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Introduction
Phagocytosis is an important element of the defense mecha-
nisms against microbial invaders. Microbes are engulfed into 
early phagosomes by actin-driven extensions of the plasma 
membrane. Initial properties of phagosomes are dictated by 
their origination from the plasma membrane, but fusion with 
endosomes quickly initiates phagosomal maturation (Flannagan 
et al., 2009). Continued maturation of phagosomes depends on 
the fusion with early and late endosomal compartments, and 
eventually lysosomes (Kinchen and Ravichandran, 2008).

As phagosomes mature, they transition through an early 
stage marked by the presence of the GTPase Rab5 and its  
effectors (Kinchen and Ravichandran, 2008). Among them, 
Mon1/SAND-1 proteins aid in the conversion from Rab5- to 
Rab7-positive late phagosomes (Kinchen and Ravichandran, 
2010), which is equivalent to their role in endosome maturation 
(Poteryaev et al., 2010). Rab7, subsequently, is required for 
phagosomes and late endosomes to fuse with lysosomes (Bucci 
et al., 2000; Harrison et al., 2003).

HOPS (homotypic fusion and vacuole protein sorting) 
is a multiprotein complex that originally was characterized 

in yeast for its role in vacuolar fusions (Sato et al., 2000; 
Seals et al., 2000). The HOPS complex acts as a tethering 
factor, stimulates Rab nucleotide exchange, and coordinates 
the interaction of SNAREs during lysosomal fusions (Nickerson  
et al., 2009; Wickner, 2010). In multicellular organisms, 
HOPS complex function is necessary for the biogenesis of  
lysosomes and lysosome-related organelles (Rojo et al., 2001; 
Sadler et al., 2005; Maldonado et al., 2006). In Drosophila, 
homologues of the HOPS subunits Vps18p and Vps33p are 
encoded by deep orange and carnation. Both genes are named 
for their role in the biogenesis of pigment granules in the fly 
eye, and, together with Vps16A, they are required for lyso-
somal delivery of cargo from endosomes and autophagosomes 
(Sevrioukov et al., 1999; Sriram et al., 2003; Pulipparacharuvil 
et al., 2005; Lindmo et al., 2006; Akbar et al., 2009). Similarly 
in mice, the buff mutation, because of a missense mutation 
in the VPS33A gene, causes abnormal pigmentation (Suzuki 
et al., 2003) and progressive neurodegeneration, presumably 
because of a defect in lysosomal delivery (Chintala et al.,  
2009). Furthermore, an RNAi screen in Caenorhabditis elegans 
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nonpathogenic microbes. These findings suggest that defects in 
phagosome maturation may contribute to symptoms of ARC  
patients, including their recurring infections (Gissen et al., 2006; 
Hershkovitz et al., 2008; Jang et al., 2009).

Results and discussion
Fob is required for normal immune defense
A fob1 null allele (Fig. 1, A and B) was generated by ends-out 
homologous recombination (Gong and Golic, 2003). fob1 flies 
were null for fob expression but had no change in the transcrip-
tion of neighboring genes (Fig. 1 C). Homozygous fob1 and 
hemizygote (fob1/Df(3R)BSC547) flies were viable, fertile, and 
displayed no morphological defects.

ARC patients present with recurrent infections at a high 
frequency (Gissen et al., 2006; Hershkovitz et al., 2008; Jang  
et al., 2009), thus we wondered whether microbial infections 
also threaten fob1 flies. We compared the survival of fob1 and 
wild-type flies upon injections with bacteria. Interestingly, fob1 
mutants were strongly susceptible to infections with Esche-
richia coli, bacteria that are nonpathogenic to wild-type flies 
(Fig. 1 D, P < 0.0001 logrank). Survival of fob1 flies was signifi-
cantly improved by expression of fob cDNA in hemocytes  
(Srp-Gal4 compared with fob1, P = 0.005 logrank); its ubiquitous 
expression or a genomic rescue construct further improved  
survival to wild-type levels (Da-Gal4, P = 0.5; gFob, P = 0.3; 
both logrank vs. Ore-R). Pathogenic Enterococcus faecalis  
microbes killed fob1 flies only slightly faster than wild type 

has implicated HOPS subunits in phagosomal maturation 
(Kinchen et al., 2008).

