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‘mercurials’ (methylmercury, thimerosal, mercury(II)chlo-
ride, mercury(II)bromide, 4-chloromercuribenzoic acid, 
phenylmercuric acid). Microarray data were compared 
at the highest non-cytotoxic concentration for all 12 toxi-
cants. A support vector machine (SVM)-based classifier 
predicted all HDACi correctly. For validation, the classi-
fier was applied to legacy data sets of HDACi, and for each 
exposure situation, the SVM predictions correlated with 
the developmental toxicity. Finally, optimization of the 
classifier based on 100 probe sets showed that eight genes 
(F2RL2, TFAP2B, EDNRA, FOXD3, SIX3, MT1E, ETS1 
and LHX2) are sufficient to separate HDACi from mercuri-
als. Our data demonstrate how human stem cells and tran-
scriptome analysis can be combined for mechanistic group-
ing and prediction of toxicants. Extension of this concept 
to mechanisms beyond HDACi would allow prediction of 
human developmental toxicity hazard of unknown com-
pounds with the UKN1 test system.

Keywords  Hazard assessment · Neuronal development · 
Alternative testing · Cytotoxicity · Transcriptomics · 
Developing central nervous system

Abstract  Test systems to identify developmental toxi-
cants are urgently needed. A combination of human stem 
cell technology and transcriptome analysis was to provide 
a proof of concept that toxicants with a related mode of 
action can be identified and grouped for read-across. We 
chose a test system of developmental toxicity, related to the 
generation of neuroectoderm from pluripotent stem cells 
(UKN1), and exposed cells for 6 days to the histone dea-
cetylase inhibitors (HDACi) valproic acid, trichostatin A, 
vorinostat, belinostat, panobinostat and entinostat. To pro-
vide insight into their toxic action, we identified HDACi 
consensus genes, assigned them to superordinate biologi-
cal processes and mapped them to a human transcription 
factor network constructed from hundreds of transcrip-
tome data sets. We also tested a heterogeneous group of 

Eugen Rempel and Lisa Hoelting shared first authorship.

Jörg Rahnenführer, Jan G. Hengstler and Marcel Leist shared 
senior authorship.

Electronic supplementary material  The online version of this 
article (doi:10.1007/s00204-015-1573-y) contains supplementary 
material, which is available to authorized users.

 *	 Lisa Hoelting 
	 Lisa.Hoelting@uni‑konstanz.de

1	 Department of Statistics, TU Dortmund University, 
44139 Dortmund, Germany

2	 Centre for Organismal Studies, Heidelberg University, 
69120 Heidelberg, Germany

3	 Doerenkamp‑Zbinden Chair for In Vitro Toxicology 
and Biomedicine, University of Konstanz, Box: M657, 
78457 Konstanz, Germany

4	 Konstanz Graduate School Chemical Biology KORS‑CB, 
University of Konstanz, 78457 Konstanz, Germany

5	 Institute of Neurophysiology, Center for Molecular Medicine 
Cologne (CMMC), University of Cologne, 50931 Cologne, 
Germany

6	 Leibniz Research Centre for Working Environment 
and Human Factors, Technical University of Dortmund 
(IfADo), 44139 Dortmund, Germany

7	 Institute of Pathology, Charité-Universitätsmedizin, 
10117 Berlin, Germany

8	 Integrative Research Institute for the Life Sciences, Institute 
for Theoretical Biology, Humboldt Universität, 10115 Berlin, 
Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00204-015-1573-y&domain=pdf
http://dx.doi.org/10.1007/s00204-015-1573-y


1600	 Arch Toxicol (2015) 89:1599–1618

1 3

Introduction

Classification and grouping of toxicants is a major goal of 
toxicological risk assessment, next to the de novo predic-
tion of hazard for entirely new compounds (Gocht et  al. 
2015). Such methods are particularly useful when testing 
for reproductive and developmental toxicity due to (1) a 
large backlog of substances to be evaluated, (2) an espe-
cially high demand in resources and animals and (3) the 
difficult issue of data interpretation in this field. Moreover, 
it is well established that the developing central nervous 
system is particularly susceptible to chemicals (Smirnova 
et  al. 2014b; van Thriel et  al. 2012). Currently, devel-
opmental neurotoxicity is tested using labour-intensive 
in vivo experiments according to OECD test guidelines TG 
426, which requires exposure of animals during gestation 
and lactation, followed by analyses for histopathological, 
functional and behavioural abnormalities in the offspring. 
As this in vivo test is too expensive for the analysis of thou-
sands of untested but marketed chemicals, alternative tests 
are urgently needed to prioritize test compounds for further 
analysis by more extensive studies (Bal-Price et  al. 2015; 
Leist et al. 2014).

To reach this goal, human embryonic stem cell (hESC)-
based test systems have recently been developed (Bal-Price 
et  al. 2012; Colleoni et  al. 2011; Efthymiou et  al. 2014; 
Harrill et  al. 2011; Jagtap et  al. 2011; Krug et  al. 2013; 
Leist et al. 2008a; Meganathan et al. 2012; Pallocca et al. 
2013; van Thriel et al. 2012; Wheeler et al. 2015; Zimmer 
et al. 2012, 2014). These test systems recapitulate different 
critical phases of embryonic development during which the 
differentiating cells can be exposed to chemicals. A particu-
larly intensively studied phase is neural induction, when the 
neural ectodermal progenitor cells are formed. This phase 
can be recapitulated, using the cell system UKN1, which 
has recently been optimized for transcriptomics approaches 
(Balmer et al. 2012, 2014; Krug et al. 2013). In this in vitro 
system, the known developmental neurotoxicants valproic 
acid (VPA) and methylmercury have been shown to induce 
specific and reproducible gene expression patterns that can 
easily be distinguished from negative control compounds. 
Moreover, the system revealed concentration progression 
principles with (1) tolerated, (2) teratogenic but non-cyto-
toxic and (3) finally cytotoxic ranges, at similar concentra-
tions as in humans (Waldmann et al. 2014).

A next challenge in the UKN1 test system develop-
ment is the establishment of gene expression-based clas-
sifiers for compounds acting by similar mechanisms. His-
tone deacetylase inhibitors (HDACi) have been chosen as a 
class of model compounds in the present study, as they are 
known to cause neural tube defects in animals and humans 
(Balmer et al. 2012; Kadereit et al. 2012; Nau et al. 1991). 

Inhibition of histone deacetylases triggers large changes 
in the cellular transcriptome at in vivo relevant concentra-
tions (Jergil et al. 2009; Krug et al. 2013; Smirnova et al. 
2014a; Theunissen et al. 2012; Waldmann et al. 2014; Wer-
ler et al. 2011). Since VPA acts as a reversible inhibitor of 
enzyme activity, changes in the transcriptome can therefore 
be reversible. Indeed, it has been shown that up- or down-
regulated genes in developing neuronal precursor cells can 
return to control levels after short-term exposure of 6  h. 
However, longer exposure period of 4 days, which covered 
critical time windows of development, led to transcriptional 
changes that were irreversible after washout of the toxicant 
(Balmer et  al. 2014). Besides VPA, five further HDACi 
were studied, namely belinostat (PXD101), entinostat 
(MS-275), panobinostat (LBH589), vorinostat (SAHA) 
and trichostatin A (TSA). Although these compounds differ 
in their isoenzyme specificity (Khan et  al. 2008), they all 
produce potent inhibition of major members of the HDAC 
family (HDAC-1, 2, 4, 6) and have all been developed for 
a similar indication (tumour chemotherapy). Therefore, the 
six HDACi can be considered as a relatively homogene-
ous group with respect to their mode of action. ‘Mercuri-
als’ were selected for the second group, which were defined 
by the commonality of having one mercury atom in their 
chemical structure: methylmercury chloride (MeHg), thi-
merosal, mercury(II)chloride (HgCl2), mercury(II)bromide 
(HgBr2), 4-chloromercuribenzoic acid (PCMB) and phe-
nylmercuric acetate (PMA). These compounds form a more 
heterogeneous group than the aforementioned HDACi, 
ranging from inorganic salts, such as HgCl2 with ionized 
Hg2+ and small charged organomercurial ions (methyl-
Hg+; ethyl-Hg+ from thimerosal), to completely organic 
structures (PCMB). All mercury compounds react with 
thiol groups and can therefore modify proteins with free 
cysteine groups (Bahr and Moberger 1954; Halsey 1955; 
Pekkanen and Sandholm 1971) leading to oxidative stress, 
inhibition of protein synthesis and disruption of calcium 
homeostasis (Suppl. Fig. S1). The most studied mercurial 
compound is MeHg because of the catastrophic endemic 
diseases caused by ingestion of MeHg-contaminated food 
(Choi 1989; Ekino et  al. 2007; Harada 1995). It is also 
known to cause neural tube defects and other developmen-
tal disturbances, and as a result is considered a ‘gold stand-
ard’ compound of human developmental toxicity (Grand-
jean and Herz 2011; Robinson et al. 2011).

