostic fingerprinting in routine cancer diagnostic paradigms could be an innovative 

approach which has the potential to enhance the translation of RS towards new diagnostic 

prospects [14].

The RS fingerprints of normal B-cells and B-NHL cells had similar phenotypes which were 

consistent with previous RS from human lymphocytes [6,23]. The spectra of the cells shared 

similar peaks which could be assigned to cellular constituents (DNA/RNA, proteins, lipids, 

carbohydrates) [6].

The data focused on the PCA between normal B-cells and B-NHL cells which was used to 

reduce the large amount of RS information into principal components. The scattered plots 

which were generated showed clusters of points distinguishing the two B-NHL cell lines 

from normal B-cells. While the PCA score plots showed clear distinctions between the PCs, 

PCA1 (PC1 vs. PC2) showed the maximal separation between all three cell types. The use of 

PCA in the analytical algorithm had the potential to provide a more clinical translational 

approach to deciphering the raw data [6,11,19].
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The study demonstrated that RS is capable of identifying and distinguishing malignant B-

NHL cells from normal B-cells. A limitation of the study is that the population of cells 

Running title: Raman spectroscopy of B-Cell lymphoma Page 9 which were analyzed were 

pure populations. Therefore the raw RS data and PCA data represented RS fingerprints of 

pure cells. Future plans will be to assess RS fingerprints of; mixed populations of cells. The 

focus of the current study was to assess the feasibility of identifying unique RS fingerprints 

of pure populations of malignant cells compared to normal cells. Another limitation of the 

study is that the cancer cells which were analyzed were focused on childhood B-cell 

lymphoma which is one of the most common childhood lymphomas diagnosed in pediatrics. 

The study was initially carried out to assess the feasibility of identifying RS fingerprints in 

this relatively common childhood lymphoma. Future studies will expand the subtypes of 

other childhood lymphomas including T-cell and large B-cell lymphomas. With the aid of 

statistical models, discriminating different malignant cells from normal B-cells was possible 

based on the specific biochemical information which was delineated from the RS data. The 

PCA discrimination of the different B-cell lymphoma cells from normal cells was limited 

because of the 100% purity of the cell populations. The variance was assumed because of 

the cell populations. Further discrimination in mixed cell cultures and analyses will better 

discern the applicability of RS fingerprinting in future planned experiments.

Results of the study show promise that RS fingerprinting of B-NHL could be feasible. While 

this initial study was designed to initially assess one of the most common lymphoma 

subtypes in children, other lymphoma cell types will need to be analyzed to determine 

differences in Raman spectra fingerprints. This has implications for future diagnostic use 

and prognosis as well as identifying new therapeutic targets for B-NHL.
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Figure 1. 
Representative Raman spectra (RS) fingerprints of cells and media. RS fingerprints of 

Ramos cells, normal B-cells and cell culture media.
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Figure 2. 
Principal component analyses (PCA) score plots of normal B-cells versus B-cell non-

Hodgkin lymphoma (B-NHL) cells. A) Principal component (PC)1 vs. PC2 (PCA1) 

comparing normal B-cells, Ramos B-NHL cells (blue) and CA46 B-NHL cells (red), PC1 

and PC2 make up 97.0% variability; B) PC2 vs. PC3 (PCA2) comparing normal B-cells 

(black), Ramos B-NHL cells (blue) and CA46 B-cells (red), PC2 and PC3 make up 10.45% 

variability.
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