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ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged
into a world of maturing pathogen genomics, with more than 2 million genomes
sequenced at the time of writing. The rise of more transmissible variants of con-
cern that impact vaccine and therapeutic effectiveness has led to widespread
interest in SARS-CoV-2 evolution. Clinicians are also eager to take advantage of
the information provided by SARS-CoV-2 genotyping beyond surveillance pur-
poses. Here, we review the potential role of SARS-CoV-2 genotyping in clinical
care. The review covers clinical use cases for SARS-CoV-2 genotyping, methods
of SARS-CoV-2 genotyping, assay validation and regulatory requirements, and clinical
reporting for laboratories, as well as emerging issues in clinical SARS-CoV-2 sequencing.
While clinical uses of SARS-CoV-2 genotyping are currently limited, rapid technological
change along with a growing ability to interpret variants in real time foretells a growing
role for SARS-CoV-2 genotyping in clinical care as continuing data emerge on vaccine
and therapeutic efficacy.
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The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
coincided with growing abilities in infectious disease genomics, resulting in an explosion

of data. With more than 2 million SARS-CoV-2 genomes available as of summer 2021, SARS-
CoV-2 is now defined by a multitude of different lineages. To put this in context, there are
currently fewer than 500 publicly available genomes for the four seasonal human coronavi-
ruses combined. While SARS-CoV-2 variants may be associated with multiple clinical out-
comes, the clinical utility of providing SARS-CoV-2 genotype results remains unclear (1).
Here, we describe the potential roles of SARS-CoV-2 sequencing for clinical care and the
challenges faced by laboratories endeavoring to implement this process.

SARS-CoV-2 is a member of the family Coronaviridae and has a large RNA genome at
around 30 kb. Coronaviruses are able to propagate large genomes in part due to mutation
rates substantially lower than those of other RNA viruses, achieved by means of viral acces-
sory proteins compensating for the lack of intrinsic proofreading among RNA polymerases.
As a result, the observed evolutionary rate for SARS-CoV-2 is roughly one mutation per ge-
nome per 2 weeks (corresponding to approximately two generations of host infection) (2).
Coronavirus evolutionary rates are much slower than those of other common RNA viruses,
such as influenza virus or HIV, leading to a lower observed genotype sequence variation
among SARS-CoV-2 isolates on a per-nucleotide basis (3).

For SARS-CoV-2, we are still learning which nucleotide sequence differences convey
clinically significant information. The short time frame of study has been matched by a
plethora of clinical studies and incipient abilities to profile mutation function at scale.
At this point, a handful of known SARS-CoV-2 mutations have been associated with
substantial in vivo effects.

OF INTEREST, CONCERN, AND HIGH CONSEQUENCE

SARS-CoV-2 has accrued a number of mutations that enhance its ongoing adaptation to
spread in humans and to circumvent the adaptive immune system. These variants are classi-
fied by the World Health Organization (WHO) and the U.S. Centers for Disease Control and
Prevention (CDC) based on specific attributes demonstrated by a lineage in viral culture and/
or in people. Variants of interest (VOI) are defined by changes to receptor binding, neutraliza-
tion activity, therapeutic efficacy, or diagnostics, while variants of concern (VOC) are marked
by evidence of an increase in transmissibility or disease severity or a greater reduction in neu-
tralization, therapeutic efficacy, and/or diagnostic detection. Variants of high consequence are
defined by reduced effectiveness of prevention measures or medical countermeasures; none
have yet been described. To date, many of the mutations of interest have occurred in select
locations of the SARS-CoV-2 spike protein, such as the receptor binding domain, enabling
more focused approaches to SARS-CoV-2 genotyping. Interpretation has also been greatly
assisted by high-throughput assays that allow for characterization of thousands of potential
variants in parallel.