Metazoan genomes encode two Vps33p homologues 
(Pevsner et al., 1996). In Drosophila, their functions are dis-
tinct, as none of the car/Vps33A phenotypes can be rescued by 
Vps33B expression (Akbar et al., 2009). A role for Vps33B 
in the clearance of Mycobacterium tuberculosis bacteria was 
revealed by the identification of Vps33B as a target of the bac-
terial virulence factor PtbA, a phosphatase critical for the  
intracellular persistence of these microbes (Bach et al., 2008). 
Importantly, mutations in Vps33B cause a fatal recessive dis-
order named arthrogryposis, renal dysfunction, and cholesta-
sis (ARC) syndrome (Gissen et al., 2004). Cells from ARC 
patients exhibit diverse defects including mislocalization of  
a subset of apical proteins (Gissen et al., 2004) and defects in 
the biogenesis of platelet -granules (Lo et al., 2005), but the 
underlying trafficking defects are not well understood. An im-
portant aspect of Vps33B function is its binding to Vps16B, 
an interaction that is conserved from invertebrates to humans 
(Pulipparacharuvil et al., 2005; Zhu et al., 2009; Cullinane  
et al., 2010). Relevance of this interaction was confirmed by 
the discovery of mutations in VPS16B as the second major 
cause of ARC syndrome (Cullinane et al., 2010).

Here, we describe a mutation in the full-of-bacteria (fob) 
gene, which encodes Drosophila Vps16B. To our surprise, flies 
null for fob were homozygous viable and fertile. They exhibit, 
however, a profound defect in phagosome maturation, and  
as a consequence are sensitive to infections with normally  

Figure 1. A fob null allele is hypersensitive to infections with E. coli. (A) Schematic representation of the Drosophila fob gene and its neighbors. The 
targeting fragment generated in vivo (Gong and Golic, 2003) contains portions of neighboring genes around the mini-white gene (red box). (B) Southern 
hybridization with the entire fob gene yielded a signal with Ore-R (wt) but with any fob allele. Reprobing the same membrane with dVps33b confirmed 
the presence of DNA in all lanes. (C) qRT-PCR showed no expression of fob but similar levels of expression for neighboring genes in fob1 compared with 
wild type. Gene expression levels were normalized with rp49 as an internal control and are shown relative to wild type. (D and E) Survival after infection 
was measured for wt, fob1, and rescued fob1 flies after injection with E. coli (D) or E. faecalis (E). (F) Induction of AMP genes 6 h after injection with E. coli 
(Drosocin, Diptericin, Cecropin, and Attacin) or 12 h after injection with E. faecalis (Defensin). (G) Bacterial load in injected flies at the indicated day after 
injection with E. coli. Error bars indicate standard deviation.
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(Fig. 3 A and Fig. S1). In contrast, fob1 phagosomes acidified 
only minimally, if at all: the starting mean pH of 6.6 ± 0.12 was 
only lowered to pH 6.3 ± 0.13 after a 30-min chase (Fig. 3 B). 
In accordance with this finding, electron microscopy of isolated 

(Fig. 1 E, P = 0.005 logrank). Survival of flies after microbial 
infections depends, in part, on the induction of antimicrobial 
peptides (AMPs) through the activation of the IMD or Toll path-
ways (Hoffmann, 2003). Therefore, we compared AMP gene 
expression in infected fob1 and wild-type flies relative to their 
counterparts injected with PBS only. Quantitative RT-PCR 
(qRT-PCR) showed that infected fob1 flies induced AMP ex-
pression, which indicates that IMD or Toll signaling was not  
inhibited (Fig. 1 F). Given their ability to mount an AMP response 
against gram-positive and gram-negative bacteria, fob1 must be 
lacking in a different aspect of the host defense.

Early steps in phagocytosis do not  
require Fob
Another facet of host defense is the phagocytosis of invading 
microbes. After injection with pHrodo-labeled bacteria into 
their abdomen, wild-type flies displayed a characteristic ac-
cumulation of fluorescence in sessile hemocytes in the thorax 
(Fig. 2 A). This reflects the uptake of bacteria into hemocyte 
phagosomes and their subsequent acidification (Cuttell et al., 
2008). In comparison, fob1 flies exhibited weaker fluorescence, 
but the number of immobilized bacteria did not seem drastically 
reduced, which is consistent with the presence of active phago-
cytic sessile hemocytes. In contrast, in eater flies, the number of 
bacteria appeared reduced but the signal strength of individual 
punctae was similar to wild type (Fig. 2 A). The loss of one of 
several phagocytic receptors in eater flies reduces phagocytic 
uptake but not phagosome maturation and acidification (Kocks 
et al., 2005). In contrast, the reduced pHrodo fluorescence in 
fob1 flies suggested a defect in phagosomes acidification.

