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Foundation review:

Virtual ligand screening: strategies,
perspectives and limitations

Gerhard Klebe

Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, D35032 Marburg, Germany

In contrast to high-throughput screening, in virtual ligand screening (VS),

compounds are selected using computer programs to predict their binding

to a target receptor. A key prerequisite is knowledge about the spatial and

energetic criteria responsible for protein–ligand binding. The concepts and

prerequisites to perform VS are summarized here, and explanations are

sought for the enduring limitations of the technology. Target selection,

analysis and preparation are discussed, as well as considerations about the

compilation of candidate ligand libraries. The tools and strategies of a VS

campaign, and the accuracy of scoring and ranking of the results, are also

considered.
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Introduction
In the late 1980s and early 1990s, experimental high-throughput screening (HTS) and combi-

natorial chemistry were aggressively developed to overcome the lead discovery bottleneck in drug

development. Using sophisticated large-scale automation, it was anticipated that this would

generate an unprecedented number of novel leads, resulting in a substantial increase in novel

drug entities launched to the market per year. However, in reality, the opposite was the case [1,2].

Frequently, the discovered hits could not be validated and further optimized into actual leads and

preclinical candidates. Thus, the initial euphoria surrounding these approaches has subsided

owing to the disappointingly low hit rates and significant costs involved [3,4].

Such situations fuel the consideration and development of alternative techniques. The

expression ‘virtual screening’ (VS) was coined in the late 1990s; however, the techniques involved

are much older. In an effort to show that searching for lead candidates using a computer is a

serious alternative to HTS, the term ‘VS’ was adopted by the community. In contrast to HTS,

which is largely phenomenological and technology driven, in VS, compounds are selected by

predicting their binding to a macromolecular target using computer programs (in drug discovery,

the term ‘target’ or ‘receptor’ is used frequently to describe the macromolecule to which a drug

binds, which is usually a protein but can also be DNA or RNA). The compounds studied do not

necessarily exist, and their ‘testing’ does not consume valuable substance material. Experimental

deficiencies, such as limited solubility, aggregate formation or any sort of influence that could

possibly interfere with experimentally applied assay conditions do not need to be considered in

the initial computational screen. In contrast to HTS, VS requires as a key prerequisite knowledge

about the spatial and energetic criteria responsible for the binding of a particular candidate ligand
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to the receptor under investigation. In consequence, either the

three-dimensional (3D) structure of the macromolecular target – as

given by crystal structure analyses, NMR or sophisticated homol-

ogy modelling – or, at the very least, a rigid reference ligand with a

known bioactive conformation mapping out the putative receptor

binding site must be available [5]. This defines VS as a knowledge-

driven approach. Even though it is likely that multiple screening

campaigns have been performed in parallel in industry [6–9], it was

only recently that McMaster University launched an open and

unbiased competitive screening against Escherichia coli dihydrofo-

late reductase to detect inhibitors [10], to assess how well VS can

enrich candidate ligands compared with HTS random screening

[10,11]. The original sample set of compounds used for screening

was split into two, and one fraction was tested by HTS. Obtained

hits were reported and served as a training set to validate and tailor

applied VS tools in different research groups, who entered into a

competition to retrieve hits also detected by the experimental

screen in the second portion of the screening sample [12–16].

Subsequently, in a totally unbiased fashion, the second part of the

data sample was evaluated by HTS and VS in parallel. Unexpect-

edly, the second portion did not show any hits as competitive

inhibitors, as would be expected for ligands docked into the

substrate binding site of a target protein. Interestingly, Brenk

et al. [16] reported on some promising hits found by docking that

were not detected as inhibitors in the initial HTS. Retesting at

higher concentration indicated weak inhibition. This observation

could be seen as supporting the view that VS and HTS are com-

plementary approaches and that they might find candidates

missed by the other [7,9].

As mentioned above, the methods involved in VS are much

older than the approach itself. Initial attempts to find ligands by

docking or by mapping them onto ligand-based pharmacophore

models were the generic prototypes of a VS approach. However,

this term was not used at that time, probably because computers
TABLE 1

Targets addressed by virtual screening [31]

G-protein-coupled
receptors

a1A adrenoceptor, dopamine D3 receptor, endothelin
muscarinic M3 receptor, neurokinin-1 receptor, neurop

urotensin II receptor (GPR14)

Nuclear receptors Retinoic acid receptor, thyroid hormone receptor

Kinases Akt 1 (also known as protein kinase Ba), Bcr-abl tyros

kinase 4, glycogen synthetase kinase, p56 lymphoid T
transforming growth factor b receptor kinase

Proteases Cathepsin D, falcipain-2, HIV protease, plasmepsin II, s

Other hydrolases Acetylcholinesterase, adenylate cyclase (oedema facto

and Bacillus pertussis), AmpC b-lactamase, phosphodie

Oxidases and
reductases

Aldose reductase, dihydrofolate reductase, inosine 50-m

Miscellaneous
enzymes

5-Aminoimidazole-4-carboxamide ribonucleotide trans

dTDP-6-deoxy-D-xylo-4-hexulose 3,5-epimerase, farnes

tRNA-guanine transglycosylase

Ion channels T-type selective Ca2+ channel, Kv1.5 potassium chann

Protein–protein
Interfaces, protein
complexes

Bcl-2 protein–protein interaction, cyclophilin A, FK506

Rac1 protein–protein interaction, VLA-4 (also known a

Protein–RNA
interactions

HIV-1 RNA transactivation response element
and algorithms were not fast enough to enable large scale applica-

tions. Focusing on approaches that actually make use of an avail-

able protein structure, one of the first systems to be studied by

docking was HIV protease. Initial versions of the program DOCK,

developed over many years by Kuntz’s group [17,18], tried to dock

rigid entries from the Cambridge Crystallographic Database into

the protein receptor, focusing primarily on shape complementar-

ity and later considering chemical complementarity. In 1990, the

Kuntz group retrieved the neuroleptic drug haloperidol as a poten-

tial ‘lead’ from a docking screen using a database of known drug

molecules as input. However, this compound would have had to

be administered at a very high dose – far beyond a toxicologically

tolerable concentration – to be an effective inhibitor of the pro-

tease [19]. Nevertheless, haloperidol as a ’lead’ gave rise to some

new ideas for developing a derivative possessing 15 mM inhibition

of HIV protease [20]. Later, at Dupont-Merck, a 3D database search

retrieved a substituted terphenyl derivative as a putative lead for

inhibiting this protease. Further optimization via six- and seven-

membered rings resulted in the class of cyclic ureas that are able to

replace the crucial structural water molecule in the protease, at the

same time targeting the carboxy groups of the two catalytic

aspartates via two appropriately placed hydroxy functionalities

[21]. Since these early VS attempts, a plethora of case studies has

been performed and the list of success stories is steadily growing.