The aim of the present work was to study (1) whether 
the six HDACi can be recognized as a homogeneous group 
based on gene array data, (2) whether the alterations they 
induce can be differentiated from those caused by mercu-
rials and (3) whether a classifier can be constructed based 
on a support vector machine. Finally, the gene set required 
for correct classification was optimized and reduced to 
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a minimum to facilitate routine testing. We report that an 
eight-gene-based classifier correctly identifies all tested 
HDACi. With this classifier, it should be possible to predict 
with a high probability whether an unknown compound can 
be classified as an HDACi.

Materials and methods

Materials

Gelatin, putrescine, selenium, progesterone, apotransfer-
rin, glucose and insulin were obtained from Sigma (Stein-
heim, Germany). Accutase was from PAA (Pasching, 
Austria). FGF-2 (basic fibroblast growth factor), noggin 
and sonic hedgehog were obtained from R&D Systems 
(Minneapolis, MN, USA). Y-27632, SB-43154 and dor-
somorphin dihydrochloride were from Tocris Bioscience 
(Bristol, UK). MatrigelTM was from BD Biosciences 
(Massachusetts, USA). All cell culture reagents were from 
Gibco/Invitrogen (Darmstadt, Germany) unless otherwise 
specified.

Neuroepithelial differentiation

The human pluripotent stem cell line H9 (Thomson et  al. 
1998) was cultured according to standard protocols and 
differentiated into neuroepithelia progenitors (NEP) as 
described earlier (Balmer et  al. 2012; Krug et  al. 2013; 
Shinde et al. 2015) and as shown in Fig. 1. The H9 hESC 
line (WA09 line) was obtained from WiCell (Madison, WI, 
USA). Importation of cells and subsequent experiments 
was authorized under license # 170-79-1-4-27 (Robert 
Koch Institute, Berlin, Germany). Differentiation of the 
H9 cells towards NEP was based on dual SMAD inhibi-
tion (Chambers et al. 2009) using a combination of 35 µM 
noggin and 600  nM dorsomorphine together with 10  µM 
SB-431642. This was used to prevent BMP and TGF sig-
nalling and thus achieve a highly selective neuroectodermal 
lineage commitment. For handling details, see supplemen-
tal methods of (Balmer et al. 2012).

Experimental exposure and resazurin viability assay

During differentiation, cells were treated with the respec-
tive HDACi and mercurials as indicated in Fig.  1. On 
DoD0, medium was prepared as described in Balmer et al. 
(2012) and supplemented with the indicated concentrations 
of the respective HDACi or mercurials. All concentrations 
were prepared from a stock solution. Medium, supple-
mented with the toxicant, was changed on DoD1, 2 and 4. 
In order to determine cytotoxicity, a resazurin cell viabil-
ity assay was performed on DoD6 exactly as described 

previously (Krug et  al. 2013; Stiegler et  al. 2011). A 
detailed list of the 6 HDACi and 6 mercurials and their sol-
vent and stock concentration is shown in the table below.

Compound Solvent Stock  
concentration 
(mM)

Catalog # Provider

Trichostatin 
A (TSA)

DMSO 5 T1952 Sigma

Valproic acid 
(VPA)

Water 600 P4543 Sigma

Vorinostat 
(SAHA)

DMSO 50 SML 0061 Sigma

Belinostat 
(PXD101)

DMSO 100 S1085 Selleckchem

Panobinostat 
(LBH589)

DMSO 100 S1030 Selleckchem

Entinostat 
(MS-275)

DMSO 50 Cay- 
13284-25

Biomol

Methyl-
mercury 
(MeHg)

10 %  
ethanol

10 442534 Sigma

Thimerosal Water 100 T4687 Sigma

Mercury(II)
chloride 
(HgCl2)

Water 200 203777 Sigma

Mercury(II)
bromide 
(HgBr2)

Water 10 437859 Sigma

Phenylmercu-
ric acetate 
(PMA)

Water 10 P27127-
25G

Sigma

4-Chloromer-
curiben-
zoic acid 
(PCMB)

Water 100 C5913-5G Sigma

For determination of the benchmark concentration 
(BMC), each toxicant was tested at multiple concentrations 
(exemplified in suppl. Fig. S2) above and below the BMC. 
Public domain software (PROAST) was used for curve fit-
ting and BMC calculation. For the microarray analysis, cells 
were treated with only a single concentration until DoD6. 
Cell viability was then determined using the resazurin cell 
viability assay, the media removed, and cells stored in 
500 µl RNAProtect Reagent (Qiagen) until RNA isolation.

Affymetrix DNA microarray analysis

RNA was extracted, and Affymetrix chip-based DNA 
microarray analysis (Human Genome U133 plus 2.0 arrays) 
was performed as described earlier (Krug et al. 2013).

The corresponding raw CEL files of the Affymetrix 
chips are publicly available under GEO accession num-
ber GSE71127. The differentially expressed probe sets 
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for each compound, including fold changes and p values 
of the limma t test are given in supplementary tables pro-
vided in an Excel file format.

Support vector machine‑based classification

A support vector machine (Cortes 1995) algorithm with lin-
ear kernel was used for the discrimination between histone 
deacetylase inhibitors (HDACi) and mercurials gene array 
data sets (R package ‘e1071’, functions ‘tune.svm’, ‘svm’ 
and ‘predict.svm’). After subtracting the corresponding 
controls, the number of variables was reduced as follows. 
For every classification analysis, the 100 probe sets (PS) 
with highest variance within the training set were selected 
from the original 54,000 PS. Then the function ‘tune.svm’ 
was applied for the optimization of hyperparameters (with 
C = 2i with i = −5, −4, … 1, 2), the function ‘svm’ with 
the option ‘probability = TRUE’ was used for building the 
classification model, and the function ‘predict.svm’ was 
used to obtain, for each replicate of the compounds in the 
test set, the probabilities that they belong to mercurials or 
HDACi. First, the SVM optimized the decision boundary 
between the classes. Then a logistic regression with direc-
tion orthogonal to the decision boundary was applied to 
calculate the probabilities.

In order to avoid over-fitting and to analyse the generali-
zation properties of fitted models, we split the original set 
of 12 compounds in training and test sets. For each split, 
we used the training set to build the classifier that includes 
(1) reduction of the variables, (2) optimization of a hyper-
parameter C and (3) determination of a classification rule. 
Then we assessed the accuracy on the test set with a ‘leave-
out concept’ as follows. We performed a stability analysis 
by choosing different sets of compounds as test set. The 
number of compounds in the test set assumed values from 1 
to 4, where a value of 1 corresponds to leave-one-out cross-
validation. The analysis with larger numbers (e.g. 3 for 
leave-three-out) helps identify compounds that are essential 
for correct classification.

Construction of a transcription factor network

We downloaded raw data for the microarray samples refer-
enced in the manually curated CellNet tissue atlas (Cahan 
et al. 2014) and combined them with data from test systems 
UKN1 and UKK (Balmer et  al. 2014; Krug et  al. 2013; 
Waldmann et  al. 2014). To obtain the expression matrix, 
the samples were normalized together using RMA imple-
mented in the R package oligo. The co-expression net-
work was constructed in two steps using functions from 
the parmigene package for R. First, the mutual informa-
tion matrix was computed by applying the function knnmi, 
all with parameter k =  9 on the expression matrix. Then, 

we applied the CLR function from the parmigene package 
which implements the CLR algorithm. The co-expression 
network was subsequently restricted to genes annotated as 
transcription factors (TFs) in the Animal Transcription Fac-
tor Database (ATFDB, [http://www.bioguo.org/AnimalT-
FDB/index.php]). The overlap of the genes detected by the 
Affymetrix array and the ATFDB was 1300 genes. Links 
were drawn only for pairs of TFs with a score in the top 
0.1 % of all scores of co-expression. This yielded 1690 pre-
dicted interactions between 847 TFs. Nodes were arranged 
in the network according to the Fruchterman and Rein-
gold’s force directed placement algorithm provided by the 
R package sna with area parameter area = 109.

