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Simple Summary: Recent clinical trials have demonstrated the capability of safely delivering prostate ra-
diotherapy with a simultaneous focal boost. These studies have also indicated limitations to achieving focal
boosts whilst trying to limit normal tissue toxicity. More guidance in the location and level of the required
boost could alleviate such limitations. Tumour hypoxia is one of the causes of clinically observed radiore-
sistance and hypoxic volumes represent prime candidates for a focal boost. Multiparametric magnetic
resonance imaging (mpMRI) has the potential to quantitatively describe the extent and spatial distribution
of hypoxia in prostate cancer. In this article we demonstrate a biologically targeted radiotherapy approach
that can utilise this information to target hypoxia for favourable treatment outcomes.

Abstract: Purpose: Hypoxia has been linked to radioresistance. Strategies to safely dose escalate
dominant intraprostatic lesions have shown promising results, but further dose escalation to overcome
the effects of hypoxia require a novel approach to constrain the dose in normal tissue.to safe levels.
In this study, we demonstrate a biologically targeted radiotherapy (BiRT) approach that can utilise
multiparametric magnetic resonance imaging (mpMRI) to target hypoxia for favourable treatment
outcomes. Methods: mpMRI-derived tumour biology maps, developed via a radiogenomics study, were
used to generate individualised, hypoxia-targeting prostate IMRT plans using an ultra- hypofractionation
schedule. The spatial distribution of mpMRI textural features associated with hypoxia-related genetic
profiles was used as a surrogate of tumour hypoxia. The effectiveness of the proposed approach was
assessed by quantifying the potential benefit of a general focal boost approach on tumour control
probability, and also by comparing the dose to organs at risk (OARs) with hypoxia-guided focal dose
escalation (DE) plans generated for five patients. Results: Applying an appropriately guided focal boost
can greatly mitigate the impact of hypoxia. Statistically significant reductions in rectal and bladder dose
were observed for hypoxia-targeting, biologically optimised plans compared to isoeffective focal DE
plans. Conclusion: Results of this study suggest the use of mpMRI for voxel-level targeting of hypoxia,
along with biological optimisation, can provide a mechanism for guiding focal DE that is considerably
more efficient than application of a general, dose-based optimisation, focal boost.

Keywords: prostate cancer; hypoxia; tumour control probability; radiogenomics; multiparamet-
ric MRI
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1. Introduction

Hypoxia has been widely reported to exist in prostate cancer (PCa) and has been
shown to be linked to local treatment failure, increased risk of metastases and radioresis-
tance [1]. To overcome the effects of radioresistance, radiation doses in excess of 20% above
standard prescription doses have been proposed [2]. Conventional radiotherapy treatments
for PCa aim to deliver a uniform dose of radiation to the entire prostate, and further dose
escalation (DE) beyond standardly prescribed doses is limited due to the increased risk of
toxicity. The recently reported FLAME study demonstrated that, by increasing the dose
only to the tumour visible on multiparametric magnetic resonance imaging (mpMRI),
improvements in tumour control could be achieved when compared with whole gland
treatments without a boost dose to the tumour [3]. The median boost dose delivered to
the tumour in this trial was only 10% higher than the whole gland dose and therefore
likely insufficient to overcome hypoxic sub-volumes. To further increase the boost dose
to the tumour (without increasing toxicity), the study investigators conducted a similar
Phase II trial with a hypofractionated schedule, called the hypo-FLAME study [4]. PCa is
known to be sensitive to the fractionation schedule, that is, increasing the dose delivered at
each treatment and reducing the number of treatments (fractions) is more effective than a
low dose/fraction schedule [5]. The hypo-FLAME study demonstrated that delivering the
treatment in five treatment fractions rather than thirty-five (the number of fractions used in
the FLAME study) achieved acceptable rates of acute toxicity. However, the median dose
delivered to the boost volume (40.3 Gy) was less than the intended dose of 50 Gy due to the
strict requirement to adhere to the specified organs at risk (OAR) dose constraints. Hence,
a new strategy to overcome radioresistant tumours is required.