Despite the fact that VS is still a young discipline, it has been

reviewed frequently [22–30], most recently in a comprehensive

overview by Kubinyi [31]. If one excludes purely retrospective

studies, in which the potential of a method is demonstrated by

its ability to enrich putatively active molecules from a sample of

anticipated nonactive ones,�50 targets have been studied to date,

and reports on the discovery of mostly micromolar binding

ligands in a truly predictive fashion are available (Table 1). Still

under development, and far from mature, the number of strategies

followed in VS is nearly as large as the number of reported screen-
A (ETA) receptor, melanin-concentrating hormone type 1 receptor,
eptide Y receptor type 5, purinergic A2A receptor,

ine kinase, checkpoint kinase 1, cyclin-dependent kinase 2, cyclin-dependent

cell tyrosine kinase, protein kinase CK2 (also known as casein kinase II),

evere acute respiratory syndrome CoV 3C-like proteinase, thrombin

r and CyaA, a toxin of the pathogenic bacteria Bacillus anthracis

sterase 4, protein tyrosine phosphatase 1B

onophosphate dehydrogenase inhibitors

formylase, carbonic anhydrase II, DNA gyrase,

yl transferase, guanine phosphoribosyl transferase, HIV-1 integrase,

el, shaker potassium channel

-binding protein, mesangial cell proliferation,

s a4b1 antigen)
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ing campaigns. Owing to space constraints, this review is unable to

give a comprehensive overview of success stories or investigated

targets, or to review all details of currently applied VS protocols;

accordingly, the reader is recommended to consult the above-

mentioned surveys [22–31]. Instead, this review attempts to sum-

marize and comment on the agreed concepts and prerequisites for

performing successful VS runs. Furthermore, it attempts to analyse

the limitations of the approach in a frank and plain manner and

seeks to explain why such limitations still exist. Accordingly, in

the following sections, first the target selection, analysis and

preparation are discussed, followed by considerations about the

compilation of a candidate ligand screening sample. This is fol-

lowed by a discussion of the actual requirements, tools and stra-

tegies of a VS campaign, and, finally, remarks concerning the

accuracy of the scoring and ranking of the screening results.

Target selection, validation and analysis
Being a knowledge-driven approach, the scope of VS strongly

depends on the amount and quality of information available

about the system under investigation. Clearly, the availability of

the target receptor is of great benefit compared with situations

where only a rigid reference ligand is known. The target receptor

could be any macromolecular biomolecule, either a protein, RNA

or DNA. In terms of the rigid reference ligand, either a substrate,

inhibitor molecule, agonist or antagonist (e.g. a steroid hormone)

could serve. Because the structures of target receptors are becom-

ing increasingly available, this review concentrates solely on such

situations. However, it does not mean that VS cannot be applied to

situations in which no structural information about the target

receptor is available [5]. With respect to DNA and RNA as target

receptors, the development of appropriate docking and scoring

tools has been initiated only recently, and, accordingly, VS appli-

cations on such targets are still rare [32,33]. By contrast, the scope

of applications addressing proteins ranges from enzymes to G-

protein-coupled receptors and ion channels (Table 1).

Assessing the druggability of the target receptor
The first issue to be considered is the druggability of the selected

target. Does the selected protein exhibit a binding pocket that can

be successfully targeted by small molecule ligands? Clearly, char-

acteristics such as pocket size and geometry, surface complexity

and roughness, exposure of recognition properties and their com-

plementarity in shape and polarity with respect to a putative

druglike ligand, are of importance. Because such criteria are not

immediately available, a pragmatic, but hardly generally applic-

able, approach would be to correlate gene families. If one member

of such a family is able to bind a drug, other members might also be

able to bind druglike ligands with related physicochemical proper-

ties [34]. This assumption is based simply on the fact that members

of a gene family usually operate on related substrates or recognize

similar endogenous ligands. However, the setup for a VS study

requires more conclusive information about the actual binding-

site architecture. Recently, Hajduk et al. [35] suggested several very

decisive indices that help to discriminate druggable from non-

druggable binding pockets. For druggability, the total surface area

and a portion of a polar contact area below 75 Å2 appear to be

beneficial, along with an appropriate pocket compactness, surface

roughness and complexity. This suggests that there is an optimal
582 www.drugdiscoverytoday.com
size and composition of a protein-binding pocket that is best

suited to recognize and accommodate small organic ligands. How-

ever, the analysis by Hajduk et al. also showed that no single index

consistently dominates the correlation. This fact points to the

complexity of the interrelationships among the various discrimi-

natory indices and explains why, at present, our concepts for

predicting druggability are still rudimentary.

Selection of the most relevant geometry of
the target receptor
The selection of an appropriate 3D geometry for the target is

another important issue when setting up a VS run. The most

powerful method for learning about the spatial structure of pro-

teins is crystal structure analysis. The accuracy and reliability of

this method strongly depends on the resolution of the diffraction

data. An alternative experimental technique to determine protein

structures is NMR; there the accuracy of the structural determina-

tion depends strongly on the local distribution of the Nuclear

Overhauser Effect distance information along the protein chain

(this effect involves transfer of magnetization through space and

gives information about distances between nuclei in a 3D struc-

ture). Furthermore, in the past, significant methodological

enhancements in homology modelling have improved the quality

of protein models [36–38]; accordingly, several successful VS

screening campaigns have been reported based on model-built

protein structures [39–41]. Homology modelling strongly depends

on the availability of related proteins for which a crystal structure

has been determined. The model will be particularly precise in

those areas where the homology with the experimentally deter-

mined references is high, which is usually the case in the conserved

core regions. However, functional binding sites, to be addressed by

VS, are generally located in loop regions where, even among

homologues of a gene family, significant differences are experi-

enced (apart from catalytic residues in enzymes that are spatially

highly conserved). To enhance the accuracy of model-built struc-

tures in regions where the binding sites are found, new algorithms

have been suggested that consider the putative binding orienta-

tion of known ligands during the homology modelling process.

These algorithms feed the information about the binding proper-

ties of possibly bound ligands back into the homology building

process. Improved binding site geometries can be expected from

such approaches [42,43].

Dealing with protein flexibility and adaptability
Another obstacle that complicates VS attempts is molecular flex-

ibility. Ligands and proteins possess internal degrees of freedom

and can adopt various conformational states. With respect to the

target protein, several methods have been described to simulate

flexibility [44]. For VS, it is important to obtain an estimate of the

protein conformers competent at accommodating a ligand. Once

these conformers have been determined, a VS run can either be

performed by considering the flexibility of the protein instantly

during the calculation, or by addressing an ensemble of several

rigid receptor conformations [45–48]. Ligand-binding competent

conformers can either be sampled by exhaustive conformational

searches (e.g. using molecular dynamics simulations [49,50]) or by

examining multiple conformational states, observed in crystal

structures with different ligands bound, to obtain insight into
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FIGURE 1

Binding mode differs with soaking and co-crystallization conditions.
Crystal structure of aldose reductase with the inhibitor zopolrestat is shown.