Representation of UKN1 genes and HDAC 
consensus genes on the TF network

Communities of network nodes were determined by the 
fastgreedy community function of the R package igraph. 
Only the top 18 largest communities (=clusters) were ana-
lysed for enrichment of GO biological process annotations. 
The enrichment analysis was performed with the R package 
topGO using the classic method and fisher test statistic. We 
selected representative terms to assign names to each com-
munity by applying the following procedure: (1) the over-
represented GO terms were identified for each community 
and sorted in ascending order according to their p value; (2) 
the top GO terms were examined, and 1–2 key words that 
appeared representative for the overrepresented GO terms 
were selected; (3) these key words were used for naming of 
the communities (TF clusters); we restricted the selection 
to GO terms with an unadjusted over-representation p value 
of <0.05, apart from two cases, where no GO terms were 
overrepresented. These contained a large number of little-
characterized zinc finger TF and were summarized under 
the name ‘unspecified cellular function and signalling’. The 
clusters annotated in this way were overlayed with HDAC 
consensus genes or TF genes known to be up-regulated 
on DoD6 versus DoD0. Alternatively, all HDACi consen-
sus genes were pooled (up + down), and overrepresented 
TF were determined based on the network-based predicted 
interactions. Overrepresented TF were overlayed with the 
generic TF network.

Caspase‑3 inhibition assay by mercurials

Recombinant human caspase-3 (Millipore; CC-119) (0.25 
U/200 µl reaction volume) in 50 mM Hepes, pH 7.4 con-
taining 1 % sucrose and 0.1 % Chaps was treated with the 
respective mercurials at 37 °C for 20 min. Caspase-3 activ-
ity was then determined by the addition of the substrate 
N-acetyl-Asp-Glu-Val-Asp-7-amido-4-trifluoromethyl 

http://www.bioguo.org/AnimalTFDB/index.php
http://www.bioguo.org/AnimalTFDB/index.php


1603Arch Toxicol (2015) 89:1599–1618	

1 3

coumarin (NAc-DEVD-afc) (50  µM). Formation of free 
afc was assessed by fluorescence detection (λex: 385  nm; 
λem: 505 nm) at 1 min intervals over 20 min (Gerhardt et al. 
2001; Latta et al. 2000; Volbracht et al. 1999).

Statistical analyses

The following analyses were performed using the statisti-
cal programming language ‘R-version 3.1.1’. For the nor-
malization of the entire set of 85 Affymetrix gene expres-
sion arrays, the Extrapolation Strategy (RMA+) algorithm 
(Harbron et  al. 2007) was used that applies background 
correction, log2 transformation, quantile normalization and 
a linear model fit to the normalized data in order to obtain 
a value for each PS on each array. As reference, the nor-
malization parameters obtained in earlier analyses (Krug 
et al. 2013) were used. After normalization, the difference 
between gene expression and corresponding controls was 
calculated (paired design). Differential expression was cal-
culated using the R package limma (Smyth et  al. 2005). 
Here, the combined information of the complete set of 
genes is used by an empirical Bayes adjustment of the vari-
ance estimates of single genes. This form of a moderated 
t test is abbreviated here as ‘limma t test’. The resulting p 
values were multiplicity-adjusted to control the false dis-
covery rate (FDR) by the Benjamini–Hochberg procedure 
(Benjamini 1995). As a result, for each compound a gene 
list was obtained, with corresponding estimates for log fold 
change and p values of the limma t test (unadjusted and 
FDR-adjusted).

Correction of batch effects

Non-biological experimental variation is known as batch 
effect and commonly observed across batches of microar-
ray experiments. For batch correction, various approaches 
have been suggested in the literature (Scherer 2009). In 
this analysis, we used ComBat (Johnson et  al. 2007) that 
was shown to be superior over other approaches (Chen 
et  al. 2011). ComBat estimates parameters for location 
and scale adjustment for each batch and for each PS. As an 
alternative approach to reduce a possible batch effect and 
to remove the possible influence of, e.g., different solvents, 
the log2-transformed expression values of untreated sam-
ples were subtracted from the log2-transformed values of 
the corresponding matched treated samples from the same 
experiment (paired design). Thus, all treated samples were 
normalized to express fold changes relative to their con-
trols. In cases when two controls were available for one 
treatment sample, the means of the controls were formed 
and then subtracted. For the adjustment of the values of a 
specific gene, the algorithm uses information of all genes 

on the array according to an Empirical Bayes framework 
(R package ‘sva’, function ‘ComBat’).

Identification of consensus genes

A gene was defined as significantly deregulated by a spe-
cific compound if at least one annotated probe set was 
significantly deregulated (fold change >1.5 and adjusted p 
value of limma t test <0.05). A gene was defined as ‘con-
sensus’ gene if it was significantly up- or down-regulated 
by at least 4 compounds of HDAC inhibitors or mercurials.

Gene set enrichment analysis

The Gene Ontology group enrichment analysis was per-
formed using ‘R-version 3.1.1’ with the ‘topGO’ pack-
age (Alexa 2010), and only results from the ‘biological 
process’ ontology were kept. Transcription factor binding 
site (TFBS) enrichment analysis was performed using the 
oPOSSUM web tool (Ho Sui et  al. 2007) and based on 
JASPAR database (Portales-Casamar et al. 2010).

KEGG pathway analysis

The analysis was conducted online using DAVID (Database 
for Annotation, Visualization and Integrated Discovery) 
(da Huang et al. 2009); the indicated p value represents the 
EASE Score, a modified Fisher’s exact p value, for gene-
enrichment analysis.

Results

Data structure of transcriptome changes triggered 
by histone deacetylase inhibitors (HDACi) 
and mercurials

All experiments were performed under standard UKN1 
test conditions, as described earlier (Krug et al. 2013). The 
twelve test compounds were tested under toxicologically 
comparable conditions, i.e. at their respective highest non-
cytotoxic concentrations. This benchmark concentration 
(BMC) was determined experimentally using the UKN1 
test system. The concentrations used for microarray analy-
sis reduced viability of the stem cells after 6-day incubation 
by ≤10 % (Fig. 1a, suppl. Fig. S2). This anchoring of the 
BMC, which was then used for gene expression analysis, to 
the respective cytotoxicity of each toxicant correlated well 
with the biochemical mode of action within the group of 
HDACi. The BMC overlapped with the known EC50 val-
ues for HDAC inhibition. A similar mechanistic correlation 
was not possible for the group of mercurials due to their 
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heterogeneous and less-defined mode of action (Suppl. Fig. 
S1).

Four independent experiments [except for TSA (n = 5) 
and MeHg (n  =  5), and controls (n  =  35)] were per-
formed for each compound, and one Affymetrix chip was 

analysed per experiment, resulting in four genome-wide 
expression profiles per compound. To obtain an overview 
of the data structure (six HDACi, six mercurial and corre-
sponding controls) of the 85 microarray data sets, the raw 
data were normalized and used for a principal component 
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analysis (PCA). Visualization of the data along the first 
two principal components (PC) indicated two distinct clus-
ters. These correlated with the data of measurement of the 
microarrays and thus represented a typical batch effect in 
this type of experiment. The two batches were differen-
tiated along PC1, while the toxicant effect was mainly 
along PC2 (Fig.  1c). This was a favourable situation for 
the use of batch correction algorithms, and accordingly, 
the batch effect was perfectly removed by the ComBat 
algorithm. Visualization of the corrected data set showed 
that all HDACi were shifted to the lower right-hand side 
of the PCA plot (relative to controls). The position of the 
mercurials was more heterogeneous, with three clustering 
close to the controls, while the others shifted to the upper 
right (Fig. 1d). As alternative data correction, we used an 
approach that was previously successfully used in a similar 
experiment with microarrays from developing stem cells: 
the corresponding untreated controls were subtracted from 
each treatment data set (Krug et al. 2013). After this pro-
cedure, the PCA diagram was similar to the one achieved 
after ComBat correction (Fig. 1e). Therefore, only control-
subtracted data sets, without further batch correction were 
used for all further analysis of toxicants.