To address this issue at higher resolution, we analyzed 
phagocytosis in primary hemocytes from third instar larvae 
(Pearson et al., 2003). Compared with wild type, fob1 hemocytes 
did not exhibit a defect in initial phagocytic uptake of bacteria 
(Fig. 2, B and C). Subsequently, wild-type cells efficiently di-
gested bacteria (Fig. 2 D), and after a 45-min chase contained 
only 4.8 ± 3 bacteria (n = 6). In contrast, at this time point, fob1 
cells (Fig. 2 E) were still full of bacteria (26 ± 16, n = 6, P < 
0.0001). Similarly, elevated levels of bacteria were observed  
after knockdown of Vps33B or Vps16A (Fig. 2 F). Inability to 
digest bacteria was also observed in vivo after injection with  
E. coli. In fob1 flies, the bacterial burden remained elevated  
(Fig. 1 G), as opposed to the efficient clearance of the majority of 
bacteria in wild-type flies after just 1 d. Together, these data sug-
gest that the poor survival of fob1 flies after injections with non-
pathogenic E. coli reflects a defect in phagosome maturation.

Phagosome maturation requires Fob
A necessary step in the acquisition of the full degradative po-
tential of phagosomes is their acidification, which can be moni-
tored by imaging the fluorescence ratio of Oregon green/Texas 
red doubly labeled phagocytosed bacteria. After a 30–45-min 
chase in wild-type hemocytes, the majority of internalized bac-
teria appeared degraded as judged by the diffuse appearance 
of remaining fluorescence, but the few phagosomes that still 
contained well-defined bacteria had acidified to a mean pH of 
5.5 ± 0.15 compared with a mean starting pH of 6.5 ± 0.15  

Figure 2. fob mutants exhibit a defect in bacterial clearance. (A) 2 h after 
injection, pHrodo-labeled E. coli (arrows) were visible around the dorsal 
vessel in the thorax of wild-type and eater flies (Df(3R)D605/Df(3R)Tl-I). 
In contrast, diffuse weaker signals appeared in fob1 flies. (B) Hemocytes 
were allowed to engulf FITC-labeled E. coli for 15 min, and, after quench-
ing fluorescence of external bacteria with Trypan blue, the fluorescence 
of phagocytosed bacteria was visible in wild-type (B) and fob1 (C) cells 
visualized by differential interference contrast microscopy (B and C).  
(D and E) After 45 min of chase, bacteria were cleared from wild type (D) 
but accumulated inside fob1 hemocytes (E). (F) Box and whisker plots display 
the number of bacteria detected in hemocytes of indicated genotypes after 
45 min of chase. Bars: (A) 0.5 mm; (B and C) 25 µm; (D and E) 10 µm.

http://www.jcb.org/cgi/content/full/jcb.201008119/DC1
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effectors, are normal in fob1 mutant phagosomes. This conclu-
sion was further supported by the presence of Avalanche (Avl), 
an early endosomal SNARE (Lu and Bilder, 2005), on Rbsn-5– 
positive phagosomes in fob1 and wild-type hemocytes (Fig. 4,  
A and F). This indicates that fob1 mutants have normal early  
endosome–phagosome fusion.

A subsequent step in phagosome maturation involves the 
exchange of Rab5 to Rab7, similar to their exchange observed 
in endosomes (Vieira et al., 2002; Rink et al., 2005). 62 ± 26% 
of phagosomes in fob1 hemocytes were decorated by Rab7  
compared with 36 ± 14% in wild type, which indicates that 
Rab5-to-Rab7 conversion was not inhibited in fob1 (Fig. 4, B, 
B, and F). This significantly increased presence of Rab7 on 
phagosomes in fob1 cells (P < 0.0001) suggests that phagosomes 
are stalled at this stage. This is reminiscent of the dramatic  
increase of Rab7 on late endosomes in car-null cells (Fig. S2 K; 
Akbar et al., 2009) and is consistent with Rab7 recruitment  
not being sufficient to induce fusion with lysosomes (Vieira  
et al., 2003). We explored other markers and found that Hook 
was present on 31 ± 8% of wild type but only on 6 ± 2% of  
fob1 phagosomes, without ever decorating entire phagosomes 
as we observed in wild-type cells (Fig. 4 C). Interestingly,  
Drosophila Hook has been implicated in the maturation of  
multivesicular bodies (Sunio et al., 1999), which are involved 
in phagosome maturation (Philips et al., 2008). Considering 
the connection between endosomal and phagosomal maturation  
pathways, our data suggest that fob1 phagosomes failed to ac-
quire late endosomal/lysosomal characteristics due a loss of  
fusion with those compartments.