Conventional dose-based planning approaches aim to deliver a prescribed dose to
the prostate (and a boost dose to the tumour if applicable). In contrast, biologically
targeted radiation therapy (RT) considers the specific characteristics, on a voxel-wise
basis, of the tumour in the treatment planning process, and aims to maximise the tumour
control probability of each voxel whilst minimising normal tissue complication probability.
Biologically targeted RT has, up until recent times, not been widely practised due to the
inability to spatially map tumour characteristics. Quantitative imaging, however, has
demonstrated an ability to define pathological and physiological features of tissue at
the voxel-level and hence the potential to provide patient-level input parameters for a
biological approach to treatment planning [6]. In the review article of Sun et al. for example,
it was demonstrated that machine learning methods can be used to define spatial maps of
tumour cell density and regions of high and low grade disease [7]. These studies typically
correlated features in mpMRI with ground-truth histology using sophisticated image
co-registration frameworks such as those defined by Reynolds et al. [8,9]. Using these
methods to define tumour hypoxic sub-volumes however, has, up until recently, proven
to be challenging as hypoxic regions cannot be directly defined on histology and used to
correlate with imaging features. To address this issue, Sun et al. used a radiogenomics
approach to provide a surrogate for ground-truth hypoxia for correlation with imaging
features [10]. This study identified sixteen candidate features in mpMRI that correlated
with the hypoxic signatures expressed in surgical specimens of prostate cancer.

In this article, we present the first in silico study to investigate the benefits of a
biologically targeted RT approach (which we define as “BiRT”) to overcome the effects of
hypoxic tumour sub-volumes. We compare this approach with dose-based optimisation
methods using the hypo-FLAME dose fractionation schedule, and include whole-gland
treatments, whole-gland treatments with a tumour-defined boost volume, and whole-gland
treatments with a boost volume and hypoxic sub-volume.

2. Materials and Methods
2.1. Tumour Biology Maps

All radiotherapy treatment plans utilised in vivo mpMRI data from five participants
scheduled for radical prostatectomy as part of a Human Research Ethics Committee ap-
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proved project (Reference number: HREC/15/PMCC125) [9]. Patient demographics are
summarised in Table 1. Patient-specific cell density prediction maps were derived for each
patient from mpMRI using predictive models developed by Sun et al. [11]. The tumour
volume was defined using co-registered ground-truth histology data according to the
methods of Reynolds et al. [9]. The clonogen distribution maps were computed for each
patient by multiplying the binary tumour location map and cell density prediction map.
Voxels defined as non-tumour (i.e., with a value of 0 in the tumour location map) were
assigned a clonogen density of 0. Otherwise, the cell density value was retained as a rela-
tive measure of clonogen density. As the cell density prediction map did not differentiate
clonogens from normal cells, the clonogen distribution maps were linearly scaled to acquire
a median total clonogen number of 107 for the five patients (Table 2), which is the estimated
population-median total clonogen number of high-risk PCa [12]. The scaled clonogen
distribution map was used in the calculation of tumour control probability (TCP) as shown
in Figure 1.

Table 1. Patient demographics.

. Age Prostate Gleason Score of the Pathological
Patient (Yegrs) Volume (cm?®) PSA (ng/mL) Dominant Nodule StagSge

1 58 28.9 9 9(5+4) pT3b NO

2 64 30.6 6.1 7(4+3) pT3a

3 68 28.1 11 7(4+3) pT3b N1

4 68 57.0 42 7(4+3) pT3a

5 72 27.6 2.2 7(4+3) pT3a

Table 2. The original and scaled total cell number (clonogen) for each patient.

Total Cell Number in CTV

Patient

Original Scaled
(Normal + Clonogen) (Clonogen)
1 2.07 x 108 7.27 x 100
2 1.65 x 108 5.79 x 10°
3 446 x 108 1.57 x 107
4 1.14 x 10° 4.00 x 107
5 2.85 x 108 1.00 x 107

Patient-specific hypoxia score maps were derived from mpMRI using the top eight
performing candidate radiomics features identified by Sun et al. [10]. Briefly, these candi-
date features were derived from a radiogenomics study that investigated the relationship
between PCa tissue expressing genetic profiles shown to be associated with hypoxia, and
radiomics features extracted from the co-registered in vivo mpMRI data [9]. The study
described by Sun et al. [10] provided a binary output representing hypoxic or normoxic
status. To constrain the model to search only within tumour-bearing regions likely to
contain hypoxia, we assumed that oxygen consumption is a function of cell density [13].
Hence, the hypoxia score map was derived from a weighted sum of the cell density and the
selected eight texture features (Figure 1). Four different hypoxic fractions (HF, percentage
of hypoxic voxels within the tumour) were simulated: 20%, 40%, 60% and 80%. For each
patient, binary tumour hypoxia maps of each of the four HFs were generated by using
thresholds that equate to the 80th, 60th, 40th and 20th percentiles of the hypoxia scores of
the tumour voxels, respectively.
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Figure 1. Schematic diagram showing the process for creating the clonogen distribution map (upper
panel, scaling not shown) and the tumour hypoxia maps (lower panel).