The crystal structure determined after one day of soaking (yellow) differs

from the structure obtained after six days of soaking (magenta) but is

identical to that obtained by cocrystallization (light blue). Whereas in the one
day-soaked structure (yellow) the amide bond between Ala299 and Leu300

orientates its NH group towards the inhibitor to form a hydrogen bond

(dotted yellow line) with the bound ligand, in the latter two structures
(magenta and light blue) this amide bond rotates away from the inhibitor and

no such hydrogen bond is observed [54].

R
ev
ie
w
s
�
F
O
U
N
D
A
T
IO
N

R
E
V
IE
W

the relevant conformations [51,52]. The latter approach appears

tempting because it can be assumed that a sample of experimen-

tally observed protein conformers corresponds to stable, low free-

energy states.

Crystal structures as the ‘gold standard’
Even though the crystal structure is usually considered as the

‘gold standard’ for learning about the geometry of a protein, it is

highly questionable how representative a single structure deter-

mination really is. McGovern and Shoichet [53] reported on
FIGURE 2

Induced-fit adaptations in two different crystal forms. Two crystal structures o
which is indicated as a deep depression in the left- and right-hand images) bound to

structures differ in terms of the conformational state of Phe174 (in the left- and right

is exposed (‘up’) in one structure (orange and on the left) and buried (‘down’) in the

short three-turn helix (in the centre, helix at the left-hand side of the binding pock
back) [56,60].
increasing information decay, irrespective of whether the geo-

metry of a ligand-bound or ligand-free crystal structure was used

or a model-built structure was considered. Principally, crystal-

line protein–ligand complexes can be prepared by exposing

preformed crystals of a protein to the solution of a ligand, which

can then diffuse into the crystals and find its way to the binding

site. This process is called ‘soaking’. Alternatively, in a cocrys-

tallization experiment, the protein–ligand complex is formed by

equilibrating them in solution, and then the assembled complex

is crystallized. We recently observed, depending on the soaking

protocol applied, different conformational states of the protein

aldose reductase complexed by the inhibitor zopolrestat [54]. In

one structure, the protein forms a hydrogen bond with the

ligand via one of its binding site-exposed amide bonds

(Figure 1). In a second structure, the amide bond is rotated

off from the binding site, and the same ligand can no longer

form this hydrogen bond. Such differences have a significant

impact on docking and scoring results in VS. Depending on the

crystallization conditions, ligands have been observed to accom-

modate a binding pocket with reversed orientation [55]; in other

cases, ligand-induced conformational adaptations of the protein

are observed [56] (Figure 2). Increasing the concentration of a

ligand in the soaking buffer will enhance the opportunity to

accommodate it in the binding pocket. However, it is likely that

soaking depicts some kind of kinetic trap for ligands; conse-

quently, surprising differences in cocrystallization have been

observed (several ligands bound at one time, multiple binding

modes [57]). Before selecting a particular crystal structure as a

reference for a VS run, detailed analysis of parameters such as

population of the bound ligand, B-factors next to the binding

site (B-factors indicate thermal motion in a crystal structure;

however, they are highly correlated with the population of a

ligand in the crystal) or consistency of the hydrogen bond

network is advisable.

Assignment of protonation states
In addition, most programs used for the actual computer screens

require properly defined protonation states of the active-site resi-

dues. This is by no means easy to perform because local dielectric
f benzamidine (in both cases, accommodated deeply buried in the S1 pocket,
a trypsinmutant exhibiting a binding pocket related to factor Xa. Both crystal

-hand images at the left rim of the binding pocket with the red surface), which

other (green and on the right). This adaptation involves partial unwinding of a

et) and rearrangement of a disulfide bond (in the centre, yellow bond to the

www.drugdiscoverytoday.com 583
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FIGURE 3

Protonation states can change upon ligand binding. Depending on the oxidation state of the bound cofactor NADPH (left) and NADP+ (right),
aldose reductase binds to a carboxylate-type inhibitor (e.g. IDD594) by placing its acid functional group (red) into the catalytic centre; the complex thereby

formed remains either in an unchanged protonation state (left) or picks up protons upon binding (right). In the centre, the crystal structure of the

complex is shown. A short contact distance between the carboxylate function of the inhibitor (shown with a yellow surface) and the nicotinamide portion
of the cofactor (shown with an atom-type coloured surface, where oxygen is red, nitrogen is blue, carbon is white, sulfur is yellow and phosphorous is orange)

is formed. High resolution X-ray crystal structure analysis and neutron diffraction has provided evidence that the inhibitor binds with its carboxylate function

in the deprotonated state, and the active site His is present in the neutral state. It remains unresolved where the proton goes in the case of the

NADP+-bound complex, or whether the residues of the catalytic centre exhibit deviating protonation states in the uncomplexed and inhibited situation.
With respect to VS, a unique and precise assignment of the protonation states of the ligand and protein functional groups in a pKa range between 3 and

11 is essential because, for example, for docking it is important whether such a group is considered as donor or acceptor of a hydrogen bond (Krämer

and Klebe, unpublished).

R
eview

s
�F
O
U
N
D
A
T
IO
N

R
E
V
IE
W

conditions can modulate pKa values of functional groups by

several orders of magnitude. Even more complex and, at present,

difficult to calculate are pKa shifts of residues during the course of

ligand binding. Isothermal titration calorimetry [58] measure-

ments can make such changes apparent; these changes probably

occur more frequently than we presently admit [59], and can easily

turn an acceptor functional group into a donor or a charge-assisted

hydrogen bond into a neutral one. These changes are of signifi-

cance during various validation steps of a VS run. We have recently

observed that even the protonation states of the residues in the

binding pocket of inhibitor-bound aldose reductase can change

depending on whether the cofactor NADPH/NADP+ is present in

the oxidized or reduced state (Figure 3) (O. Krämer and G. Klebe,

unpublished results).

Single or multiple binding-competent protein
conformers to be considered
With respect to protein flexibility, the decision has to be taken as

to whether a VS run should consider one single protein con-

former or multiple binding-competent states of the receptor.