GENOTYPING APPROACHES

SARS-CoV-2 genotyping can be performed using allele-specific reverse transcription-
quantitative PCR (RT-qPCR), targeted/Sanger sequencing, or whole-genome sequencing
(WGS) (Table 1). No assay is currently authorized by the FDA for SARS-CoV-2 genotyping,
so any assays developed for clinical use in the United States will require validation as a lab-
oratory-developed test to be performed in a CLIA (Clinical Laboratory Improvement
Amendments) high-complexity laboratory (4). The majority of SARS-CoV-2 genotyping is
currently being performed outside a CLIA-regulated environment, with results reporting
to public health allowed under CMS (Centers for Medicare and Medicaid Services) enforce-
ment discretion. In addition, it should be noted that not all clinical laboratories can provide
SARS-CoV-2 genotyping, as current assays are not as automated as other molecular micro-
biological tests.
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Allele-specific RT-qPCR. Due to the desire for rapid turnaround times and the ability
to focus on mutational hot spots associated with viral function, allele-specific RT-qPCR has
emerged as a potential solution for identifying SARS-CoV-2 variants with potential therapeu-
tic implications. Utilization of RT-qPCR by frontline laboratories can mitigate the demand for
WGS, in which capacity may currently be limited. This approach also serves as a solution to
test samples with relatively small amounts of viral RNA, as indicated by higher PCR cycle
threshold (Ct) values (e.g.,.30). Testing by WGS often yields lower depth of genome cover-
age in these situations (5). For identification of specific mutations, amplification primers are
designed to carry a nucleotide sequence complementary to the sequence of the mutation;
this leads to preferential binding to mutant genomes and causes the wild-type genome to
have a mismatch at the mutation site. Viral genomes bearing the mutation of interest are
selectively amplified in RT-qPCRs and then detected with a fluorescence-labeled oligonu-
cleotide probe. These reactions can be multiplexed, allowing multiple mutations to be ana-
lyzed simultaneously (6). The primary drawback of this method is that the focus on a select
group of mutations may not specifically define the correct lineage. Allele-specific RT-qPCR
assay design requires continuous updating as new variants emerge.

SARS-CoV-2 whole-genome sequencing. The alternative approach to genotypic
analysis is to determine the full nucleotide sequence, either for the whole viral genome
or for a specific region containing most of the known medically relevant mutation sites
(such as the spike glycoprotein [S] gene). SARS-CoV-2 WGS is generally performed via
amplicon tiling approaches, which involve hundreds of small overlapping RT-PCRs to
cover the entire genome. Amplicon panels are relatively sensitive and can generally
recover viral genomes for specimens for which the Ct is,30 (i.e., approximately 50,000 viral
copies/mL). Numerous commercial and lab-developed wet-lab sequencing protocols are
available, including ARTIC, Swift, Illumina COVID-Seq (a derivation of ARTIC), and the Ion
AmpliSeq SARS-CoV-2 research panel (7, 8). While specific amplicons may drop out occasion-
ally due to mutations at primer binding sites, most protocols are robust enough to recover
.99% of the SARS-CoV-2 genome. Informatics requirements for validation will depend on
what is reported. To enable data sharing, consensus SARS-CoV-2 genomes should be depos-
ited in the GISAID and/or GenBank database.

An alternative strategy to SARS-CoV-2 WGS would be to use RT-PCR to amplify the
region of interest (i.e., S gene), followed by “traditional” Sanger/dideoxy sequencing to
derive the nucleotide sequence for this smaller region of the viral genome. Compared to
WGS, this approach is less expensive and more widely available, with faster turnaround
times due to small batch sizes as the number of positive samples decreases. For example,
with typical read lengths of 500 to 600 nucleotides, a single Sanger sequence could cover
the region of the S gene, including most of the known consequential mutations: K417N/T,
L452R, E484K/Q, and N501Y. The limitation of this strategy is that it will not cover all poten-
tially important mutation sites, including those not yet appreciated as relevant.