The voxel resolution of the tumour biology maps was resampled to 2 mm x 2 mm
x 2.5 mm from the original resolution of 0.22 mm x 0.22 mm x 2.5 mm for improved
computation time.

As patient data did not include CT imaging, a single CT image set (used for all patients)
was selected from an established clinical trial for dose calculation purposes. The selected
CT data set contained a prostate volume that was similar in shape and size to the MRI
defined prostate volumes of the five patients, but slightly larger such that the prostate
contours delineated on the T2w MRI were wholly contained within the CT-defined prostate
contour. The organs at risk (OARs) including the rectum, bladder, and head of femurs
(HOFs) were delineated on the CT images.

2.2. TCP Model

All model equations are presented in Table 3 and associated parameters defined in
Table 4. The TCP of each treatment plan was calculated using a revised radiobiological
model of Haworth et al. [14]. The TCP of the ith voxel of the clinical target volume (CTV)
with N voxels for fractionated external beam radiotherapy consisting of n fractions was
calculated using Equation [1]. In this implementation, the radiosensitivity parameter o was
assumed to be log-normally distributed within a population and the population-weighted
TCP for the i voxel is given by Equation [2]. Most model parameters were derived from
the work of Wang et al. [12]. Tumour characteristics were assumed to remain constant
during treatment. For a CTV voxel classified as hypoxic, the « and «/ parameters were
scaled by the clinical oxygen enhancement ratio (OER) as in Equations [3] and [4]. The
nominal value of OER used in this study was 1.4, with values of 1.2 and 1.6 considered in a
sensitivity analysis [15]. Assuming that individual voxel responses are independent, the
overall TCP is given by Equation [5].
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Table 3. Equations used for modelling tumour and OAR response. Parameters are defined in Table 4.

Tumour Control Probability

TCP of voxel i for o sample k

exp {fpi\/iexp<fockndi - ocand, + ln(2)¥i)]

TCPi(oy) =

2

pot

(1]

TCP of voxel i over population o distribution

M
TCP;y = ¥ w(ou)TCP;(ox)
K=1

(2]

o sample k for hypoxic tissue

o
Xk, hypoxic = OEk

[3]

§ ratio for hypoxic tissue

[o4

B )hypoxic

R
= % x OER

[4]

TCP across whole target volume

N
TCP = [] TCP;
i=1

Expectation value of target TCP in presence of
geometric uncertainty

M
(TCP) = ¥ w(ouc)(TCP(ou))

k=1

Expectation value of target TCP for « sample k in
presence of geometric uncertainty

1=

N
(TCP(ay)) = X-Gu, [T TCPi(pij . i)
]

[7]

Normal Tissue Response

Expectation value of EUD in presence of geometric
uncertainty

N a
eutn) ~p o [ (0D
] 1

ETe

(8]

Equivalent dose in 2 Gy fractions for voxel i

s+
EQDZGy,i = di Xnx 4

a

a
£+2

Expectation value of NTCP in presence of geometric

=—1 - 10
uncertainty (NTCP) 14 ( D30 ’ L10]
{EUDygy)
NTCP model parameter x =_4 [11]
mv/ 27
Table 4. Parameters used in the model equations listed in Table 3.
Symbol Parameter Value Reference
o Tumour dose-proportional radiosensitivity coefficient Sampled from. lognorm al population N/A
distribution

o« Mean value of « distribution 0.15 Gy’] [12]

On Standard deviation of « distribution 0.04 Gy_1 [12]

3.1 Gy (tumour) [12]

«/B Fractionation-correction parameter for tumour or OAR 5.4 Gy (rectum) [16]
8.0 Gy (bladder) [17,18]

. } s Variable (population median 107 cells per

p Tumour clonogen density (voxel-specific) whole prostate volume) [12]
A% Voxel volume (resolution-dependent) 2 x 2 x 2.5 mm° N/A
Number of treatment fractions 5 N/A

Dose per fraction per voxel Variable N/A

Texp Overall treatment time Approximated as 2n days N/A

Tpot Potential tumour doubling time 42 days [12]
M Number of samples from population « distribution 36 N/A
w(oy) Weight factors normz;\}[lsmg the « distribution such that Variable N/A

Lo wioa) =1
OER Oxygen enhancement ratio 1.4 (1.2-1.8) [12]
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Table 4. Cont.