Different strategies with respect to docking and scoring will be

the consequence (see below). Experience shows that conforma-

tional adaptations observed in a protein-binding pocket are
584 www.drugdiscoverytoday.com
usually related to the structural modulations potentially needed

by the protein to accomplish its functional role [51]. Such

functional adaptations must correspond to low-energy transfor-

mations, otherwise dramatic shortcomings in the functional

performance of the protein would be the consequence. Accord-

ingly, enzymes that operate on a large palette of structurally

diverse substrates (cf. aldose reductase and short chain dehydro-

genases) or perform substantial conformational adaptations dur-

ing catalysis (cf. kinases) will experience multiple binding-

competent states that have to be considered in VS. Thus, a

profound understanding of the functional properties of a protein

might be the best option for predicting the conformational

adaptability of a protein. Such information is not usually avail-

able at the beginning of a drug development project, when VS is

used. Because proteins occur in gene families of closely related

members, the analysis across different entries of the family might

provide some insight into the flexibility properties inherently

shared by the members of the family. However, it might also be

that some family members display rigid solutions, as required by

their function (e.g. trypsin and factor Xa among the serine

proteases), whereas others possess pronounced flexible beha-

viour, as appropriate to their function (e.g. the serine protease

factor VIIa) [60].
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FIGURE 4

Mapping the hot spots of binding. Hotspot analysis using DrugScore for the binding pocket of t-RNA guanine transglycosylase (surface of the binding pocket

indicated in white). Regions energetically favourable for the binding of a hydrogen bond donor group (represented by an NH group) or an acceptor
group (represented by a C=O group), or a hydrophobic molecular portion (represented by aromatic carbon atoms, C.ar) have been analysed and contoured on

three subsequent levels (indicated using three different colours) above the deepest energy minimum found for each atom type in the maps [88]. The

crystallographically determined binding mode of an inhibitor is shown superimposed.
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Mapping ‘hot spots’ of ligand binding in the target
protein
After the reliability and relevance of the protein conformer(s) of

the selected target protein have been assessed, its binding-site

properties should be mapped before blindly starting a VS run

(see below). This strategy helps the user to evaluate the properties

of the target protein better and subsequently to examine the

relevance of docking solutions suggested by VS. Several tools have

been described to elucidate the ‘hot spots’ of binding in a parti-

cular binding pocket [61]. These methods are either based on

thoroughly parameterized force fields [62] or on well-selected

empirical information (SuperStar [63], DrugScore [64]; Figure 4).

Most importantly, this analysis has to be performed on all multiple

conformational states of a binding pocket because this will provide

a composite picture of how the molecular recognition properties

of a binding site might change upon protein adaptation.

Water, the nasty third binding partner in protein–
ligand complexes
Finally, a very crucial decision with respect to the setup of the

protein reference for a VS run concerns the consideration of water

molecules in a binding site. The analysis of several thousand

crystal structures of ligand–protein complexes using the waterbase

module in Relibase [65,66] revealed that, in about two-thirds of all

cases, a water molecule is involved in ligand binding, frequently

mediating contacts between protein and ligand. Thus, any

approach based on the prediction of binding modes of putative

candidate ligands, as required in VS, must take water into con-

sideration. One possible approach for learning about water mole-

cules tightly bound to the protein is the analysis of

crystallographic data with respect to the repeated occurrence of

water molecules in structurally related binding sites (e.g. in a gene

family) or multiple structural determinations of the same protein

with many distinct ligands [66]. If water is present in all structures

analysed at more or less the same location, this is a strong indica-
tion that this water molecule is tightly bound, and in a VS run

could be considered as an integral part of the target structure.

Selection of candidate ligands
As with HTS, VS needs a thoughtfully designed and thoroughly

compiled sample of small molecule candidate ligands for screen-

ing. Pharmaceutical companies will primarily screen their own

proprietary compound collections, with the advantage that

detected hits will be exclusive and will cover molecules for which

the synthesis is well-established at their site. However, are such

sample pools biased? How well is the available chemical space

covered? These considerations have led large pharma companies

to complement their inhouse collections with compounds offered

through commercial suppliers.

Sample collection of candidate ligands for VS
Starting with the Available Chemical Directory as the initial pro-

totype (see MDL, http://www.mdli.com), there are currently more

than 10 million unique purchasable compounds on offer [67].

How well do they cover chemical space, and which portion of this

space represents druglike molecules? Some dramatic figures have

been proposed concerning the number of organic molecules that

can be considered as druglike. Usually, molecules meet these

criteria if they are composed only of the elements H, C, N, O, P,

S, Cl and Br, and possess a molecular weight <500 Da [68]. How

diverse should the entries of a compound database used for screen-

ing be? What physicochemical properties have to be met by the

candidates to guarantee sufficient bioavailability? The concept of a

well-balanced and homogeneously populated space of diverse

druglike molecules appears very tempting; however, there is no

proper definition of what descriptors to use as coordinates on the

axes of such a compound space. What is ‘diverse’ in this context?

As with the criterion ‘similarity’, the expression ‘diversity’ is a

relative measure that relates to a reference point. In VS, the

reference point is the target receptor and the difference in binding
www.drugdiscoverytoday.com 585
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affinity of two ligands with respect to this structure. This defines

whether two molecules should be classified as ‘similar’ or ‘diverse’.

It can be imagined that, for one target, a correctly placed methyl

group on a ligand might have a dramatic effect on binding affinity,

whereas for another it will be tolerated with no change in binding

affinity. In the first case, the ligands with and without a methyl

group would have to be termed ‘diverse’, whereas in the second,

they will be called ‘similar’. However, consulting a ‘diversity’

scoring that concentrates solely on the topology of a ligand, the

methylated and unsubstituted derivatives will probably be ranked

as ‘highly similar’.

Size of the candidate ligands used for VS
Is there an optimal size for candidate ligands to be submitted to

screening? In the past, combinatorial chemistry in particular has

enabled pharmaceutical companies to develop screening libraries of

several million candidate molecules; thus, in principle, the sheer

number of test compounds is no longer an issue. Although large in

total count, the individual members of such libraries are usually

large in terms of size and molecular weight. They are mostly in the

range of typical drug-size molecules, having been synthesized in

other drug development projects. However, if they turn out to be a

micromolar screening hit, they still require optimization to improve

their affinity towards the target protein by two or three orders of

magnitude. This has to be accomplished while maintaining reason-

able molecular size and appropriate absorption, distribution, meta-

bolism and excretion properties. In consequence, it involves

stripping down to a scarcely decorated core skeleton while subse-

quently building up this core again with novel well-tailored side

chains. This is a challenging task, and is often difficult to achieve.

Experience from drug optimization programs has shown that small

core fragments (‘privileged templates’ or ‘fragments’)known tobind

with significant affinity are ideal starting points for further optimi-

zation [69,70]. Accordingly, the compounds selected for VS should

leave some room for optimization, thus matching the range of so-

called leadlike or fragment-like molecules [71].