REPORTING SARS-CoV-2 GENOTYPING RESULTS
What to report, and how to report it. As most clinicians are now familiar with the

predominant circulating VOI and VOC, it is reasonable to consider including variant lineages
and clades in clinical reports, including if they were derived from the PANGO or Nextclade

TABLE 1 Comparison of different approaches to SARS-CoV-2 genotypinga

Parameter Allele-specific RT-qPCR Targeted/Sanger sequencing WGS
Cost $ $$ $$$ (depends on batch size)
Real-world TAT 022 days 2–7 days 3210 days
Advantages Rapid TAT to impact MAb choice; widely

available; easy to define targets
Potentially faster TAT than that of WGS;
potentially more widely available

Outbreak investigation; novel mutation
identification; no need to redevelop
assay to identify new variants

Disadvantages Limited targets; need for continuous
updates to include new variants

Limited targets Greater informatics expertise, cost, TAT

aTAT, turnaround time; MAb, monoclonal antibody. Reagent costs for WGS can be as low as $30 to $40 per sample if sufficient batch size is obtained. Given that none of
these tests are highly automated, labor costs comprise a significant proportion of the total cost.
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classification systems, as well as the genotyping method used (9). Laboratories may also
elect to include the WHO naming convention (based on the Greek alphabet), but this
should not be the only identification used. Updated listings can be found at https://www.who
.int/en/activities/tracking-SARS-CoV-2-variants/. Since new lineages continue to be identified
and updated, it is prudent also to specifically report coding mutations from at least the spike
protein. This allows clinical reports to be robust for future lineage classifications or changes
to VOI/VOC groupings, though such analysis is unlikely to impact the individual patient
whose virus has already been sequenced. Reporting coding mutations is also consistent
with existing therapeutic resistance reports for other viruses and allows for the specific inter-
rogation of mutations as new genotypic-phenotypic data become available. Due to the
large size of coronavirus genomes, it may be impractical to report all coding mutations
across the genome. To allow for future genome-wide interrogation should it become clini-
cally relevant, SARS-CoV-2 genotyping reports may also include accession numbers from
public databases, such as GISAID, GenBank, or even the Sequence Read Archive. Accession
numbers allow end users to see the full genome, which also could be requested by the
patient, but obtaining accession numbers may delay reporting. Accession numbers may also
enable data uses that have not been specifically interrogated or validated during clinical
testing. Finally, interpretation of the clinical implications of detecting a specific variant may
be summarized in the report, including potential therapeutic impact (Fig. 1).

Given the ability to use SARS-CoV-2 whole-genome sequencing data to track transmission
or reinfection, including the pairwise distance of sequences derived from multiple specimens
may also be informative. Reporting of such data to infer transmission, covered further below,
requires careful consideration of the associated epidemiologic data and therefore should likely
be reported only to institutional infection prevention teams rather than in the patient’s elec-
tronic health record. Reinfection, however, could be reported within the individual patient’s
electronic health record if the pairwise analysis meets the validated cutoff criteria. Such report-
ing could contain the numerical pairwise distance between the prior and current sequences
with an interpretive comment that indicates whether that value supports reinfection, associ-
ated quality metrics, such as genome coverage, and limitations. As with any laboratory test
result, the need for clinical and epidemiological correlation is required.

FIG 1 (A) Hypothetical patient report for WGS including lineage/clade designations, coding mutations, variant allele frequency,
and depth of coverage or fold coverage, as well as clinical interpretation; (B) example report for the same specimen tested by
allele-specific qRT-PCR.
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Reporting method considerations. Reporting of the relevant data obtained by
sequencing should be included as part of the validation process and in the United States
must include a mechanism to report to the appropriate public health partner following
CDC and CMS guidance (10). Several of the sequencing platform and kit manufacturers
offer end-to-end products that include consensus sequence generation, variant calling,
and relevant quality control metrics. Illumina COVIDSeq has a component of their DRAGEN
COVIDSeq pipeline for genome calling that could be validated under CLIA/CAP (College of
American Pathology) guidelines for clinical use. The automated functions of this pipeline will
call variants with a coverage depth greater than 10-fold and with at least 50% variant allele
frequency (11). Similarly, the Thermo Fisher Scientific Ion AmpliSeq SARS-CoV-2 research assay
is compatible with the GeneXus software plug-ins that will generate consensus sequences
and annotated lists of variants (12). The data generated from these basic programs require
additional analysis to produce PANGO lineage and Nextclade assignment as well as potential
clinical interpretation of identified variants. Several additional plug-ins for downstream analysis
as well as direct submission to public databases are available via Illumina’s BaseSpace SARS-
CoV-2 next-generation sequencing (NGS) toolkit and Thermo Fisher’s Ion Torrent suite soft-
ware. Though less automated than the prior examples, Oxford Nanopore Technologies offers
the cloud-based pipeline EPI2ME with a “point and click” access to the ARTIC and Nextclade
pipelines (13). Third-party companies like CosmosID, One Codex, and IDbyDNA offer Web-
based pipelines intended to make complete analysis and reporting simple for those laborato-
ries lacking expertise. Laboratories with bioinformatics expertise may elect to validate more
complex or custom pipelines. Numerous custom approaches have been published, and
detailed comparisons are beyond the scope of this paper. A select list of SARS-CoV-2
sequencing resources, including protocols, curated by the CDC, can be found at https://
github.com/CDCgov/SARS-CoV-2_Sequencing#bioinformatics. It is important to note that
there may be differences or limitations to each pipeline as well as a need to revalidate under
CLIA/CAP guidelines with any modifications.