Symbol Parameter Value Reference
N Number of voxels comprising structure (prostate or OAR) Variable N/A
¥/ Effective systematic geometric error Variable [19-21]
Gy Gaussian distribution of effective systematic error Variable N/A
a EUD model scaling parameter See Table 5 N/A
TD50 OAR uniform dose w&i:ﬁev;i(l)lpljlaaciigl complications in 50% See Table 5 N/A
m NTCP model slope See Table 5 N/A

Table 5. Dose constraints used in treatment planning optimisation.

Planning Method VOI Constraints
CTV V35Gy > 99%
PTV V33.25Gy > 99%
' Rectum V28Gy < 15%
(1) Uniform-dose V32Gy < 20%

V28Gy < 15%
V32Gy < 20%

HOF V28Gy < 5%

V35Gy > 99%; aimed up to 50 Gy %
V52Gy < 0.1cc

GTV V35Gy > 99%; aimed up to 50 Gy ¥

Bladder

(2) Focal DE to tumour * GTV

(3) Focal DE to tumour and
hypoxic volume * HTV V35Gy > 99%; aimed up to 60 Gy ¥
V62Gy < 0.1cc

Maximise <TCP>

v V35Gy> 99%
Rectum Minimise <NTCP>
(4) Biological optimisation TD50 = 78.4 Gy, m = 0.108,a = 6
Bladder Minimise <NTCP>
TD50=80Gy,m=0.11,a=6
HOF V28Gy < 5%

* = OAR constraints identical to uniform-dose planning, % = doses up to prescription as long as OAR constraints
are met.

2.3. Treatment Planning

Treatment planning was performed using a MATLAB based open-source program,
matRad (German Cancer Research Centre, Heidelberg, Germany, version 1.4 beta, [22,23].
matRad simulates 6 MV linear accelerator beams using pre-calculated beamlet kernels for
user-defined beam angles [22,23]. Beamlet weightings are optimised by a gradient descent
algorithm (version 1.4 beta) incorporating direct aperture optimisation. The original
code was modified to include the biological optimisation functions and voxel-level model
parameters. matRad was executed using MATLAB (version 2018b, The MathWorks Inc.,
Massachusetts, USA). The beamlet width was 2.5 mm, and a 7-field beam geometry (0°,
40°, 80°, 110°, 250°, 280°, 310°) was used. A beamlet width of 2.5mm was chosen to match
the worst CT resolution in the z axis.

Four treatment planning methods were explored in this study: (1) uniform-dose
planning, (2) focal DE to the tumour, (3) focal DE to the tumour and hypoxic sub-volumes
and (4) robust biological optimisation. Each of these methods are presented in schematic
format in Figure 2. The first three are classified as dose-based planning methods. Uniform-
dose planning and tumour DE methods were included as non-hypoxia-targeting planning
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methods for comparison with the hypoxia targeting methods. The dose prescriptions
and dose-volume (DV) constraints for the dose-based planning methods were based on
the hypo-FLAME trial protocol where patients were treated with ultra-hypofractionated
treatment (35 Gy /5 fractions) to the whole prostate gland with a focal boost up to 50 Gy to
the mpMRI-defined tumours [4]. Detailed planning constraints for all planning methods
are summarised in Table 5.

CcTv
GTV
60 Gy

Uniform dose Focal tumour DE
HTV 50 Gy
35 Gy
Focal tumour + hypoxia DE Biological optimisation

Figure 2. The four different planning approaches used in this study. The uniform dose method aimed
to produce a treatment plan that would achieve 35 Gy delivered to the entire prostate. The Focal DE
approach aimed to deliver 35 Gy to the entire prostate with a boost dose of 50 Gy to the tumour. The
focal tumour + hypoxia DE plan aimed to deliver 35 Gy to the entire prostate, 50 Gy to the tumour
and 60 Gy to the hypoxic sub-volume. Biologically optimised plans aimed to maximise the tumour
control probability whilst minimising the normal tissue complication probability.

2.3.1. Method 1: Uniform-Dose Planning

The main objective of the uniform-dose planning method was to provide a homoge-
neous dose prescription of 35 Gy to the planning target volume (PTV) while satisfying
OAR DV constraints. The hypo-FLAME trial recommended a planning margin of 4-5 mm,
however, for consistency across all 4 planning approaches we accounted for geometric
uncertainties using a modelling approach to produce the robust biologically optimised
treatment plans (Method 4). These uncertainties were considered by noting that random
uncertainties increasingly behave like systematic errors with hypofractionation [24]; the ge-
ometric uncertainty was modelled as consisting of a purely systematic component [25-27]
with an effective systematic error, X'.