Well-balanced selection of candidate ligands for
screening
Verdonk et al. [72] have presented a very insightful discussion on

approaches to be taken when constructing databases for VS, and

have suggested that the methods involved should be validated

(e.g. by assessing the enrichment rates of known binders). For this

purpose, in a VS campaign, known binders are pooled with the

sample set of screening candidates to assess how well the known

binders ‘enrich’ during the course of the screening process. Such

considerations are important for the development of new meth-

ods; however, in an actual drug development project, at the end of

the day, the medicinal chemist will ask for novel leads that are

worthwhile pursuing with synthesis and optimization. Impressive

enrichment rates of known actives will not be convincing.

In light of these considerations, what is a suitable compound

collection? Some general criteria have to be matched either by

inhouse proprietary compounds or by substances offered by com-

mercial suppliers. Compounds can be validated with respect to drug

likeness considering Lipinski’s rule of five, or lead likeness applying

more stringent criteria (as defined by the rule of three) [73–75].

Recently, Martin tested Lipinski’s frequently applied rule with
586 www.drugdiscoverytoday.com
respect to experimentally determined bioavailability in the rat

[76]. This study showed that the rule of five has predictive ability

for neutral and positively charged molecules; however, anions obey

different rules, and the size of their polar surface area confers some

predictive power. Similarly to the considerations concerning the

druggability of binding sites, the criteria for bioavailability are

multifactorial. Irwin and Shoichet took the initiative to set up

the freely available database ZINC with validated compounds for

VS [67]. It is built from 2D compound information, generates 3D

coordinates and curates, if possible, from stereo- and regioisomeric

ambiguities. Multiple states with respect to protonation, charges

and tautomers are enumerated. However, as described for proteins,

the properties of compounds might be altered upon protein bind-

ing. Insoluble, reactive and aggregating compounds are not repre-

sented in the database. The rule of five is a straightforward filter to

discard compounds with putatively undesired properties from the

screening sample. Depending on the strategy pursued in the sub-

sequent VS campaign, multiple conformers can be precalculated

and stored as separate entries in the database.

Data sample of already synthesized or virtual
candidate molecules
Limiting the search sample to purchasable compounds in VS is a

pragmatic approach because screening hypotheses can be tested

rapidly [67,77]. However, VS can also scan over virtual compound

libraries, and synthesis can be postponed to a later stage, con-

sidering only the most promising hits. Reymond’s group

attempted to generate a database of all possible organic molecules

up to 160 Da under the constraints of defined chemical stability

and synthetic feasibility [78]. This database contains 13.9 million

entries. It is possible that such a sample could be used for fragment

screening. For larger compounds, exhaustive sampling of possible

molecular skeletons will end up in a combinatorial explosion with

too many possible solutions. However, proper design criteria,

defined by the architecture of the binding site used in VS as the

target, might guide the generation of target-tailored virtual

libraries for VS. In particular, considering the criteria of combina-

torial chemistry and parallel synthesis, such VS strategies can

actually help to synthesize only the most promising entries of a

large virtual combinatorial library.

Tools and strategies for a VS campaign
Principally, two strategies can be followed in a VS campaign:

forward or backward filtering of hits obtained by docking. The

most crucial step in VS is the docking of candidate molecules to the

target protein [79–86]. In forward filtering, various criteria are used

to reduce the initial data sample, which might comprise several

millions of test compounds, to the several hundred or thousand

most promising candidates to be docked [87]. In backward filter-

ing, all entries from the data sample are docked to the target

protein, and filter criteria are subsequently applied to rank the

generated docking solutions. Nowadays, the speed of computers is

no longer the limiting factor in selecting the strategy.

Forward filtering applying increasingly stringent
selection criteria
The forward technique requires fewer computational resources.

This is mainly because of the fact that at each hierarchical filtering
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step, a significant amount of the original data sample is discarded.

However, with a decreasing number of compounds, the filtering

becomes computationally increasingly demanding and sophisti-

cated. Flexible docking is the computationally most intensive step

of all; thus, the fewer candidates to be considered here, the more

effort can be spent in controlling, validating and assessing docking

results. This is clearly an advantage of this strategy. Forward

filtering eliminates compounds initially according to simple

descriptors such as molecular weight, number of rotatable bonds,

lipophilicity (usually expressed by the logarithm of the partition

coefficient, log P) or crude shape descriptors, such as the ellipticity

of the overall structure. Subsequently, information about the

receptor’s binding site is exploited. Once a hotspot analysis of

the most likely anchoring positions in the binding pocket has been

performed, a protein-based pharmacophore can be derived [88].

This pharmacophore sets the constraints for the minimal require-

ment of functional groups to be matched by putative ligands (e.g.

number of hydrogen bond donors, acceptors or hydrophobic

groups). Molecules satisfying such criteria can be retrieved by

any database engine capable of a functional group substructure

search. Once the topographical arrangement of the protein-based

pharmacophore has been incorporated into the search and the

remaining candidates are requested to match this pattern, the

study can be further focused. UNITY (UNITY Chemical Informa-

tion Software, version 4.1, Tripos) and CATALYST [89] are proto-

types of such database engines supporting this screening step. An

alternative tool is FeatureTrees, which can retrieve molecules of

similar topology in feature space [90]. In this context, ‘features’ are

considered as being similar types of functional groups or molecular

building blocks. Similarity can be considered as a further filter

criterion in VS. For example, if candidate molecules are requested

to match with a predefined protein-based pharmacophore, this

condition already involves a selection in terms of similarity cri-

teria; however, they are regarded very generally. Furthermore,

information about known binders can be used for filtering,

although the danger then exists that, owing to biased filters and

preconceived concepts, some unexpected and novel chemistry is

discarded during the early filtering steps. Finally, docking is pur-

sued, usually considering only 1–10% of the initial sample collec-

tion. An advantage of the forward filtering approach is that it

enables more elaborate docking protocols to be performed – for

example, taking multiple protein conformational states into

account or reflecting a protein-based pharmacophore as a restraint

in docking. Most importantly, this hierarchical filtering strategy

enables the tracking of the performance at the various filter levels

by human intervention, and, in particular, visual inspection of

docking solutions remains feasible.

Backwards filtering applying selection criteria on
generated docking solutions
Backwards filtering starts with high-throughput docking and ana-

lyses the generated docking modes as subsequent steps. This

approach is especially challengingbecause docking returns multiple

solutions formost candidatemolecules. Stronglydiscriminative and

reliable scoring functions must be available for analysing the com-

puted results in an automated fashion because visual inspection for

the large number of diverse compounds to be examined is hardly

feasible. However, it is questionable whether the existing scoring
functions are reliable enough to succeed with such heroic demands

(see below). Nevertheless, to proceed with the multiple docking

solutions from a high-throughput run, the generated docking

modes can be filtered with respect to achieved matching of the

protein-based pharmacophore, contact complementarity of protein

and ligand surfaces or the remaining residual unoccupied voids

along the protein–ligand interface. Because nature probably avoids

gaps in molecular assemblies, the latter criterion could be a powerful

indicator for irrelevant binding modes or the putative accommoda-

tion of interstitial water molecules.