Crafting of the final clinical report that enters the electronic medical record must be
compatible with and validated via each institution’s laboratory information system
(LIS). This will require some type of intermediate data file to convert reportable data to
a format compatible with the LIS. Many commercially available LIS systems have
sequence variant reporting functionality, though the features and capabilities of
reporting may differ between vendors. For example, a table format to list variants may
not be compatible and might require free text, adding additional complexity and the
potential for error to the reporting process. Many systems can include prescripted clini-
cal interpretation comments linked to the detection of specific lineages or variants.
Reporting sequence data to public health can also be coordinated through the LIS,
though much of this infrastructure remains to be built. Furthermore, building such a
complex interpretive workflow requires tremendous resources and expertise that may
not be available in most clinical laboratories.

CLINICAL USE CASES OF SARS-CoV-2 GENOTYPING
SARS-CoV-2 genotyping to inform MAb therapy. Immunocompromised hosts

are one group of patients for which there has been significant interest in using
monoclonal antibody (MAb) therapy to reduce the potential for progression to
severe disease. Immunocompromised patients can also be infected for prolonged
periods, allowing time for the SARS-CoV-2 genotyping results to return and poten-
tially inform patient management. Three anti-SARS-CoV-2 treatments have received
FDA emergency use authorization (EUA) for the treatment of mild to moderate
COVID-19 in outpatients who are at high risk for clinical progression. At the time of
writing, currently authorized MAb therapies include bamlanivimab plus etesevi-
mab, casirivimab plus imdevimab, and sotrovimab. Multiple other monoclonal anti-
bodies are in phase III clinical trials. In laboratory studies, SARS-CoV-2 variants that
contain the L452R or E484K substitution in the spike protein result in significantly
reduced susceptibility to bamlanivimab, while those containing the K417T or
K417N mutation have greatly reduced sensitivity to etesevimab (14). These
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mutations (K417N/T and E484K) are specifically combined in P.1 and B.1.351 VOC,
indicating that individuals infected by these variants should not be treated with
this combination monoclonal therapy (15). Indeed, the U.S. Government paused
distribution of bamlanivimab plus etesevimab into multiple states, based on the
high prevalence of P.1 variants in those locations (16). Because MAb therapy should
ideally be started as soon as possible after the diagnosis of COVID-19, screening for
these mutations for therapeutic purposes may be best accomplished using allele-
specific RT-qPCR-based methods.

Genotype analysis to aid infection prevention in health care facilities. SARS-
CoV-2 WGS can be used to detect clusters of infection among patients and/or staff in
health care facilities. Identical or highly related sequences may be consistent with a sin-
gle-source exposure or person-to-person chain of infection, with the caveats noted
due to the low rate of mutations (Text Box 1). Identification of several infections due to
a rare lineage on one hospital ward over a short period may provide strong support for
nosocomial transmission, whereas more detailed phylogenetic analysis may be
required to make accurate inferences about a cluster of infections due to a common
lineage. Decisions regarding whether to declare a SARS-CoV-2 outbreak within a health
care facility should be based on epidemiologic suspicion, as results of sequencing may
not be available immediately.