The overall distribution and the resultant margin for the three principal directions
used for uniform-dose planning are summarised in Table 6 and are based on the geometric
uncertainties from target delineation, fiducial marker localisation and intrafraction prostate
motion [19-21].

Table 6. The overall distribution of geometric uncertainties considered in dose-based planning
methods (Methods 1-3), and those considered in biological optimisation (Method 4). ¥ = effective
systematic error.

Dose-Based Planning Biological Optimisation
Uncertainties (mm)
Mean );’ Margin ):/
AP —0.86 3.6 9.0 53
LR —0.03 2.6 6.5 4.6

SI 0.21 32 8.0 5.0
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The OAR dose constraints were identical to those used for the hypo-FLAME trial. The
PTV and CTV treatment planning objectives were V33.25Gy (volume receiving 33.25 Gy,
95% of the prescription dose) > 99% and V35Gy (volume receiving 35 Gy, 100% prescription
dose) > 99%, respectively (Table 5).

2.3.2. Method 2: Focal Tumour DE

The tumour voxels were segmented and defined as the gross tumour volume (GTV).
Based on the hypo-FLAME trial objectives, the focal DE plans were designed to deliver
a dose of 35 Gy to the PTV and up to 50 Gy to the GTV while satisfying the OAR dose
constraints.

2.3.3. Method 3: Focal Tumour + Hypoxia DE

The voxels classified as hypoxic were segmented as hypoxic target volumes (HTVs)
for each HE. A previous Monte Carlo study estimated that an increase of 20-50% of
tumour dose is required to increase the TCP if a significant portion of chronic hypoxia is
identified [2]. As such, a DE up to 60 Gy to the HTV was considered while satisfying the
OAR dose constraints.

2.3.4. Method 4: Biologically Targeted Radiotherapy Approach

Uncertainties in the delivery of highly modulated treatment fields can result in signifi-
cant differences between planned and delivered dose distributions. Hence, incorporating
robust treatment planning approaches is necessary for biologically targeted radiotherapy
approaches. In this study we utilise the term “expectation value” to indicate the reported
values of TCP and normal tissue complication probability (NTCP) account for treatment
delivery uncertainties and are termed <TCP> and <NTCP> respectively. In addition to the
uncertainties included in the planning margin for the uniform-dose planning approach,
uncertainties associated with each of the image-registration steps were included for biolog-
ical optimisation. These were MR-to-histology registration [9] and MR-to-CT registration
uncertainties [28-30]. They were assumed to be isotropically distributed about a mean
of 0 mm. Uncertainties in the models to predict tumour location and cell density have
been previously quantified [11,31]. The TCP model demonstrated low sensitivity in these
parameters [32], therefore, the uncertainties in predictive modelling were not considered.
The overall distribution in three principal directions used for biological optimisation is
given in Table 6.

Biological optimisation aimed to maximise <TCP>, while simultaneously minimising
<NTCP>, of the rectum and bladder. The methods described in Witte et al. [33] were used
to modify the biological objective functions to calculate <TCP> and <NTCP>. The impact
of effective systematic error was simulated by the translation of the patient body relative to
the dose distribution. Rotational uncertainties were not considered, and shift-invariance
of the dose distribution was assumed. Equations [1], [2] and [5] were modified to form
Equations [6] and [7].

NTCP is based on the generalised equivalent uniform dose (EUD) [34]. The expectation
value of EUD in 2 Gy fractions, <EUD,gy>, was computed using Equation [8], and <NTCP>
was then calculated via Equation [10].

2.4. Aim 1: Effect of Hypoxia on <TCP> of Dose-Based Planning Methods

To investigate the effect of hypoxia on <TCP> of dose-based planning methods, <TCP>
of the plans generated with uniform-dose (Method 1), focal tumour DE (Method 2) and
focal tumour+hypoxia DE (Method 3) approaches were calculated for all oxygenation
status considered: HF of 0% (normoxic), 20%, 40%, 60% and 80% (see Figure 3).
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Figure 3. Axial images showing hypoxic sub-volumes within the prostate (black) for patient 2 (A) and
patient 4 (B) representing the smallest and largest tumour volumes of the study cohort respectively.
The volumes containing 20% and 80% of hypoxic voxels are represented by green solid lines and
blue dotted lines, respectively. Note this is a 2-dimensional representation of a 3D volume.