Overview of transcriptional changes induced by HDACi 
and mercurials

For a first comparison, the probe sets (PS) with the highest 
variability across all toxicants (after subtraction of controls) 
were determined (50 PS) and used for cluster analysis. Two 
groups each of mercurials (weak/strong gene regulators) 

and HDACi (TSA and VPA/the other four) emerged. The 
data indicated that HDACi can be separated from mercu-
rials and that more powerful statistical approaches should 
be able to unbiasedly separate the toxicant groups (Fig. 2a). 
As a basis for such follow-up work, all differentially 
expressed genes (DEG) were identified (Fig. 2b). Amongst 
the HDACi, belinostat and SAHA clearly deregulated less 
genes (about 350–500) than the other four members of the 
group (1000–3500 genes). Amongst the mercurials, HgCl2 
and thimerosal had little effect on the transcriptome, and 
MeHg, HgBr2 and PCMB deregulated about 400–900 
genes, and PMA about 2800 genes. Thus, the quantitative 
extent of transcriptome deregulation was very heteroge-
neous within the toxicant groups, showed some overlap 
between HDACi and mercurials and did not correlate with 
the clustering of compounds. This precondition was ideal 
to examine the specific transcriptional changes that were 
common to all HDACi and that distinguished mercurials 
from the former group.

It was particularly striking that some mercurials had 
little to no effect on gene expression deregulation, even 
though the concentrations used reached the limit of cyto-
toxicity. This may be due to the fact that mercurials can 
react with sulphur centre enzymes pivotal for survival and 
thus quickly lead to cell death. In order to get an indica-
tion whether the cytotoxicity thresholds for these com-
pounds are related to the inhibition of enzymes carrying, 
e.g., an active cysteine in their catalytic centre, we chose 
the cysteine protease caspase-3 as a model system. For all 
six mercurials, we observed enzyme inhibition at concen-
trations below the BMC selected here, and full inhibition of 
caspase-3 activity occurred close to the concentration used 
in our study for the microarray analysis (Fig. 2c). Parallel 
experiments with HDACi showed that no caspase enzyme 
inhibition in the concentration ranges relevant for this study 
(data not shown). Thus, whereas HDACi alter transcrip-
tion as part of their primary mode of action, they indirectly 
halt the cell cycle or induce cell death when damage is too 
severe. In contrast, mercurials inhibit enzymes as their pri-
mary mode of action, which may directly kill cells without 
allowing new transcription to occur, if a certain threshold is 
exceeded. Alternatively, this may lead to cell stress, associ-
ated with altered transcription.

Identification of HDACi consensus genes

As we had obtained information on the transcriptional 
changes triggered by the six compounds, all linked by their 
capacity to inhibit HDACs, we questioned whether a com-
mon (signature) effect of HDACi on neuro-differentiation 
of human stem cells can be identified. We determined for 
each DEG the number of HDACi and of mercurials that 
regulated it. For instance, 64 genes were up-regulated by 

Fig. 1   Data structure of transcriptome changes triggered by his-
tone deacetylase inhibitors (HDACi) and mercurials in human stem 
cells differentiating to neuroectoderm. Stem cells were differenti-
ated towards neuroectodermal progenitor cells within 6 days of dif-
ferentiation (DoD6) as indicated on top. a The highest non-cytotoxic 
concentration [corresponding to EC10(cytotoxicity)] of all test com-
pounds was determined in a viability assay. This ‘benchmark concen-
tration’ (BMC) was used for obtaining transcriptome data of HDACi 
and mercurials in this study. The BMC was calculated, based on 
concentration–response curves of three independent experiments. b 
EC50 data for inhibition of HDAC isoforms 1, 2, 4, 6 were retrieved 
from the literature (Khan et al. 2008). They are indicated by a black 
line, and the respective BMC in our study is indicated as red dot. c 
The data structure of all transcriptome data sets was dimensionality-
reduced and presented in form of a 2D principle component analysis 
(PCA) diagram. Data show a typical batch effect (offset of controls) 
which segregated with measurements from different sets of biological 
samples. d The ComBat batch correction algorithm perfectly aligned 
the controls and led to compound-wise clustering on the PCA dia-
gram. e Alternatively, respective control values were subtracted from 
treated samples. This simple manipulation also led to a satisfying 
batch correction and clustering of data points according to toxicants. 
Each point represents one experiment (=data from one microarray), 
and the colour coding (labelled in e for data in c–e) indicates the 
compound used in the experiment; panobino, panobinostat (colour 
figure online)

◂



1606	 Arch Toxicol (2015) 89:1599–1618

1 3

all six HDACi; 17 were down-regulated. Amongst these, 
18 were regulated by all HDACi, but no mercurial; 24 
genes were regulated by at least 5 HDACi and at least 4 

mercurials (of those 20 up and down). The latter group 
may be used as general developmental toxicity indicators. 
In this way, different consensus regulation groups were 

Fig. 2   Characterization of 
transcriptional changes induced 
by HDACi and mercurials. 
a Differentiating cells were 
treated for 6 days by toxicants 
(four samples per compound; 
as in Fig. 1) before RNA was 
prepared and gene expression 
was measured on Affymetrix 
microarrays. The 50 genes 
with highest variance between 
all samples were selected 
for clustering (=clustering 
set). Then, all samples were 
clustered (Euclidean distance) 
on the basis of gene expression 
values for this set. The results 
are represented as heatmap 
with each row representing one 
gene, and the colour of each 
square indicating the absolute 
gene expression level (blue low; 
green middle; yellow high). 
b Number of differentially 
expressed genes (DEG) after 
exposure to toxicants compared 
to untreated controls (detailed 
data are shown in supplemental 
material). c Recombinant active 
caspase-3 was incubated for 
30 min with respective mercuri-
als at indicated concentrations. 
Then, the enzymatic activity 
was determined by a fluoromet-
ric assay. The caspase activity 
is represented in percentage 
relative to untreated control 
enzyme. The BMC of the 
respective mercurial (used in 
this study for microarray analy-
sis) is indicated by a red line; 
data are mean ± SEM; n = 3; 
panobino, panobinostat (colour 
figure online)
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identified, and we defined the genes that were regulated by 
at least 4 HDACi as the HDAC consensus group (independ-
ent of being co-affected by mercurials). We identified 405 
up-regulated and 190 down-regulated ‘HDACi consensus 
genes’. Using a similar approach, we identified 53 up-reg-
ulated and 12 down-regulated mercurial consensus genes 
(Suppl. Fig. S3).

Characterization of the HDACi consensus 
transcriptome effect in neurally differentiating  
stem cells

The top 20 transcripts up-regulated by HDACi comprised 
neural crest transcription factors (TFAP2A, FOXD3; >10-
fold regulation) and transcripts that are expressed in the 
mesodermal lineage (TFAP2B, ENDRA, DACT1). We 
also observed a relative up-regulation of the pluripotency 
gene Nanog (fivefold) compared to cells treated only with 
solvent. As Nanog belongs to the genes strongly down-
regulated in the UKN-1 system under control conditions 
(Balmer et  al. 2012), this latter finding may indicate that 
a subpopulation of cells remained closer to the pluripo-
tent state, i.e. did not form neuroepithelial cells. Amongst 
the top 20 down-regulated HDACi consensus transcripts, 
a broad array of neuronal transcription factors was found 
(with relative fold changes of 2–3) (Fig. 3a).

To obtain an overview of the main biological processes 
affected by HDACi, the gene ontology terms (GOs) over-
represented amongst up- and down-regulated consen-
sus genes (p  <  0.05) were grouped into 7 superordinate 
cell biological processes (e.g. neuro(nal development), 
mesoderm(al development)) and the number of GOs in 
each category was counted. More than 50  % of the up-
regulated GO categories were associated with mesoderm/
mesodermal development (18 categories, e.g. cartilage 
development), migration/adhesion (4 categories, e.g. posi-
tive regulation of cell migration) and neural crest (4 catego-
ries, e.g. neural crest development, neural crest cell migra-
tion). This was indicative of erroneous development away 
from central nervous system/forebrain formation that is 
usually observed in UKN1 (Balmer et al. 2012, 2014). This 
was consistent with the observation that the GO categories 
overrepresented amongst the down-regulated DEG were 
mainly associated with neuronal development (7 out of 9 
categories, e.g. brain development, forebrain patterning and 
glia cell fate commitment) (Fig. 3b).

This pattern was confirmed by the top 30 most highly 
regulated individual genes: the group of up-regulated genes 
contained neural crest markers and transcripts that are 
expressed in the mesodermal lineage. Amongst the top 30 
down-regulated HDACi consensus transcripts, we identi-
fied crucial markers for neurodevelopment such as LHX2, 
HES5, SIX3 (homeobox protein SIX3; crucial for forebrain 

development; mutations: holoprosencephaly) and ARX 
(aristaless-related homeobox; mutations are associated with 
neurological and neurodevelopmental disorders such as lis-
sencephaly, epilepsy, mental retardation) (Fig. 3c).