BOX 1: Considerations for Implementation of SARS-CoV-2 Whole-Genome
Sequencing

CLINICAL/EPIDEMIOLOGIC CONSIDERATIONS

Genomic similarities/differences are defined as follows:

1. The low genetic diversity of SARS-CoV-2 (estimated mutation rate of 1.16 �
1023 substitutions per site per year, which equates to around one mutation
every 2 weeks [2]) means that SARS-CoV-2 isolates may be genomically
identical even without an epidemiological link. A study from the United
Kingdom reported that 22% of isolates with zero single nucleotide polymorphism
(SNP) differences had no identifiable connection when further clinical and
epidemiological investigations were performed (17).

2. Different studies have defined clusters based on a combination of SNP
differences paired with epidemiological and clinical data (17–19).

3. Laboratories often do not have access to epidemiological information so will
be able to provide only the sequencing portion of the information.

LABORATORY CONSIDERATIONS

Accuracy/Reproducibility

1. Intra-assay and inter-assay precision studies using the same positive sample
should demonstrate identical variant calls relative to the reference genome. If
possible, include positive SARS-CoV-2 samples from the same household, which
are more likely to be identical. Also, testing of positive samples detected from
within the hospital wards would increase the likelihood of identical or near
identical clusters compared to testing of samples that were collected from the
community setting or emergency department, which are more often
phylogenetically dispersed (17).

2. Clinical laboratories can also send samples to an external laboratory that is
currently offering the test as part of the validation.

Quality Control

1. Laboratories should consider restricting analysis to the consensus-level
mutations and SARS-CoV-2 mutations with an allele frequency of at least
50%. Only high-quality SARS-CoV-2 genomes should be used for cluster
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While genotyping is often used to confirm findings of an outbreak investigation
(21, 22), some health care institutions are conducting prospective genomic surveillance
for SARS-CoV-2 infection (17, 23). Meredith et al. (17) combined results of prospective
rapid SARS-CoV-2 sequencing of RT-qPCR-positive diagnostic samples with clinical and
epidemiologic data. They identified 35 clusters of identical viruses infecting 159
patients at one hospital over 6 weeks. Seventy-eight percent of patients within clusters
had strong or plausible epidemiologic links. Several clusters included patients who
were not suspected of being linked based on epidemiologic data alone. Specifically,
their results highlighted the elevated risk of infection in renal dialysis units, simultane-
ously ruling in and out transmission links within this ward. Results were provided
weekly to clinical and infection control teams, enabling further investigation and inter-
vention in real time. The timely availability of genotyping data has the potential to
improve understanding of health care-associated transmission of SARS-CoV-2 and to
expedite mitigation, control, and prevention strategies that protect patients and health
care providers.

Cohorting of patients based on viral genotype may be a practical consideration,
particularly for older health care facilities with limited numbers of single-bed rooms.
Guidelines do not currently advise specific cohorting (24), but it has been successfully
implemented in some Canadian institutions (25). Repeat infections with VOC (B.1.1.7,
P.1, and B.1.351) have been reported in patients previously infected with SARS-CoV-2
(26). Cohorting may be an adjunct infection control measure considered in certain clin-
ical situations where transmission risk is potentially higher, particularly in communities
where multiple VOC are cocirculating. Health care facilities with a limited private room
capacity could consider cohorting patients with the same VOC based on (i) stage of

analysis. A recent study defined this as at least a 100� coverage (number of
reads aligned to a genomic position) across 97% of the genome (20).

2. The limit of detection or minimal read depth that is required at a given
nucleotide position that is required to confidently make a base call needs to
be evaluated and incorporated into the quality management system.

3. Robust bioinformatics and wet-lab cross-contamination checks, along with
detailed clerical checks, are crucial to ensuring reliable results.

Workflow and Ordering Decisions

1. The number of positive samples sequenced within an institution may help
define the approach. One option would be to have it as an orderable test
placed by only the contact tracing or infection prevention and control (IPC)
team when clusters are identified from the clinical and epidemiological
standpoints. Phylogenetic analysis in these cases can help strengthen
transmission links previously identified by the team but can also rule out
suspect clusters that have been previously reported (20).