2.5. Aim 2: Comparison of Normal Tissue Effects in Focal DE and Biologically Optimised Plans for
Targeting Tumour Hypoxia

The overall dose distributions of the biologically optimised plans (Method 4) were
linearly scaled to attain the same <TCP> as the corresponding focal tumour + hypoxia DE
plans (Method 3). Biologically optimised plans were assumed to be invariant with dose
scaling. Dose to the rectum and bladder was compared by calculating the <EUD>. Mean
doses were evaluated for the HOFs.

A paired t-test was performed to compare focal tumour + hypoxia DE plans and
biologically optimised plans of the same HF.

2.6. Sensitivity to Oxygen Enhancement Ratio (OER)

To investigate the sensitivity of robust biological optimisation to different OER values,
hypoxia-targeting biological plans were generated for patients with the lowest and the
highest total number of clonogens (Patient 2 and 4) and modelling of the HF at 20% and
80% (Figure 3). Including the nominal OER of 1.4 from Wang et al.’s study, the lower and
upper 95% confidence interval values of 1.2 and 1.8 were investigated [15]. The sensitivity
was measured by variations in dose to the CTV, rectum and the bladder.

2.7. Statistical Analysis

All statistical analyses were performed with the R statistical language (R Foundation
for Statistical Computing, Austria, Version 3.4.2). A test statistic (p-value) less than 0.05
was considered significant.

3. Results

All treatment plans were generated with dose to OARs within the specified dose
constraints (shown in Table 5). Method 2 treatment plans (focal tumour DE) were designed
to deliver up to 50 Gy to the tumour volume. This goal was met in only one treatment plan,
with a median dose of 44.7 Gy for the five patients. This is comparable to the median dose
of 40.3 Gy reported in the hypo-FLAME study [4]. For Method 3 (focal tumour + hypoxia
DE) the mean dose delivered to the hypoxic target volumes ranged from 57.3 Gy -59.7 Gy
across all five patients.

3.1. Effect of Hypoxia on <TCP> of Dose-Based Planning Methods

The first aim of our study was to compare the <TCP> calculated for treatment planning
Methods 1-3 for each of the HF. These results are summarised in Figure 4. Uniform-dose
plans (Method 1) resulted in an average <TCP> of 0.56 under normoxic conditions. Focal
tumour DE (Method 2) plans demonstrated a significant improvement in normoxic <TCP>,
with an average <TCP> of 0.95. However, with the introduction of hypoxia, both planning
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methods demonstrated a considerable reduction in <TCP>. When plans were re-optimised
to incorporate a focal DE of 60 Gy to the HTV (Method 3) a considerable increase in <TCP>

was found.
Patient 1 Patient 2 Patient 3 Patient 4 Patient 5
1 1 1 1t 1
b
] A A A A A
Ta a a a a
§ Cos ©os O o5l Oosl 1 Oos
eV v v v v
0 0 0 0 0
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
HF (%) HF (%) HF (%) HF (%) HF (%)
w 1 1 1} 1 1
*
= L TP ok Froxox * x o, ol SR
g A A A A * A
ES S S S S
ap;05 p\705 p705 },\705 p;05
w®
3
w
0 0 0
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
HF (%) HF (%) HF (%) HF (%) HF (%)

Figure 4. <TCP> calculated for different planning strategies when evaluated with varying hypoxic fractions (HF). (Top row):
Uniform-dose plans (Method 1). (Bottom Row): Focal tumour dose escalation (DE) plans (Method 2). Stars indicate the
<TCP> of focal tumour + hypoxia DE plans (Method 3).

3.2. Comparison of Focal DE and Biologically Optimised Plans for Targeting Tumour Hypoxia

Figure 5 shows the rectal and bladder <EUD> of the isoeffective (normalised by
<TCP>) focal tumour+hypoxia DE (Method 3) and biologically optimised plans (Method 4).
As expected, the sparing of the rectum and bladder became increasingly difficult with
increasing HEF, seen in both hypoxia-targeting planning methods. Biologically optimised
plans displayed slightly varying response to increasing HF, potentially due to the size and
location of the tumour, as well as the location of the hypoxic region within the tumour,
especially at lower HF. For all HFs considered, biologically optimised plans could achieve
statistically significant lower rectal and bladder <EUD> compared to isoeffective focal
tumour + hypoxia DE plans for the entire patient cohort (p-values < 0.01). Differences in
mean dose to HOFs were not statistically significant.