The KEGG pathways overrepresented amongst the up-
regulated genes (cell adhesion molecules, ECM-receptor 
interaction, melanogenesis) and down-regulated genes 
(WNT signalling, axon guidance) largely confirmed the 
above findings on altered cell differentiation/function 
(Fig. 3d).

Altogether, the biological response of HDACi leads to a 
loss in efficient neuroectoderm differentiation and induced 
a shift in differentiation towards neural crest/mesoderm 
lineage.

Detection and visualization transcription factor (TF) 
networks affected by HDACi

To study the changes triggered by HDACi in a systems 
biology context, we examined whether the changes may be 
explained by some coordinated action of defined transcrip-
tion factors or transcription factor networks.

As an initial approach, TF binding sites (TFBS) were 
identified that were overrepresented in the promoters of 
the HDACi consensus genes. Amongst the up-regulated 
genes, binding sites for 109 TF were overrepresented, with 
SOX9, FOXD3 and LHX3 amongst the most significant (p 
value <10−16). Overrepresented TFBS amongst the down-
regulated consensus genes suggested regulations by SOX2, 
TBP, PAX6 and SRY (all p values <10−9). Notably, many 
TFBS were overrepresented amongst the up- and down-
regulated genes (e.g. SOX9, FOXD3) (Suppl. Fig. S4).

In the second approach, we mapped the changes trig-
gered by HDACi to the human TF network. To obtain a 
platform for this, such a network had to be constructed. 
Therefore, the CellNet database (Cahan et  al. 2014) was 
used (3297 microarray sets from all major tissues) to build 
a generic human TF network based on statistical co-expres-
sion information. The predicted network exhibited a modu-
lar structure that was analysed by defining clusters of TF 
with increased connectivity. Each cluster was examined for 
overrepresentation of GO terms in order to identify bio-
logical processes predominantly controlled by the genes 
in the respective cluster. The clusters were assigned names 
according to the most prominent overrepresented GO terms 
(Fig. 4a).

This extensive human TF network was used first to visu-
alize main processes relevant to the UKN1 test system. For 
this purpose, all TFs that were significantly up-regulated 
during the normal differentiation of human stem cells 
towards NEP were identified and labelled on the TF map. 
They were found predominantly in only few clusters. This 
localization of TF important for UKN1 in sub-networks 
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related to ‘forebrain development’ and ‘neuronal develop-
ment’ suggested a biological relevance of the mapping. 
Moreover, localization of many of the remaining TF in 
‘general cellular function/signalling’, ‘cell growth/cell divi-
sion’ and in the mixed cluster named ‘muscle/prolifera-
tion’ (constituted of TF coding for these diverse biological 
processes) reflected the active and dynamic developmental 
processes occurring in the UKN1 system (Fig. 4b).

After having fully explored the relevance of the TF map 
and the suggestions it provided of important regulation 
within the UKN1 system, we used it to map the HDACi 
consensus genes. These were highly localized to only a 
few clusters: ‘forebrain development’, ‘neuronal develop-
ment’, ‘neuronal fate’, ‘muscle/proliferation’ and ‘response 
to external stimulus’ (Fig. 4c). This indicated that HDACi 
may share a developmental toxicity mode of action, which 

Fig. 3   Characterization of 
the HDACi consensus tran-
scriptome effect in neurally 
differentiating stem cells. Dif-
ferentiating cells were treated 
as indicated in Fig. 1 and 
used for whole transcriptome 
analysis. From the differentially 
expressed genes (DEG), we 
identified 405 up-regulated and 
190 down-regulated ‘consensus 
genes’, each of them regulated 
by at least four HDACi (cut-off 
FC > 1.5). For each consensus 
gene, the mean fold change 
(FC) of all 6 HDACi was calcu-
lated and used for further analy-
sis (detailed data are shown in 
supplemental material). a The 
top 20 up- and down-regulated 
consensus genes are displayed. 
b The gene ontology (GO) 
categories overrepresented 
amongst up- and down-regu-
lated consensus genes (p < 0.05) 
were classified into 7 superor-
dinate cell biological processes: 
neuro(nal development), 
mesoderm(al development), 
general development, migration/
adhesion, neural crest, general 
cellular function/signalling and 
uncategorized and presented as 
ring diagram to visualize the 
relative distribution. The num-
ber of GO categories in each 
group is indicated. c The top 30 
up- and down-regulated consen-
sus genes were classified into 
7 superordinate cell biological 
processes. d KEGG pathways 
overrepresented amongst 
consensus genes were identified 
and the five with the lowest p 
values (all with p < 0.02) are 
displayed. The numbers of 
total genes and the numbers of 
HDACi consensus genes are 
shown for each pathway
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involves dysregulation of TF subnetworks pivotal to neu-
ronal development.

Instead of the above direct mapping of the TF found within 
the HDACi consensus genes, we also used a second bioinfor-
matics approach that may more comprehensively cover the 
whole set of genes: we tested whether TFs have significantly 

increased interaction scores for consensus genes, in order to 
identify the TF that would be responsible for the regulation of 
the HDACi consensus genes. These TF were then marked on 
the TF map to study the underlying networks. Again, a rela-
tively selective localization in the clusters of ‘neuronal fate 
and neurodevelopment’ became evident (Suppl. Fig. S6).

Fig. 4   Detection and visualiza-
tion transcription factor (TF) 
networks affected by HDACi. 
a The CellNet database (3297 
microarray sets from all major 
tissues) was used to construct 
a generic human TF network, 
based on statistical co-expres-
sion information and graph-
theoretical design principles. 
Each node represents a TF gene, 
and each edge suggests co-
regulation. The edge length is 
driven by the number of edges 
on neighbouring nodes, not by 
the strength of co-regulation. 
Nodes are placed according 
to the Fruchterman–Reingold 
algorithm. Clusters (coded by 
same colours) were defined by 
an optimization algorithm that 
tries to maximize the modular-
ity of the division of the graph 
into clusters. Then, GO term 
overrepresentation analysis 
was performed for each cluster 
to identify its biological role, 
and naming of the 18 clusters 
is based on these findings. 
Nodes (orange) at the rim of 
the network displayed in orange 
have not been assigned to define 
clusters. b The set of genes 
significantly up-regulated on 
DoD6 versus DoD0 (p < 0.05; 
FC ≥ 2.0) was retrieved from 
Balmer et al. (2014), and the 
TFs of this gene set were 
marked (red dots) in the TF 
network (see large, scalable 
version in supplemental mate-
rial). c All TFs were identified 
amongst the HDACi consensus 
genes and marked in the TF 
network (blue down-regulated; 
red up-regulated). This diagram 
indicates, together with infor-
mation from (a), which parts of 
the TF network are affected by 
at least 4 of the 6 HDACi used 
here. The clusters ‘forebrain 
development’ and ‘neuronal 
development’ have been encir-
cled for better visualization in b 
and c (colour figure online)
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In addition, we calculated tissue specificity of all TF in 
the TF network (using a two-step procedure of identifying 
tissue-specific genes, and then identifying the TF amongst 
them) and produced thus a list of tissue-specific TF (Suppl. 
Fig. S9). We found that in the UKN1 system, mostly neu-
ronal TF were up-regulated on DoD6. When HDACi con-
sensus genes were examined, neuronal TF were most 
highly represented amongst down-regulated consensus 
genes, while ESC TF was most highly represented amongst 
up-regulated genes (Suppl. Fig. S9B, C).

Establishment of a classifier for identification of HDACi

After the characterization of the set of HDACi consensus 
genes, we assumed that the relatively stereotypic response 
triggered by HDACi on the transcript level should form a 
good basis for the identification of a gene expression-based 
classifier. A support vector machine (SVM) approach was 
used to identify weight factors for the 100 probe sets (PS) 
with the highest variance across all samples (Suppl. Fig. 
S7). The resulting SVM allowed for discrimination of the 
six HDACi from the six mercurials (Fig. 5). As initial vali-
dation of the classifier, a ‘leave-one-out’ approach was used 
and 46 out of 48 predictions (12 compounds × 4 replicates) 
were correct (Fig. 5a).