Fob mutants exhibit a specific defect in the 
fusion of lysosomes with phagosomes
Several lines of evidence argue that the fob1 phagosomal matu-
ration defect does not reflect a block in endocytic trafficking. 
For example, distribution of Boss and Delta ligands, which 
sensitively respond to loss of Vps16A or Car/Vps33A function 
(Fig. S2, I and J; Pulipparacharuvil et al., 2005; Akbar et al., 
2009), was not altered in eye discs from fob1 larvae, indicating 
that endocytic trafficking proceeded normally (Fig. S2, C–H). 
Furthermore, eyes of 2-d-old flies exhibited normal ommatid-
ial organization (Fig. S2, A and B), which indicates that fob1 
mutants have no significant defects in Notch or EGF receptor  
signaling. The recurrent use of these signaling pathways during 
eye development provides a sensitive read-out for defects in 
formation of apical polarity, adherens junctions, or changes 
in endocytosis, lysosomal delivery, or recycling. Furthermore, 
starvation-induced autophagy, which requires fusion with lyso-
somes, is also normal in fob1 larvae (Fig. S2, L–O). Together, 
these data indicate that fob is not essential for endocytic or auto-
phagic routes engaged during developmental signaling or cell 
remodeling and instead point to a specific requirement of fob 
for the fusion of phagosomes to lysosomes.

To directly test this hypothesis, we functionally labeled 
lysosomes by allowing hemocytes to internalize dextrans by 
fluid phase endocytosis. After a 90-min chase in wild-type cells, 
60–80% of dextran had reached lysosomes, as measured by  
their colocalization with LysoTracker (Fig. 4 D). This was not 

fob1 hemocytes revealed that after a 30-min chase, phagocytosed 
bacteria were predominantly present in late phagosomes (Fig. 3, 
C and D) that were characterized by a mix of undigested or 
mildly degraded bacteria (Fig. 3 C). In contrast, after a 30-min  
chase in wild-type hemocytes, the majority of bacteria had 
reached phagolysosomes (Fig. 3, C and D) characterized by 
strongly degraded content (Fig. 3 C).

Phagosomes mature by interacting with endosomal com-
partments (Desjardins et al., 1994). Thus, we explored endo-
somal markers, including Rab GTPases (Smith et al., 2007), 
as indicators of phagosome maturation. We found that a Rab-5 
effector, Rabenosyn-5 (Rbsn-5), was present on fob1 and wild-
type phagosomes (Fig. 4, A and F). Rbsn-5 is a FYVE domain 
protein whose phagosomal localization depends on activation 
of phosphatidylinositol 3-kinases (PI3K) and Rab5 (Stenmark 
et al., 1995; Vieira et al., 2003). These data indicated that 
early steps in phagosome maturation, including the generation 
of 3-phosphoinositides and subsequent recruitment of Rab5  

Figure 3. fob phagosomes fail to mature. Double-labeled bacteria were 
allowed to internalize for 10 min (broken line) or 30 min (solid line), and 
images were captured for 15 min. The distribution of fluorescence ratios 
is shown for Ore-R (A) and fob1 (B). The fluorescence ratio relates to pH 
as shown in Fig. S1. (C) Electron micrographs of phagosomes detected 
after a 30-min chase of phagocytosed E. coli. Phagosomal structures were 
broadly classified in three categories based on their ultrastructural appear-
ance: phagosome (C), late phagosome (C) and phagolysosomes (C). 
Bar, 1 µm. (D) Relative distribution of different categories of phagosomes in 
Ore-R and fob1. Data were collected from two independent sets of experi-
ments with equivalent results. Quantification was performed in triplicate 
with a representative example shown in D.

http://www.jcb.org/cgi/content/full/jcb.201008119/DC1
http://www.jcb.org/cgi/content/full/jcb.201008119/DC1
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phagosomes colocalized with dextran, which indicates their 
failure to fuse with the prelabeled lysosomes. Because the eval-
uation of late-stage bacterial phagosomes is complicated by the 
continuous degradation of bacteria, we also tested the phago-
cytosis of latex beads. Here the loss of phagosome/lysosome 
fusion was even more evident, as after a 30–45-min chase, 50 ± 
13% of latex beads colocalized with dextran in wild type, but 
only 8 ± 2% colocalized in fob1 hemocytes.