2 Focal tumourohypoxla DE % Biological optimisation

1
I

HF 20%
I HF 40%

25 I HF 60%
I HF 80%
20
15
10
5
o L=
2
Pa(lenl
0%

Figure 5. Comparison of rectal and bladder <EUD> with a varying hypoxic fraction (HF).
Rectal and bladder <EUD> are normalised to the <TCP> of the focal tumour + hypoxia dose
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3.3. Sensitivity of Robust Biological Optimisation to OER

The results so far applied an OER value of 1.4 as our radiogenomics study was not
designed to provide a quantitative measure of OER. As shown by Figure 6, biological
optimisation (Method 4) demonstrated a high sensitivity to the OER value as anticipated,
since the TCP model is most sensitive to radiosensitivity parameters [32]. In the two cases
examined, rectal and bladder <EUD> increased with OER along with the mean tumour
dose for both HFs considered. Bladder <EUD> for Patient 2 decreased slightly from OER
of 1.4 to 1.8. This is likely due to the location of the hypoxic sub-volume in the posterior
portion of the prostate close to the rectum. The compromise was made in the bladder,
which had a lower weighting than the rectum.
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Figure 6. DVH comparison of isoeffective biologically optimised plans with varying oxygen enhancement ratio (OER) (solid
line = 1.2, dashed line = 1.4, dotted line = 1.8).

4. Discussion

Dose escalation (DE) to the GTV using the hypo-FLAME protocol (Method 2) demon-
strated a substantial improvement in <TCP> compared to uniform-dose planning (Method 1)
planned without consideration of oxygenation and is consistent with higher EQDygy doses
reported in the FLAME and hypo-FLAME studies (106.3 Gy and 133.3 Gy respectively) [3,4].
In this study, we investigated the effect of introducing varying proportions of hypoxic
volumes within the tumour and demonstrated that even with only 20% of voxels affected,
there is a significant impact on TCP. Increasing the hypoxic volume reduced the TCP to
a smaller degree, suggesting that it is less important to precisely define affected voxels
compared with a binary tumour classification of hypoxic versus normoxic. Hypoxia is
considered one of the possible reasons for treatment failure after radiotherapy [1] and
this study suggests that 50 Gy delivered in an ultra-hypofractionated schedule may be
insufficient to overcome the effects of hypoxia. As a relatively high cumulative acute
grade 2 genitourinary toxicity of 34% at 90 days post-treatment was reported for the
hypo-FLAME [4], further dose escalation to the entire tumour volume using standard
treatment planning methods may not be possible. To assess the tissue-sparing effect of
the hypoxia-targeting BiRT approach [6], a hypoxia DE protocol (Method 3) was devised
under the assumption that the same hypoxia information was available. To the authors’
knowledge, there is no published data on the level of DE required to combat hypoxia
in ultra-hypofractionated treatment of PCa. Therefore, we adopted a hypoxia DE dose
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of 60 Gy, 120% of the tumour boost of 50 Gy. This factor was derived from the work of
Popple et al., which is commonly used in hypoxia-targeting DE studies for conventional
fractionation [2]. Popple et al. estimated that an increase of 20-50% of tumour dose is
required for targeting a significant portion of chronic hypoxia. An additional boost to the
HTV was feasible without violation of OAR DV constraints. A considerable improvement
in <TCP> was observed compared to boosting the GTV alone (Figure 4). The <TCP>
remained high for all HFs simulated, however, the tissue-sparing effect decreased with
increasing HF. Nevertheless, statistically significant improvements in rectal and bladder
dose compared with the dose-optimised plans (Method 4) was achievable by utilising the
patient-specific, hypoxia-targeting BiRT approach (Figure 5).

In this in silico study we applied the dose fractionation schedule of the hypo-FLAME
study based on the promising results of this clinical trial. These clinical findings also
support the conclusions of our previous work where we demonstrated the normal tis-
sue sparing benefits of biologically targeted, hypofractionated schedules compared with
conventional fractionation schedules [35].