In a second step, a ‘leave-two-out’ scenario was consid-
ered. For this, two of the compounds were left out to be 
predicted by the ten remaining substances. After averag-
ing the four or five replicates per compound, this resulted 
in 132 classifications, with 129 being correct. Belinostat 
was incorrectly classified as a mercurial, when entinostat 
was left out and vice versa. PMA was classified as HDACi 
when mercury(II)bromide was left out (Fig. 5b).

The prediction of belinostat as HDACi seemed to repre-
sent the most difficult case and was therefore further used 
to study the effect of entinostat being included in the clas-
sifier. In a leave-two-out approach, 44 predictions were 
made for belinostat being an HDACi (Fig.  5c). While 42 
were correct, two were false when entinostat was left out 
together with belinostat. In a ‘leave-three-out’ simulation, 
220 predictions were made, and most of the incorrect ones 
occurred when entinostat was amongst the left-out com-
pounds. The fraction of false classifications increased in 
a ‘leave-four-out’ approach, and more than 80 % of these 
false classifications occurred when entinostat was left out. 
Therefore, correct classification of belinostat requires that 
data for entinostat are available for classifier building.

A similar pair of dependent compounds was also found 
amongst the mercurials. Here the omission of HgBr2 leads 
to the wrong classification of PMA (Fig.  5b). The reason 
why pairs of compounds depend on each other becomes 
plausible when their specific position in the PCA is consid-
ered (Fig. 1e). Entinostat and belinostat are the two HDACi 

closest to the three mercurials in the lower left of the PCA 
plot. It is plausible that omission of either entinostat or 
belinostat will render classification of the second com-
pound more difficult. Similarly, the mercurial PMA is rela-
tively close to the HDACi VPA (Fig. 1e). This explains why 
omission of its closest neighbour amongst the mercurials, 
HgBr2, will render the classification of PMA unstable.

Validation of the transcriptome‑based classifier 
to identify HDACi

After the internal validation by leave-n-out approaches 
suggested that the full classifier (all 12 compounds) works 
with good predictivity, we proceeded to independent vali-
dation approaches based on external data sets. For this, we 
used published data obtained from the UKN1 system.

First, we used a data set on the effect of different VPA 
concentrations, for which we had previously identified the 
range at which developmental toxicity is observed in the 
UKN1 test (Waldmann et  al. 2014). The eight concentra-
tions ranged from 25 to 1000 µM, and the different condi-
tions mapped to largely different positions on the PCA plot 
used above to show the 12 test compounds of the present 
study (Fig. 6a). The classifier did not recognize VPA as an 
HDACi at the two lowest tested concentrations of 25 and 
150  µM. At concentrations of 350  µM and higher, classi-
fication was excellent, with probabilities close to 100  %. 
This classification correlated with clinical observations on 
concentrations that trigger developmental toxicity and with 
our previous results suggesting that VPA is not affecting 
neurodevelopment of UKN1 at these low concentrations 
(Fig.  6a). Thus, the classifier appeared to be specific for 
concentrations of an HDACi relevant for developmental 
toxicity and not just any HDACi concentration. Good sen-
sitivity of the classifier was suggested by the fact that VPA 
concentrations of 350 µM were classified with a probabil-
ity of 97 % as HDACi, although such a concentration trig-
gered a much smaller transcriptome effect than, e.g. 600 or 
800 µM of the compound (Waldmann et al. 2014).

As second approach, we used a data set based on expo-
sure of UKN1 to HDACi for various time periods. We used 
these legacy data, as previous studies had identified condi-
tions (e.g. short exposure for 24 h) that did not cause devel-
opmental effects vs other conditions (e.g. 4- to 6-day expo-
sure) that were associated with toxicity. Short exposures 
triggered a pronounced transcriptome response, but the 
regulated genes were different from the ones found after 
prolonged exposure (Balmer et al. 2012, 2014). We assume 
that mRNA changes triggered shortly after drug exposure 
reflected direct actions of HDACi on the cells at the given 
developmental stage, while longer exposure changed the 
overall developmental track and thus affected many genes 
indirectly. Therefore, it is important to consider also the 
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Fig. 5   Design of a transcriptome-based classifier to identify HDACi. 
The scheme on top illustrates the setup of a support vector machine 
(SVM)-based classifier for HDACi. The numbers denote data sets 
for the 12 toxicants used in this study. Colours denote a grouping 
in mercurials (blue) and HDACi (orange). Below, the principles of 
leave-one-out (left) and leave-two-out classification are shown. For 
instance, when chemical-4 is ‘left out’, this means that the other 11 
compounds are used to build a classifier according to the rules speci-
fied above. Then, it is tested, how well the classification applies to 
chemical-4. For leave-two-out, the procedure is similar, in that a clas-
sifier is built from 10 remaining chemicals to predict one of the com-
pounds left out (e.g. chemical-8). a The classifier was validated by a 
leave-one-out procedure. The calculated probabilities for a toxicant to 
be an HDACi are shown for each of the four replicate samples, and 
the overall prediction is shown in the last column. b Validation of 

the SVM classifier by a leave-two-out procedure. The rows indicate 
which compound was left out in addition to the predicted one. The 
probabilities (prediction) to be an HDACi are presented (for the 144 
combinations) as mean of four independent experiments in a cross 
table. Probabilities of >0.5 predict for a compound to be an HDACi 
(red) and  <0.5 predict for a mercurial (blue). Incorrect predictions 
are indicated by a red frame. c The SVM-based classifier was used 
for leave-one-out, leave-two-out, leave-3-out and leave-4-out predic-
tion of belinostat being an HDACi. Predictions were performed for 
each of the four replicates, and each prediction is represented by a 
single dot. To demonstrate the role of entinostat for the correctness 
of the prediction, cases in which entinostat was amongst the left-out 
compounds are marked in red. Panobino, Panobinostat (colour figure 
online)
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timing of treatment when using a classifier approach as 
described here (Fig. 6b).

Exposure to VPA for 6 h or 1 day triggered a high num-
ber of deregulated genes (Balmer et al. 2014), but this pat-
tern of transcriptome change did not allow classification 
as HDACi (Fig. 6c). In contrast, exposure for 4 and 6 days 
resulted in an excellent classification with probabilities 
close to 100  %. Similar findings were obtained for TSA, 
a second HDACi. In this case, the time window of expo-
sure was varied in even more conditions, and in all cases 
that led to developmental toxicity, the classifier had a high 
value. Conditions that led to other types of transcriptome 
changes (reversible and not associated with developmental 
toxicity) resulted in a low probability value from the classi-
fier (Fig. 6d).

In conclusion, correct classification required both a rel-
evant concentration and a relevant exposure period and 
time window. These two requirements render the classifier 
relatively specific for developmental toxicity of HDACi, as 
opposed to other biological effects common to this group 
of drugs.

Establishment of an optimized classifier based on 8 
genes

For routine testing, it would be more practical if compound 
classification could be achieved by analysing a smaller 

number (<100) of genes than the number used for our clas-
sifier. Therefore, the PS used for classification were sorted 
according to their variance across all compounds (Suppl. Fig. 
S7), and then, this list of 100-PS was sequentially (starting at 
the one with lowest variance) reduced in steps of one. Each 
new classifier was validated by the ‘leave-one-out’ approach 
to determine how many of the 12 compounds would be cor-
rectly predicted. This analysis illustrates that all 12 com-
pounds still remain correctly predicted when the number of 
PS is reduced to 49. Further reduction to 48 PS and lower 

Fig. 6   Validation of the transcriptome-based classifier to iden-
tify HDACi. a Differentiating cells were treated as indicated in 
Fig.  1 and transcriptome changes of neurally differentiating stem 
cells induced by HDACi and mercurials are plotted in a PCA (as in 
Fig.  1e) together with samples treated with 25, 150, 350, 450, 550, 
650, 800 and 1  mM valproic acid (VPA) obtained from Waldmann 
et al. (2014). Each point represents one experiment (=data from one 
microarray), and the colour coding indicates the compound used in 
the experiment, mercurials (blue shades), HDACi (red shades) and 
VPA legacy data (green). The four samples from the present study 
(VPA classifier) have been encircled for better visualisation. The pur-
ple arrow indicates the track of transcriptional changes after exposure 
to increasing concentrations of VPA in the Waldmann et  al. (2014) 
data set. The SVM classifier was applied to this (green) data set, and 
the prediction of VPA, at indicated concentrations (25  µM–1  mM) 
acting on stem cell differentiation like an HDACi, is shown in the 
table as a mean of four replicate samples. The lower row of the table 
indicates whether the respective sample triggered developmental 
toxicity (+) or not (−), according to Waldmann et al. (2014). b The 
diagram shows various schedules of drug exposure. Grey bars indi-
cate the period of drug exposure with 600 µM VPA or 10 nM TSA, 
and white open bars indicate culture periods in medium without 
HDACi. The samples were analysed at the times indicated. Exposures 
of a limited duration relative to the overall experiment were termed 
‘pulsed’ treatments, and these were distinguished as early, medium 
and late pulse according to the exposure scheme. c, d The tables indi-
cate the calculated probability of VPA or TSA acting like an HDACi 
when used as described in b. Probabilities >0.5 are defined as HDACi 
classification (green), and p < 0.5 indicates that the experimental con-
dition did not show a canonical HDAC effect (colour figure online)