Vps16B proteins in various species tightly interact with 
the corresponding Vps33B partners (Fig. S3 A; Pulipparacharuvil 
et al., 2005; Zhu et al., 2009; Cullinane et al., 2010). Consistent 
with a shared role of this complex in phagocytosis, dVps33B 
knockdown also rendered flies hypersensitive to E. coli  

significantly altered in fob1 or Vps33B knockdown hemocytes, 
which is consistent with the notion that neither is necessary for  
endocytic trafficking. In contrast, in Vps16A knockdown hemo-
cytes, dextran failed to reach lysosomes (Fig. 4 F), which sug-
gests that lysosomal dysfunction (Pulipparacharuvil et al., 2005) 
rather than a defect in phagocytosis may be the primary cause of 
reduced bacterial clearance in Vps16A knockdown hemocytes 
(Fig. 2 F). Next, hemocytes containing dextran-prelabeled lyso-
somes were allowed to phagocytose bacteria. After a 30–45-min 
chase, 28 ± 7% of bacteria-containing phagosomes in wild-type 
hemocytes colocalized with pre-endocytosed dextran, which is 
consistent with their fusion with lysosomes (Fig. 4 E). In con-
trast, only few 8.6 ± 4% fob1 or 7.6 ± 5% Vps33B-knockdown 

Figure 4. fob is required for the fusion of phagosomes with lysosomes. Micrographs show hemocytes isolated from wild-type (A–E) or fob1 (A’–E’) larvae. 
(A–C) Hemocytes were allowed to phagocytose FITC-labeled E. coli, and were immunostained for Avl (red) and Rbsn-5 (blue; A), Rab7 (B), or Hook (C).  
(D) Hemocytes were allowed to internalize dextran–Alexa Fluor 488 (10 kD), which after a 90-min chase partially colocalized with LysoTracker in wild type (D) 
and fob1 (D’), indicating functional labeling of lysosomes by dextran. (E) Hemocytes with lysosomes preloaded with internalized Texas red–dextran were  
allowed to phagocytose GFP-labeled E. coli. After 30–45 min of chase, the bacteria colocalized with dextran in wild-type (E) but not fob1 hemocytes (E).  
For display, images were imported into Photoshop (Adobe) and adjusted for gain, contrast, and gamma settings. Bar, 5 µm. (F) Bar graphs indicate per-
centages of bacteria in phagosomes positive for the indicated markers or the percentage of dextran in LysoTracker-positive structures (error bars indicate 
standard deviation). Hemocytes were harvested from larvae with indicated genotypes.

http://www.jcb.org/cgi/content/full/jcb.201008119/DC1
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5-GGGGTACCTTACAACTTGAGCTTGATGTTGTCC-3. The unit was 
then cloned into the pUASt vector using XhoI and Acc65I, and the result-
ing uas-Myc-Fob transgene was expressed under control of Da-Gal4 or 
Srp-Gal4 in fob1 background. Alternatively, a genomic fragment contain-
ing sequences 1.8 kb upstream and 0.8 kb of downstream of the fob 
coding region was cloned into a derivative of pCaSp4 for the generation 
of a transgenic line. For Vps33B-RNAi experiments, a 381-bp inverted 
repeat (bp 1,180–1,561 of the Vps33B mRNA; available from Gen-
Bank/EMBL/DDBJ under accession no. NM_143138.1) was clone into 
a modified pWIZ vector (Pulipparacharuvil et al., 2005) and expressed 
in transgenic flies under uas/Gal4 control. Plasmids containing the fob, 
vps33B, and Car cDNAs templates had been generated by the Berkeley 
Drosophila Genome Project and were obtained from the Drosophila Ge-
nomics Resource Center.