In this study we applied the CT scan of a single patient for the purpose of dose
calculation. We would expect that the conclusions of our study would be unchanged if
we had used a synthetic CT derived from the MR data for each patient due to the relative
homogeneity of tissue densities within the prostate and surrounding tissue. Our small
sample size of five patients included prostates with a range of cell density distributions
and tumour sizes to demonstrate their effects on biological optimisation. The volumes of
these prostates ranged from 27.6-57.0 cm? representing typical prostate volumes. Whilst
large prostate volumes may impact on the ability to limit the dose to the OARs, we would
expect that tumour volume would be the predominant factor in challenging the biologically
targeted RT approach we have described. We would propose future studies consider a
larger sample size with a range of factors, such as prostate and tumour volume that may
determine the upper limit for our proposed approach to be feasible. Furthermore the
urethra was not included as an OAR as it could not be easily delineated on the MR datasets.
Future studies should include a urethra-sparing approach using contrast or modelling
from ground-truth histology for urethra position. As the urethra runs through the centre of
the prostate, it is however anticipated that hypoxia-targeting, biologically optimised plans
will suffer significantly from “streakiness” in the effort to provide a doughnut-shaped dose
distribution. As such, hypoxia-targeting biologically targeted radiotherapy approaches
may be better realised with brachytherapy. Biological optimisation of radioactive seed
placement for low-dose-rate brachytherapy has previously demonstrated improved tumour
control whilst simultaneously minimising dose to OARs, including the urethra when
population-based tumour biology information was employed [36]. The results in this study
support further investigation of biologically targeted brachytherapy with patient-specific
tumour information, though potentially with high-dose-rate brachytherapy due to the low
o/ of prostate cancer [5]. An alternative approach would be the use of charged particles,
with their high linear energy transfer offering the potential of a reduced OER [37,38]. With
a high relative biological effect (RBE), charged particle therapy may provide superior
hypoxia-targeting plans and should be kept in mind for future prospective clinical trials.

Limitations in the modelling of hypoxia in this work are acknowledged. Although it
is well-known that hypoxia exists in a spatially and temporally heterogeneous distribution,
tumour hypoxia is a complex process that is still not well understood. In the absence of
ground-truth information, a predictive model of tumour hypoxia could not be developed.
Instead, surrogates based on genetic profiling and immunohistochemistry staining of his-
tology were used to derive the candidate features for defining the spatial distribution of
hypoxia [10]. Additionally, single values of OER were assumed when most likely a range
of values are likely to be present. Whilst future studies aim to further our understand-
ing of the relationship of imaging features and hypoxia, we would propose that clinical
translation of our work would incorporate measures of hypoxia expression within biopsy
specimens as part of the validation studies. With concerns over the adverse effect of hy-
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poxia on hypofractionation due to the insufficient time for reoxygenation to take place [39],
reoxygenation kinetics were not included in our modelling. While many sophisticated TCP
models that approximate tumour hypoxia dynamics exist in the literature [40—44], they
suffer from large uncertainties. The literature on the types of hypoxia (acute or chronic)
and their relative impact on PCa radioresistance is also inconsistent [45-52]. Adaptive
therapy would, therefore, be more clinically relevant for patient-specific planning [53].
Ideally, hypoxic prediction maps would be produced at several time points before and
during treatment to establish spatio-temporal stability of hypoxia and represented by a
continuous variation in OER. MR guided radiotherapy using an MRlinac would provide
an ideal opportunity to incorporate such a biologically guided adaptive approach. Work
is currently underway to determine optimal mpMRI imaging time points for predicting
treatment response (ANZCTR UTN U1111-1221-9589). Other tumour characteristics that
were assumed to be constant during treatment, such as the distribution of clonogen density,
should also be considered for adaptive therapy approaches.

In addition to hypoxia modelling, the TCP model used in this study has further
limitations in describing tumour radiation response. In this study we have chosen to
use our previously validated TCP model [36], a model that we have used in a number
of subsequent biologically targeted radiotherapy studies [6,35,54]. As in our previous
studies, cell-to-cell communication, intrafraction repair and accelerated repopulation were
excluded. Cell-to-cell communication may additionally impact on radioresistance [55],
and as our understanding of this effect grows, we would suggest that our model could be
extended to incorporate this effect. Furthermore, in the absence of reliable information, it
was assumed that the elimination of all clonogenic cells was required for tumour control.
Thus, the <TCP> calculated in this study do not represent the absolute probability of
tumour control but instead were used as a relative indicator of tumour control when
comparing two plans. This study was intended as an in silico planning study and designed
to demonstrate the potential benefit of a hypoxia-targeted biologically optimised approach
to treatment planning, a model that could be extended to consider any tumour types that
exhibit extreme hypoxia and any factor that may influence radioresistance.

5. Conclusions

This work explored the focal DE and biologically targeted radiotherapy approaches
for targeting hypoxia in an ultra-hypofractionated prostate radiotherapy schedule. By
using patient-specific, mpMRI-derived cell density and hypoxia maps, improved rectal and
bladder sparing was achievable for biological optimisation when compared to isoeffective
focal DE plans. The results of this study support further investigation of biologically
targeted approaches using intensity modulated radiotherapy, brachytherapy and poten-
tially particle therapy to take advantage of the knowledge of the spatial distribution of
tumour heterogeneity.
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