▸
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led to some false predictions. However, the proportion of 
false predictions was small (<10 %), and a 10-PS classifier 
predicted all compounds correctly for the ‘leave-one-out’ 

concept (Fig.  7a). The apparently discontinuous change of 
predictivity (e.g. 10-PS classifier better than 48-PS clas-
sifier) is due to the procedure chosen here of sequentially 

Fig. 7   Establishment of an optimized classifier based on 8 genes. a 
Initially, 100 probe sets (PS) were used for the SVM classifier. For 
further optimization, the number of PS was continuously reduced by 
one PS (selected randomly), and for each step, the proportion of cor-
rect prediction for a toxicant being an HDACi was calculated using 
the leave-one-out strategy (red dots) and leave-two-out strategy 
(black dots). The thresholds for ‘acceptable predictivity’ and ‘maxi-
mum predictivity’ are indicated by a dashed line. b The results of 
probability predictions for a toxicant being an HDACi determined 
by a 100-PS-based SVM classifier (as described in Fig. 3) were com-
pared with a 10-PS-based SVM classifier (derived from a) in a cor-
relation scatter plot. Note When an HDACi was predicted to be an 

HDACi, with p = 0.7, the data point was logged at 0.7. When a mer-
curial was predicted to be an HDACi, with 0.3, the data point was 
logged at 0.7 (with HDACi prediction as reference point). The results 
under leave-one-out conditions are presented as large dots and under 
leave-two-out conditions as small dots. For the three leave-two-out 
wrong predictions, the respective compound pairs are listed. c For 
the genes constituting the minimal HDACi classifier (10-PS, corre-
sponding to 8 genes), function, role and regulation (mean fold change 
(FC) of all 6 HDACi) are listed (for references see suppl. Fig. S7). d 
The changes in expression of the 8 HDACi classifier genes (from the 
10-PS classifier) induced by HDACi (red) and mercurials (blue) are 
graphed (colour figure online)
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leaving out PS from an ordered predefined list. In this list, 
the weight given to individual PS depended on all other PS 
in the respective classifier and changed with each step. This 
explains for instance why leaving out member 48 plus 49 
produced a better classifier than leaving out only member 49.

Each of the 100 classifiers obtained above was also vali-
dated by the leave-two-out approach. The three false pre-
dictions displayed in Fig. 5b led to an initial predictivity of 
97.7 %. This remained constant up to a reduction to a 58-PS 
classifier (threshold of maximum predictivity) and gradually 
got worse. For the 10-PS classifier, 96.2 % predictivity was 
obtained, and afterwards the quality deteriorated rapidly. 
Thus, 10-PS were considered the limit for building a classi-
fier of acceptably high and robust predictivity (Fig. 7a).

The quality of the 100- and the 10-PS-based classifiers 
was compared in detail for all leave-one-out and leave-two-
out predictions (Fig.  7b). While both classifiers worked 
well for the leave-one-out approach, the 100-PS classifier 
was superior for some of the leave-two-out predictions. For 
example, the three compounds in the upper left square of 
Fig. 7b were only correctly predicted by the 100-PS clas-
sifier, while three false predictions were the same for both 
classifiers. Overall the correlation was high enough for 
further use of the small classifier in other studies and addi-
tional validation experiments.

The 10-PS of the optimized classifier correspond to 
eight genes (Fig.  7c), five of which are transcription fac-
tors. Three of the genes are down-regulated by HDACi, 
and four are strongly up-regulated. In general, the behav-
iour of each of these genes differed between HDACi and 
mercurials, although some heterogeneity was evident also 
within each group of toxicants (Fig.  7d). Relatively little 
intra-group variation was observed for FoxD3. This gene 
would ‘on first sight’’ have been sufficient alone to classify 
HDACi and mercurials (all of the HDACi showed higher 
expression levels than the mercurials). However, such a 
simplified approach would neglect the problem of multi-
plicity of testing and statistical variation associated with 
each measurement. This means that when testing 50,000 PS 
as potential classifiers for 12 compounds, there is a chance 
to obtain a profile such as the one for FoxD3. In contrast, 
an eight-gene classifier will be more robust and provides 
a statistically sound basis for classification under real-life 
conditions and with additional compounds being measured.

Discussion

The present study was performed with the stem cell-based 
test system UKN1 that recapitulates neural induction dur-
ing a six-day process. For the classification study, we used 
six histone deacetylase inhibitors (HDACi), because they 
are acting by similar molecular mechanism (Khan et  al. 

2008). The goal of the classification study was to test 
whether the HDACi can be identified and whether they 
can be differentiated from six compounds containing mer-
cury (‘mercurials’) and known to act by heterogeneous 
mechanisms. The lack of overlap between the transcrip-
tome changes of mercurials (only 2 PS altered by > 4 com-
pounds) gives evidence that the six analysed mercurials do 
not represent a homogeneous group of compounds all act-
ing by similar mechanisms; this corresponds to the infor-
mation from the PCA plots, where the mercurials cluster 
at two distinct positions in the principle component space 
(Fig. 1b). The main finding of the study was that a support 
vector machine-based algorithm correctly predicted each of 
the 12 compounds. The robustness of the classification is 
further suggested by the high fraction (48 out of 50) of cor-
rectly predicted individual replicates (each represented by 
one microarray), in addition to the fact that the prediction 
of each compound—defined by the mean value of the four 
to five biological replicates per compound—was correct.

A second outcome of our study was the identification and 
characterization of HDACi consensus genes for UKN1 stand-
ard test conditions. All six HDACi deregulated altogether 81 
genes, and nearly six hundred were deregulated by at least 
four HDACi (405 up; 190 down). However, in this context, 
it is important to revisit the concept of such consensus genes. 
In earlier studies, an overlap in the response to HDACi has 
been interpreted as evidence for the existence of an HDACi 
response pattern (Jergil et al. 2009; Kultima et al. 2010). Such 
‘HDAC genes’ were also confirmed upon short exposure to 
VPA in an embryonic stem cell test system (Theunissen et al. 
2012). However, it became clear that HDACi can change up 
to 10–20 % of the genes of the genome, and it was shown ear-
lier that closely related hESC-based systems responded very 
differently to VPA (Krug et al. 2013). Moreover, the response 
triggered by VPA in the UKN1 system showed hardly any 
overlap with HDACi responses in mESC or tumour systems 
(Copp et al. 2003; Harris and Juriloff 2007). Thus, the con-
cept of ‘consensus genes’ needs to be refined: (1) they are 
specific to the cell type studied; (2) they are specific (with a 
given cell type and drug) to the exposure time at which they 
are measured (Balmer et al. 2014); (3) they change with drug 
concentrations, at least when the drug reaches a cytotoxic 
level (Waldmann et  al. 2014); and (4) they mainly reflect 
the changed differentiation state of the cells after long-term 
exposure. The high number of HDACi consensus genes iden-
tified here gives thus a good description of the altered cellular 
state, which deviated from the normal endpoint of UKN1 and 
which is diverted in similar ways by all HDACi.

The present data go beyond our previous findings that 
TSA and VPA (HDACi with a >10,000-fold difference 
in potency and with little structural similarity) shared a 
large proportion (about 70  %) of their regulated probe 
sets. Analysis of the overlap of the genes up-regulated by 
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the two HDACi TSA and VPA had suggested that HDACi 
trigger the differentiation of UKN1 cells to several other 
(unwanted) cellular lineages, such as the cardiovascular 
system, neural crest, skeletal system and glands, instead of 
neuroectoderm. Such assumptions were corroborated here. 
Our new data provide a more solid basis for HDACi con-
sensus genes in the UKN1 system than older data obtained 
with VPA. Of the six marker genes used previously to fur-
ther characterize the effects of VPA, only two (Pax6 and 
Nanog) are in the new set of consensus genes. For instance, 
OTX2, used in our previous studies on VPA and TSA 
(Balmer et  al. 2014), was here indeed down-regulated by 
VPA, TSA and PMA, but not by the others HDACi.