Infection experiments
E. coli (DH5, amp resistance, GFP) and E. faecalis cultures were grown 
overnight in Luria Bertani (LB) or brain heart infusion medium (BHI)  
medium at 37°C. Female virgin flies (5 d old) were injected (Schneider 
et al., 2007) with 80 nl PBS containing a mean of 1,600 E. coli (OD600 = 
0.1) or 200 E. faecalis (OD600 = 0.005). Sterile PBS was injected as 
a control. Injected flies (20 flies per vial) were reared at 25°C, 65% 
humidity, on yeast-agar-molasses food. Injections were performed with a 
pico-injector (model PLI-188; Nikon) fitted with glass capillary needles. 
Injections were performed in triplicate (total of 60 flies) for each group 
with either of the indicated microbes and PBS control on the same day. 
All injection experiments were repeated 8–10 times. For each survival 
curve, flies were counted every 24 h, and bars represent mean values 
with standard deviation. Data were analyzed using the SAS software 
(SAS Institute, Inc).

To determine bacterial load, flies were injected with E. coli (DH5, 
kanamycin resistant, five flies per data point) and homogenized after the 
indicated time (Schneider et al., 2007). Serial dilutions were plated and 
colonies were counted for each time point. Data are plotted as boxes with 
whiskers. The mean is indicated with a diamond. The boxes indicate 25th 
and 75th percentiles; the bold line is the 50th percentile, whereas the 
whiskers show the complete range of the data.

pHrodo-E. coli bioparticles (Invitrogen) were suspended according 
to manufacturer’s instructions, and 80 nl were injected. After 2 h, flies were 
mounted and imaged on a microscope with 1.5× magnification (SZX12; 
Olympus). During imaging, exposure parameters were set such that for 
Oregon-R the brightest spots were not saturated. FITC-E. coli (catalogue 
No. F6694; Invitrogen) were used for phagocytosis and immunostaining 
experiments in hemocytes.

For qRT-PCR experiments, RNA was isolated using TRIzol (Invitrogen) 
according to the manufacturer’s instructions. For anti-microbial peptide mea-
surements, RNA was isolated from five flies after injection (6 h for E. coli and 
12 h for E. faecalis). qRT-PCR was performed using a DNA-free, high-capacity 
cDNA reverse transcription kit (Fast SYBR Green master mix; Applied Bio-
systems) and a Fast Real-Time PCR System (7500; Applied Biosystems).  
Each data point was repeated three times beginning from injection. Values 
were normalized first with rp49 as an internal control and then expressed as 
fold change compared with flies injected with PBS as control. The following 
primer sets were used for amplification: fob left, 5-TATTGGAACC-
GATCCTCTCG-3; fob right, 5-CACCAGTTTCAATGCCTCCT-3; Ca left, 
5-CCATATCAGCCGCATTTCTT-3; Ca right, 5-AAGCTGGCATCGTTCT-
GACT-3; CG7829 left, 5-CAGGAACCTACTGGGCAAAA-3; CG7829 
right, 5-AGTAGACTCCCGGCTTGTCC-3; CG7802 left, 5-GTCGCGA-
CATCGACACTTC-3; CG7802 right, 5-CGTTGGCAGTGAATGTGGT-3; 
Attacin A left, 5-TGCAGAACACAAGCATCCTAA-3; Attacin A right,  
5-TAAGGAACCTCCGAGCACCT-3; Cecropin A1 left, 5-TCTTCGTTTTC-
GTCGCTCTC-3; Cecropin A1 right, 5-ACATTGGCGGCTTGTTGAG-3;  
Defensin left, 5-GATGTGGATCCAATTCCAGA-3; Defensin right, 5-CTT-
TGAACCCCTTGGCAAT-3; Diptericin left, 5-ACCGCAGTACCCACTCA-
ATC-3; Diptericin right, 5-CCATATGGTCCTCCCAAGT-3; G Drosocin left,  
5-TTCACCATCGTTTTCCTGCT-3; Drosocin right, 5-GGCAGCTTGAGTCAG-
GTGAT-3; Drosomycin left, 5-GTACTTGTTCGCCCTCTTCG-3; Drosomycin  
right, 5-ACTGGAGCGTCCCTCCTC-3; rp49 left, 5-ATCGGTTACGGATC-
GAACAA-3; and rp49 right, 5-GACAATCTCCTTGCGCTTCT-3.

Hemocyte isolation and phagocytosis experiments
Hemocytes were collected from 60–80 wandering third instar larvae in 
Schneider’s Drosophila medium (10% heat-inactivated FBS) containing 
glass-bottom culture dishes. Cells were allowed to settle down for 15 min 
and washed with Schneider’s media followed by incubation with the indi-
cated bacteria or dextran.