2. A second option would be to perform WGS and phylogenetic analysis on all
SARS-CoV-2 isolates detected by molecular testing, which may prompt further
epidemiological investigation to determine if a direct transmission link can be
identified. Again, the link between genomic and epidemiological data needs to
be emphasized.

BILLING AND REIMBURSEMENT
At the time of writing, there is no current procedural terminology (CPT) code published
by the American Medical Association for SARS-CoV-2 variant identification/genotyping.
In the United States, laboratories may use a generic CPT code, such as 81479; however,
it is unlikely that any of this work will be reimbursed by payers, leaving the cost to be
absorbed by the performing laboratory.
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clinical presentation (early versus late; sample with a low Ct), (ii) type of VOC, and (iii)
operations to minimize movement/transfer of COVID-19 patients, as has been per-
formed in a limited fashion to date (27).

THE FUTURE IS NOW

The SARS-CoV-2 pandemic has challenged the medical system like no other but offers an
opportunity to build the future clinical care-public health approach to infectious disease con-
trol. SARS-CoV-2 genotyping has definitively impacted care, not least by revoking an EUA for
the therapeutic monoclonal antibody bamlanivimab due the identification of resistant variants
(28). SARS-CoV-2 genotyping has been critical for multiple public health purposes, including
epidemiology, vaccine efficacy monitoring, vaccine planning, therapeutic choice and design,
and detection of polymorphisms causing therapeutic and/or diagnostic failure. The main cur-
rent clinical use for genotyping is limited to helping determine if the presence of a mutation
will impact the effectiveness of a therapeutic monoclonal antibody. It is costly to validate and
implement molecular testing of this type, and clinical laboratories are generally paid only for
testing deemed clinically necessary to an individual beneficiary based on CMS and insurance
rules. Currently there are no specific CPT codes for SARS-CoV-2 genotyping.

As such, clinical laboratories have not typically been paid to perform testing for the
public’s health. Here, contracting between public health agencies and clinical laboratories to
monitor the genotypes of circulating SARS-CoV-2 could be mutually beneficial, and this coop-
erative approach has been successfully implemented in some areas. Clinical laboratories offer
the distributed scale for viral genomic surveillance as well as potentially faster turnaround
times since sentinel clinical laboratories can immediately begin the genotyping process once a
positive sample is identified. Public health agencies benefit from this significantly increased
scale of SARS-CoV-2 genotype information produced by clinical laboratories as well as the inte-
gration of these data at the point of clinical care, while clinical laboratories benefit from
increased funding to develop and perform novel genotyping assays. In many ways, this is
how clinical testing for any virus, including SARS-CoV-2, is successfully performed at scale.
Building these bridges will be especially important given the numerous barriers toward SARS-
CoV-2 genotyping, such as the growing dispersion of SARS-CoV-2 testing with the continued
growth of antigen, direct-to-consumer, and over-the-counter tests.

The benchmark for implementing tests in the clinical laboratory is when a result
alters patient management and impacts outcomes or has value for hospital infection control
purposes. Patient management may include the use of therapeutic agents shown to be effica-
cious for the particular genotype in question. For SARS-CoV-2, few studies are currently avail-
able that meet this standard, though study designs are rapidly changing with the new avail-
ability of genotypic data. If met, the case may be made that precision diagnostics of viral
genotypes in the clinical laboratory are required for therapeutic agents, including monoclonal
antibodies, antiviral agents, and care pathways. Indeed, in the realm of cancer therapeutics,
we are seeing the need for precise detection of mutations to guide chemotherapeutic choices
for both blood and solid organ malignancies. Many other human viruses are significantly
more genetically diverse than SARS-CoV-2 (29), indicating that genotype-specific therapies
may be required. Incipient technologies, such as CRISPR-Cas9 or genotype-specific isothermal
amplification, potentially offer point-of-care or same-day genotyping (30, 31). Starting now,
the clinical-public health laboratory collaborative approach developed for SARS-CoV-2 geno-
typing could be used for many other pathogens, including genotyping for influenza virus, HIV,
hepatitis C virus, Salmonella, Listeria, and any other respiratory and foodborne pathogens asso-
ciated with outbreaks.
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