Selection of the most appropriate docking tool
Docking is the crucial step in VS. The seminal program DOCK,

originally described in 1982 by Kuntz et al. [17], has evolved as the

first VS tool. Later, other programs were successfully applied in VS,

such as GOLD [91], FlexX [92], Glide [93,94] or Autodock [95], to

name the most popular prototypes. These have been recently

reviewed [96–102]. All docking tools follow slightly different con-

cepts. This might give individual programs a particular advantage in

one task with respect to another – for example, incorporating

aspects such as flexibility of ligand and receptor or restraining

the docking search engine to particular regions in configuration

space (e.g. mapping a protein-based pharmacophore) [103]. How-

ever, all docking tools are still far from perfect. An even more

challenging, but carelessly disregarded, aspect of docking is the

appropriate consideration of water molecules. As indicated above,

water molecules are involved in binding in about two-thirds of the

known protein–ligand complexes. However, most docking tools

ignore them simply because conclusive concepts of how to consider

them correctly are missing. If structural evidence is given, preplace-

ment of water molecules in a docking run is a feasible strategy [66].

The docking tool Slide [104] treats preplaced water molecules in a

way that still enables their replacement by ligand atoms in docking.

The particle concept in FlexX [105] enables the placement of water

molecules ‘on the fly’ during the course of the generation of

individual docking solutions. In the docking tool GOLD, water

molecules can be switched on or off, and can spin around their

principal axes to achieve good contacts with a docked ligand [106].

Recently, the popular docking tools DOCK and FlexX have been

equipped with features that enable docking on a preconceived

pharmacophore or property distributions [107,108]. Consideration

of such criteria will drive docking solutions especially into regions

either frequently trapped by other bound ligands or featured by

complementary analytical tools as being particularly relevant for

binding. The program AutoDock [95] performs docking on a pre-

calculated grid, storing potential values from any sort of interaction

field [109]. In the original implementation, Lennard-Jones and

Coulomb potential values are used. Sotriffer et al. [110] replaced

these by knowledge-based potentials, originally implemented into

DrugScore. The latter potentials have proven to be powerful for

discriminating, and rank among multiple ligand poses. The poten-

tial gridapproach inAutoDockalso enablesonetoaverageacross the

fields produced by various protein frames, so that the conforma-

tional degrees of freedom of a protein can be considered. In addi-

tion, adapted fields optimized with respect to the binding properties

of some known actives in the comparative molecular field-type

approach ‘adaptation of fields for molecular comparison’ (AFMoC)

[111] can be used as target potential values in AutoDock [112]. The
www.drugdiscoverytoday.com 587
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latter docking tool performs multiple stochastic searches on the

potential hypersurface; accordingly, the frequency of occurrence of

certain dockingsolutions can be used asan additionalfigureof merit

for their relevance [113].

Docking of small ligand fragments
The issue of an optimal ligand size for screening has been addressed

above. The complexity of the docking problem increases with the

size of the ligand and its number of rotatable bonds. Thus, smaller

molecules in the typical range of ligand fragments should be simpler

to dock. Perplexingly, present experience indicates the opposite to

be the case. Fragments are easily scattered over a binding site by

docking; reliably successful docking can only occur if the binding

site itself is restricted in size and shows dimensions similar to the

fragments [48]. Interestingly, experimental approaches show the

opposite: small molecular fragments (>200 Da) usually populate, in

a well-defined manner, in a very limited number of sites in binding

pockets [69,70].

Enrichment rates to control the achievements of virtual
screening
VS runs are usually monitored and validated by comparing the

performance of a set of known actives with a large number of

‘randomly’ picked compounds. The actives are pooled with the

random entries. All compounds are submitted to the selected VS

protocol, and the performance ranks of the known actives with

respect to the remaining pool are converted into enrichment plots.

Such a process is essential for keeping control over the perfor-

mance and achievements of VS. However, the choice of the ran-

dom compound library is crucial and can strongly affect the

enrichments obtained [72]. Accordingly, it has to be examined

whether the pooled, randomly picked decoy structures are actually

nonbinders. In a real-life scenario, it should be noted that merging

known actives with a set of candidate ligands should result in a

gradually declining enrichment rate at the subsequent hierarch-

ical filter steps because novel actives, retrieved by VS, will populate

in prominent ranks and dilute the set of predefined known actives.

Scoring, ranking and validation of VS docking results
Independent of the actual VS strategy applied, docking and sub-

sequent scoring of the suggested solutions is the key performance-

determining factor in VS. The discriminatory power of the applied

scoring function is of utmost importance for ranking, and hopefully

enriching, potentially active binders at the top of the list of docking

solutions. In consequence, a myriad of scoring functions has been

developed over the past few years [114–116]. Approaches have been

taken not simply to rely on one single function but to take on board

the consensus picture of several scoring schemes [117,118].

Scoring of docking hits by the expected binding affinity
To characterize the binding affinity of putative lead candidates

experimentally, the binding constant or its inverse, the dissocia-

tion constant, is determined (or approximated by values such as

the IC50). If we assume that the basic rules of equilibrium thermo-

dynamics can be applied, we can define, according to the law of

mass, an equilibrium constant that describes the formation of a

protein–ligand complex. This equilibrium constant is logarithmi-

cally related to the Gibbs free energy, comprising both an enthal-
588 www.drugdiscoverytoday.com
pic and entropic contribution. Whereas the former relates to

energetic features, the latter concerns configurational and order-

ing phenomena. The entropic contribution estimates how the

energy content of the system is distributed over internal and

external molecular degrees of freedom.

First-principle methods to compute binding affinity
Up until now, three strategies have been followed to predict

binding affinities on the basis of a given protein–ligand binding

geometry. The most rigorous and theoretically most solid

approaches are first-principle methods [59]. Using quantum

mechanics or computationally less demanding (however approx-

imate) force fields, the partition function of a system is computed

and the free energy differences between the bound and unbound

state are determined. With the increasing speed of computers,

such methods are becoming more accurate and obtaining a grow-

ing relevance for scoring [119]. However, screening large samples

of docked solutions to estimate binding affinities is still far beyond

tractability. Nevertheless, first-principle methods do not need any

calibration or training in experimentally determined affinity data;

thus, they will not suffer from inherent experimental shortcom-

ings or accuracy limits. This differs from the other two approaches

described in the following section, the regression- and knowledge-

based scoring functions, which are based on empirical concepts

[59].