With respect to developmental defects modelled by the 
UKN1 system, we examined whether any of the HDACi 
consensus genes are known for disturbances of neural tube 
formation from mouse knockout studies and other experi-
mental evidence. We found that two (GLI3 and NF1) of the 
down-regulated consensus genes and several of the up-regu-
lated ones are indeed associated with neural tube formation 
pathology (Copp et al. 2003; Harris and Juriloff 2007, 2010).

Concerning the specificity of the consensus genes, 151 
(121 up-regulated + 30 down-regulated) of them were not 
regulated by any mercurial, and 185 additional ones were 
only affected by one of the mercurials. This indicates a dis-
tinct difference between developmental dysregulation trig-
gered by the group of HDACi and other chemicals. On the 
other hand, there were also few genes that were regulated 
by all HDACi and at least four mercurials. This small group 
of genes may be robust indicators of a generally disturbed 
development in the UKN1 system and could be considered 
as compound-independent biomarker candidates. The up-
regulated ones comprised: BAG2, COL1A2, GABRB3 (link 
to several neurodevelopmental diseases), GREM1 (control 
of organogenesis, BMP antagonist), PHLDA2 (placenta 
growth, imprinted, tumour suppressor), TFAP2A (neural 
crest development) and NQO1 (oxidative stress). The two 
down-regulated ones were NCALD (neurocalcin delta, neu-
ronal calcium sensor) and PRSS23 (ovarian serine protease).

Assignment of identified genes to superordinate biolog-
ical processes (Falsig et  al. 2006), and if possible to key 
events of adverse outcome pathways (Bal-Price et al. 2015) 
or other toxicological mechanisms (Grinberg et  al. 2014), 
is an important step from data generation to increased toxi-
cological information. We used here common approaches 
such as the analysis of gene groups for overrepresented 
GOs and KEGG pathways. However, we also went one step 
further by aligning the identified transcript changes with 
a human transcription factor network constructed specifi-
cally for this purpose. Until now, KEGG pathways cover 
TF networks only to a limited extent, and further refine-
ment of this approach (Rahnenfuhrer and Leist 2015) may 
lead to the identification of subnetworks as regulatory 

principles explaining waves of transcript changes and win-
dows of sensitivity to toxicants during defined developmen-
tal phases (Kuegler et al. 2010; Zimmer et al. 2011).

An important question is at which concentration the 
cells of the UKN1 test system should be exposed to test 
compounds to guarantee correct classification. Previous 
studies have shown that relatively small increases in con-
centrations may have massive consequences on the num-
bers of deregulated genes (Krug et  al. 2013). Moreover, 
additional cell death-associated genes become deregulated 
when cells are exposed to cytotoxic concentrations (Wald-
mann et  al. 2014). Theoretically, cell death-associated 
genes may compromise classification when exposure is 
performed with cytotoxic concentrations. On the other 
hand, critical genes may not yet be de-regulated at too 
low concentrations which might lead to false negatives. 
To avoid such problems, it is current practice to perform a 
concentration range finding study with the aim to identify 
the highest non-cytotoxic concentration [benchmark con-
centration, (Krug et  al. 2013)], i.e. the concentration that 
marks the transition between the non-toxic range and the 
cytotoxic concentration range of a chemical. However, this 
procedure is technically challenging, because the cytotoxic 
range may vary from experiment to experiment. Variability 
of the benchmark concentration of 25  % or even more is 
possible. For steep concentration response curves, this may 
lead to substantial differences in the number of deregulated 
genes. Due to experimental variability, it may, for instance, 
occur that a concentration identified as benchmark in the 
concentration finding test causes a higher or lower cyto-
toxicity in the main study for the gene expression analy-
sis. So far it has been unclear whether testing at higher 
concentrations than the benchmark concentration leads to 
data that are useless for hazard identification. To systemati-
cally address this question, we used a set of concentration-
dependent gene array data where VPA has been tested at 
eight concentrations between 25 and 1000 µM. In previous 
comprehensive studies, it has been shown that 25–125 µM 
VPA corresponds to a concentration range of ‘tolerance’ 
where only weak gene expression responses occur and the 
development of the cells is not compromised (Waldmann 
et  al. 2014). Concentrations between 150 and 550  µM 
represent the ‘teratogenic’ range with clear phenotypical 
alterations. Concentrations of 800 µM and higher are cyto-
toxic, and 1000  µM represents the highest concentration 
where RNA of sufficient quality still could be harvested. 
As expected, VPA was correctly predicted as an HDACi by 
the here-established classifier only in the ‘teratogenic’ con-
centration range. Interestingly, the classifier was negative in 
the concentration range of ‘tolerance’ where the predicted 
probability of the classifier decreased from almost 0.97 
(350 µM) to 0.10 (25 µM). A surprising result was the cor-
rect prediction in the cytotoxic range. VPA at 800 and even 
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1000  µM leads to a classifier of 0.99 and was therefore 
equivalent compared to the ‘teratogenic’ range. Obviously, 
a ‘dilution effect’ by cytotoxicity associated genes did not 
occur to a relevant extent. This result may be of high practi-
cal relevance, because it supports the recommendation to 
perform the exposure for gene array experiments at rela-
tively high concentrations; exceeding the benchmark con-
centration may not be as critical as hitherto expected. On 
the other hand, too low concentrations, where less than 300 
genes are deregulated, should be interpreted with caution. 
It should, however, be considered that a systematic concen-
tration-resolved classification study has so far only been 
performed for a single compound (VPA) and further analy-
ses are required before general conclusions can be drawn.

The UKN1 test system includes a 6-day period for 
exposure to test compounds. For routine testing, shorter 
exposure periods would be convenient. Therefore, we per-
formed compound washout studies where the UKN1 cell 
system was exposed only during the first 6 or 24 h (early 
pulse) to HDACi, followed either by direct analysis or by 
an incubation period without test compound up to day 6. In 
both cases, the classifier did not recognize the compounds 
as HDACi. Also exposures during the last 24 or 6 h of the 
6-day differentiation period (late pulse) were insufficient. 
Only 4-day exposure followed by 2 days washout (medium 
pulse) resulted in sufficient irreversible expression altera-
tions to correctly classify the test compounds. This may be 
the period associated with the largest epigenetic changes 
(Balmer and Leist 2014; Weng et  al. 2012, 2014). In con-
clusion, critical developmental time windows occur during 
DoD1—4. This period must be covered by compound expo-
sure to guarantee a sufficient sensitivity.

Stepwise reduction in the number of PS demonstrates 
that a classifier based on only 10-PS still correctly predicts 
all 12 compounds if the ‘leave-one-out concept’ is used. 
These 10-PS correspond to only eight genes, because the 
classifier selected two PS for each of the genes transcription 
factor AP-2 beta (TFAP2B) and endothelin receptor type A 
(EDNRA). At a first glance, it may be surprising that only 
one gene (FOXD3) is in the overlap of the eight-gene clas-
sifier (Suppl. Fig. S7) and the HDACi consensus signature 
(Fig.  3, suppl. Table S2). However, this is a well-known 
phenomenon of high-dimensional data (Fan 2006). Several 
classifiers can be constructed that are based on completely 
different sets of genes but nevertheless perform equally 
well. It should also be considered that the eight-gene classi-
fier was obtained by a multivariate algorithm and preselec-
tion of probe sets based on individual variances, whereas 
the consensus list is based on simple overlap analysis of all 
genes up- or down-regulated by all HDACi. Differentiation 
between HDACi and mercurials is relatively easy in the 
present set of data and could even be achieved on the basis 
of only single genes, such as FOXD3 (Fig. 7). However, the 

eight-gene-based algorithm guarantees more stability when 
additional compounds are tested.

In conclusion, an eight-gene-based classifier allows the 
identification of HDACi in a human stem cell-based in vitro 
system. In future, it will be of interest to study whether 
further signatures can be identified that can be linked to 
specific mechanisms of developmental neurotoxicity, and 
whether such systems can replace animal experiments 
(Hartung and Leist 2008), by offering higher predictabil-
ity, as envisioned by the landmark document of the national 
research council of the USA (Leist et al. 2008b).
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