(Fig. S3 C), as we observed in fob1 mutants. Previous analy-
ses of these complexes focused on possible functions in endo-
somes (Gissen et al., 2004; Matthews et al., 2005; Zhu et al., 
2009; Cullinane et al., 2010). Surprisingly, we did not detect 
any requirement of fob in endocytic trafficking in Drosophila. 
This is distinct from our findings for its paralogue dVps16A, 
which together with Carnation and Deep orange is required 
for lysosomal delivery of endocytic and autophagic cargo and 
for biogenesis of pigment granules (Fig. 4 F and Fig. S2, I–K; 
Pulipparacharuvil et al., 2005; Akbar et al., 2009). Instead, we 
found that fob is specifically required for fusion of phagosomes 
with late endosomes/lysosomes. This specificity distinguishes 
fob from other genes, such as rab7 or genes encoding ESCRT 
subunits, which are required for phagosome maturation but also 
participate in endocytic delivery to lysosomes (Philips et al., 
2008). Together, these data indicate that Vps16A and Vps16B, 
and their corresponding binding partners Vps33A and Vps33B, 
have nonredundant functions in these pathways (Suzuki et al., 
2003; Lo et al., 2005; Pulipparacharuvil et al., 2005; Akbar  
et al., 2009).

A possible role of Vps16B and Vps33B proteins in phago-
cytosis is also consistent with several previous observations. 
Dephosphorylation of Vps33B is one among several strategies 
that M. tuberculosis bacteria use to inhibit phagosome matura-
tion and thereby escape their degradation (Bach et al., 2008). 
The recurrent bacterial sepsis common among patients with 
ARC syndrome (Gissen et al., 2006) may reflect deficiencies of 
phagocytic cells in clearing infections. Similarly, macrophage-
like coelomocytes are among the cell types strongly affected in 
mutants for spe-39, which encodes the C. elegans homologue of 
Vps16B (Zhu et al., 2009), and other HOPS subunits have been 
implicated in phagosome/lysosome fusion as well (Kinchen and 
Ravichandran, 2010). Together, these data point to the possibil-
ity that phagosome–lysosome fusion may be the ancestral func-
tion of Vps16B/Vps33B proteins, and it will be important to 
identify which aspects of ARC syndrome are caused by defects 
in phagocytosis.

Materials and methods
Fly genetics and generation of fob1 mutant
Ends-out homologous recombination was used for generating a fob-
null allele (Gong and Golic, 2003). Stepwise, left (5,906 bp) and right 
(5,293 bp) flanking regions of the fob gene were cloned into p[w25.2] 
vector yielding pw25-16Bko. Primers for amplification of left and right re-
gions were: left, 5-ATTTGCGGCCGCTGCGTGGTGAGTTTGCAC-3 and 
5-ATTTGCGGCCGCGCTCAAGTTGTAAAATTGACTTTCT-3, and right, 
5-TTGGCGCGCCGCACAGACATGGTCGCACTA-3 and 5-AACGTAC-
GATCACGGCCAGTTACTCCAC-3. A transgenic line carrying this donor 
on the second chromosome was selected for targeting (Gong and Golic, 
2003). Candidates for which the mini-white gene of pw25-16Bko mapped 
to the third chromosome were analyzed by probing Southern blots, first 
with the entire fob gene and then with dVps33B to control for loading.

For infections and immunohistology, the following lines were used: 
Oregon-R (wt), fob1, w1118; fob1/Df(3R)BSC547/TM6C, Sb1, eater trans 
heterozygous [Df(3R)D605/Df(3R)Tl-I], da-Gal4/uas-Vps33B-RNAi, and 
da-Gal4/Vps16A-RNAi (Pulipparacharuvil et al., 2005). Clones for car-
null cells were generated in the eye discs, which were stained as described 
previously (Akbar et al., 2009). Gal4 drivers and deficiencies were ob-
tained from the Bloomington Stock Center.

For rescue experiments, the fob coding unit was amplified using 
the primer set 5-CCGCTCGAGATGGAGGAGCAGAAGCTGAT-3 and 
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maturation in fob mutant cells and compares it to the reduced lysosomal 
delivery after loss of Vps16A or Carnation function. Fig. S3 shows in vivo 
binding of Fob and Vps33B and the reduced survival of E. coli–injected 
flies after Vps33b knockdown. Online supplemental material is available 
at http://www.jcb.org/cgi/content/full/jcb.201008119/DC1.
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