Empirical scoring functions derived by regression
analyses
Regression-based approaches assume additivity of individual

terms considered in a master equation to describe the total Gibbs

free energy of binding. In this context, a ‘term’ can reflect any

physicochemical property of relevance for the protein–ligand

binding process – for example, the number of charged or

uncharged hydrogen bonds, the size of the polar or nonpolar

surface portion, the number of rotatable bonds or the enthalpy

required to desolvate either the ligand or the protein, among

others. They are assumed to be independent from each other,

and their individual contribution in reproducing the known affi-

nities of some training set ligands is extracted by regression

analysis, partial least-squares analysis or neural networks [59].

However, independence of the ‘terms’ is unlikely, and fair to

strong correlations between terms are probable. In the correlation

analysis, this fact might point out that another, at first glance

surprising, property pops up as the best explanation. However, it

might be the case that the latter property is not on its own essential

in a physical sense, but is highly correlated with another property

that is actually crucial. We recently parameterized a new regres-

sion-based scoring function on the basis of a large sample of crystal

structures with known affinities for the bound ligands. Depending

on the composition of the training set, different terms are found to

be relevant in the analysis. This clearly shows that such empirical

scoring functions reflect a best fit with respect to the training set

used but they rarely achieve generality.

Empirical scoring functions derived from a
knowledge base
An alternative to regression-based approaches are knowledge-

based scoring functions [59]. These evaluate the occurrence fre-
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quencies of some properties of interest – for example, the mutual

distance between particular atom types found across the protein–

ligand interface. The sample distributions describe occurrence

probabilities and can be compared with a statistical mean refer-

ence situation. Any deviations from this average can be translated

using some type of mathematical relationship into statistical

preferences that can be used to determine the geometry of pro-

tein–ligand complexes. Conceptionally, the knowledge-based

functions appear to be more general because no master equation

with preconceived ‘terms’ is required. However, the data selected

to derive the function, and the definition of atom types, together

with many adjustable parameters needed to actually establish the

method, also attenuates the generality of this approach.

Accuracy of the estimate of binding affinity
To estimate binding constants, both the regression- and knowl-

edge-based scoring functions require experimental affinity data for

internal calibration. Thus, their prediction accuracy can never be

better than the precision by which binding data can be measured.

It is interesting to note that the estimated standard deviations of

such empirical scoring functions are reduced if data for a selected

number of targets, determined in one laboratory based on assay

data recorded under strictly conserved conditions, are used or if

broad-range data covering many targets are considered based on

assay data determined in various laboratories. The relative differ-

ences in binding data within a series of compounds can be deter-

mined precisely – usually much better than across data from

various systems for which the comparison has to be performed

on an absolute scale. In consequence, the standard deviations of

predicted binding affinities of presently available functions range

between 0.7 and 1.5 logarithmic units in binding affinity. This

range matches the experimental accuracy achieved for binding

data across training sets of growing heterogeneity covering a broad

spectrum of targets. In our experience, knowledge-based scoring

functions are better able to extract binding geometries generated

by a docking program that closely approximate the experimentally

confirmed binding mode from a sample set of decoy placements.

By contrast, regression-based scoring functions are better in the

actual affinity prediction, provided that a fairly accurate binding

geometry is given.

Unlike the professed opinion that in docking the geometry

problem has been resolved to a sufficient extent, and that the

scoring problem remains an open question [120,121], it appears

that both are intimately related. We recently developed a knowl-

edge-based scoring function based on accurate contact data from

small molecule crystal data [122]. This function reliably recog-

nizes the experimentally determined binding mode found in a

crystal structure among a set of decoy poses. It appears self-

evident that the scoring problem can only be alleviated if more

relevant, near-native binding poses are produced by docking

programs and reliably recognized by a scoring function. Accord-

ingly, it appears advisable to drive docking solutions as close as

possible to the native geometries – that is, as they would show up

in a corresponding crystal structure. This can also be achieved by

optimizing them towards the near-native situation. At best, this

involves minimization with respect to the function used for

scoring. As a disadvantage, this process would be computationally

demanding.
Binding affinity: a sufficiently well understood
property?
Any discussion of scoring and ranking must ask the question as to

how well we understand the target value Gibbs free energy. Is it

advisable to focus scoring on free energy or would it be better to

treat enthalpy and entropy as separate terms in the scoring [123]?

There is a mutual compensation between enthalpy and entropy

owing to the fact that both entities scatter over much larger ranges

than does the free energy itself. Considering the binding of a

ligand to a protein, enthalpy (DH) and entropy (-TDS) can easily

scatter over a 3–4-fold larger range than the spread of Gibbs free

energy (DG). The mutual compensation of enthalpy and entropy

can even be found across closely related molecules [124] (Figure 5).

Furthermore, many physicochemical phenomena of relevance for

the binding process are not yet fully understood and, therefore,

have not yet been correctly incorporated into scoring functions

(e.g. the role of water, change in protonation states or an appro-

priate consideration of entropy). Interestingly, microcalorimetry

indicates that with increasing temperature, the protein–ligand

binding process becomes more exothermic and entropically less

favourable [58,59]. Because this observation applies to all targets, it

suggests that general phenomena are involved which are not yet

understood at a molecular level. Despite our present deficiencies in

understanding the physics of the binding process, scoring still

works satisfactorily – most likely because we consider the binding

of ligands to a protein on a relative scale to each other. Accord-

ingly, any unappreciated phenomena, similar across all complexes

in the analysis, will simply be cancelled out. For example, as

mentioned above, one approach for reflecting protein flexibility

applies parallel docking into several rigid binding-competent con-

formers of the protein. The disadvantage of this strategy is the fact

that additional degrees of scoring are created: what discriminates

the scoring against different protein conformers? Cancellation of

unreflected internal protein energy contributions is no longer

certain. Studies have shown that a special scoring scheme or

protocol is required [48,52]. Because dramatic energy differences

between low-energy conformers are unlikely, a modulated pocket

size for the different protein conformers might require individual

scoring of the altered desolvation properties of the binding site.

Required accuracy of scoring: enrichment or hit
identification?
VS is used to enrich putative actives from a large sample set of test

ligands. Accordingly, the desired accuracy of scoring depends on

whether, at first glance, prioritization of the sample set for testing

is anticipated or whether putative actives are expected among the

top ten or 100 of a hit list. The latter requires very powerful

discrimination of actives over inactive decoy binders. Present

scoring functions have been optimized to discriminate for a par-

ticular ligand decoy binding mode from near-native ones. The

discrimination of binders from decoy nonbinders still remains as

major challenge for VS protocols [125]. At worst, in these cases the

above-mentioned poorly understood contributions to binding

become overwhelmingly important. Perhaps the consideration

of similarity criteria in the search [87,107,108,110–112] enables

the problem to be alleviated to some degree because this drives the

search towards more closely related ligands for which some of the

disregarded effects in scoring cancel themselves out.
www.drugdiscoverytoday.com 589
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FIGURE 5

Similar ligands decompose differently into enthalpic and entropic binding contributions. Crystal structures of two closely related thrombin

inhibitors bearing a cyclopentyl or cyclohexyl moiety as terminal substituent to accommodate the S3/S4 pocket of the catalytic site (surface of the binding

pocket is indicated in blue). Whereas the five-membered ring (left) gives rise to a well-defined difference in electron density (white ‘chicken-wire’ contouring),
the six-membered ring (right) cannot be assigned to any density (see inside white circles). It is likely that the latter fragment shows enhanced residual mobility

and is scattered around several conformational states. Interestingly, this deviating behaviour is well reflected in the thermodynamic properties (centre). Both

compounds exhibit the same free energy of binding (DG, blue columns). However, the cyclohexyl derivative (right) with the enhanced residual mobility is

entropically (-TDS, red columns) more favoured than the ‘less-well clamped’ five-ring derivative (left). The latter experiences better enthalpic contributions
(DH, green columns) to binding [124].
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Ultimate proof of concept: crystal structure
analysis of VS hits
Only rarely, the crystal structure of detected VS hits has been

determined and subsequently published. Such case studies have

recently been reviewed by Shoichet [24]. Cases have been

described for which VS has correctly predicted the subsequently

found binding mode. Other examples point to deficiencies arising

from the superficially understood phenomena described above.

Finally, it has also been reported that VS inappropriately identified

an active compound because binding actually occurs in a totally

different region of the protein surface.

Conclusions and outlook
VS has been established as a powerful alternative and complement

to HTS. When performed optimally, impressive hit rates have been

reported, which have been significantly higher (by a factor of 100–

1000 [24]) than those for HTS. Comparative studies of HTS and VS

indicate that the methods can capture alternative and comple-

mentary ligands.

Undoubtedly, VS is not yet a fully mature technology following

a well-established process line. Few of the foundations of protein–

ligand recognition are understood well enough to be deployed in a

large scale, multi-compound effort such as that commonly under-

taken in VS. This calls for further indepth research. In particular,

protein flexibility and induced-fit adaptations, the role of water in

solvation, desolvation and ligand binding, and the electrostatics
590 www.drugdiscoverytoday.com
involved, including changes in protonation states and an appro-

priate consideration of entropic changes, will need to be better

understood to improve the hit retrieval rates in VS. Frequently,

experimental work performed in parallel or as a follow-up to a VS

campaign provides a whole bunch of unexpected results pointing

towards manifold deficiencies of the concepts applied. Many more

experimental studies are required. Nevertheless, VS has proven

successful and as a valuable alternative to HTS, in particular if it is

used as a tool to support and complement hit discovery. Compared

with HTS, it is significantly cheaper and faster to use. It can be

easily rerun under modified conditions – for example, if additional

information about the target protein under consideration

becomes available or novel filter criteria are taken into account.

It is interesting to note that an experienced modeller or med-

icinal chemist can often figure out whether a particular binding

pocket appears druggable or a certain molecule obeys the rules of

drug likeness; however, putting such knowledge into computer

algorithms makes the multifactorial nature of these rules apparent,

complicating attempts to generalize them. The same multifactor-

ial nature holds true for docking and scoring. It is therefore highly

advisable to refrain from fully automated strategies in VS. Experi-

ence and human intervention are of the utmost importance for

keeping control over the various filter steps in a VS run. Used in

such a way, VS can be successful; in particular, if information about

molecular similarity is considered in terms of generic physico-

chemical properties and not simply as chemical formulae. Con-
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sidering similarity concepts takes the risk that highly diverse

molecules remain undetected; however, it probably makes the

searches simpler because many parameters that actually matter

in VS, and which are not properly considered, simply cancel each

other out in a relative comparison. Considering all of the men-

tioned limitations, and taking molecular similarity as some kind of

work-around to evade existing shortcomings, a critical reviewer

might raise the question of whether, under such restrained con-

ditions, VS can really contribute something novel that an experi-

enced medicinal chemist would not have thought about. Only

successful examples can convince. We applied VS to a tRNA-

modifying enzyme for which the inhibitor replaces either guanine

or preQ1 (a precursor to the modified base queuine) as a substrate

in the enzyme recognition pocket (Figure 6). Initial VS searches

retrieved structures that, admittedly, an experienced medicinal
FIGURE 6

An unexpected ligand skeleton from virtual screening. Virtual screening (V

transglycosylase [88]. Initial hits such as 1–4 (lower left box), which were followed up

of this enzyme guanine, preQ0 and preQ1 (upper box). These searches were based on

bond acceptor group) and in Figure 4. An experienced medicinal chemist could po
However, in a second VS campaign we focused on the replacement of two wate

transglycosylase (right, contours for hydrogen bond acceptor group [126]). This scre

structure and binding mode from any known natural substrate and it can serve as

synthesized and show a reasonable structure–activity relationship (Stengl et al., u
suggested by comparative substrate considerations. This example underlines the
chemist might also have suggested as being ‘substrate-like’. How-

ever, a follow-up VS screen in which several water molecules were

allowed to be replaced in the binding site suggested a cyclic urea

structure with a different orientation in the binding pocket [126].

Synthetically, this lead appeared tempting and presently serves as

a starting point for a new series of compounds (Figure 6). This

unbiased approach, resulting, in chemical terms, in an unexpected

lead, demonstrates that VS can make important contributions to

drug discovery, providing some unexpected candidates. Never-

theless, there is still a long way to go until it becomes an estab-

lished tool for routine lead discovery. Interestingly, nowadays,

most aspects of contemporary drug discovery are optimized

towards high throughput; by contrast, our current increase in

the knowledge and understanding of protein–ligand recognition

principles is still proceeding at a low-output rate.
S) has been used to search for putative inhibitors of t-RNA guanine

by chemical synthesis, showed structural similarity with the natural substrates

the protein-based pharmacophore shown on the left (contours for hydrogen

ssibly have come up with similar suggestions for potential leads such as 1–4.
r molecules at the lower right rim of the binding pocket of t-RNA guanine

en suggested 5 as a potential hit. Its cyclic urea-type skeleton is distinct in its

a synthetically easily accessible lead. Several derivatives (e.g. 6–8) have been

npublished). It is unlikely that this novel lead structure would have been
power of VS as an alternative source for novel lead discovery.
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