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Enzymes are proteins that can efficiently catalyze specific biochemical reactions, and they are widely present in the human body.
Developing an efficient method to identify human enzymes is vital to select enzymes from the vast number of human proteins
and to investigate their functions. Nevertheless, only a limited amount of research has been conducted on the classification of
human enzymes and nonenzymes. In this work, we developed a support vector machine- (SVM-) based predictor to classify
human enzymes using the amino acid composition (AAC), the composition of k-spaced amino acid pairs (CKSAAP), and
selected informative amino acid pairs through the use of a feature selection technique. A training dataset including 1117 human
enzymes and 2099 nonenzymes and a test dataset including 684 human enzymes and 1270 nonenzymes were constructed to
train and test the proposed model. The results of jackknife cross-validation showed that the overall accuracy was 76.46% for the
training set and 76.21% for the test set, which are higher than the 72.6% achieved in previous research. Furthermore, various
feature extraction methods and mainstream classifiers were compared in this task, and informative feature parameters of k
-spaced amino acid pairs were selected and compared. The results suggest that our classifier can be used in human enzyme
identification effectively and efficiently and can help to understand their functions and develop new drugs.

1. Introduction

Enzymes, also known as biocatalysts, are proteins that can
catalyze chemical reactions in living cells efficiently and spe-
cifically, and they play a key role in the survival of humans,
other animals, and plants. Over the last few decades, enzymes
in increasing numbers have been identified and have been
found to have a variety of properties and play diverse roles
in the survival, growth, and development of organisms.

Depending on the properties of the reaction catalyzed,
enzymes are classified into six classes according to enzyme
commission (EC) numbers [1]: oxidoreductases, transferases,
hydrolases, lyases, isomerases, and ligases. Owing to the
specificity of enzymes, i.e., an enzyme can only catalyze a
specific chemical reaction in a cell, accurately classifying
and predicting enzyme classes is of vital importance when

searching for unknown enzymes and developing new
drugs, including zymin.

The traditional approach to the identification of pro-
teins through wet experimental methods has typically been
time and resource intensive. With the development of pro-
tein sequencing technology and improvements in comput-
ing power, computational methods based on amino acid
sequence data of peptides, especially machine learning
methods, have been widely used to classify and predict
the function of diverse classes of proteins [2–7].

Currently, several researchers have focused on develop-
ing methods that can be used for the identification of
enzymes. Jensen et al. first predicted enzyme classes using
sequence-based physicochemical features and an Artificial
Neural Network (ANN) in 2002 [8]. Chou and Cai proposed
the GO-PseAAC predictor, which combined gene ontology
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(GO) and Pseudo amino acid composition (PseAAC) as fea-
tures to search for and used the nearest neighbor algorithm
approach [9]. Later, Cai et al. first applied the SVM algorithm
to enzyme classification [10] and combined functional
domain composition (FunD) with PseAAC to predict the
classes of enzymes [11, 12]. Furthermore, a predictor named
EzyPred was developed by Shen and Chou that uses FunD
and the Pseudo position-specific scoring matrix (PsePSSM)
as features [13]. In 2009, Nasibov and Kandemir-Cavas clas-
sified enzymes by the K-nearest neighbor (KNN) method
and the minimum distance-based predictor using AAC
[14]. Concu et al. provided a distinctive method using the
3D structure rather than sequence information [15]. Qiu
et al. developed a method based on PseAAC and discrete
wavelet transform (WT) that was trained by the SVM algo-
rithm [16]. Shi and Hu used low-frequency power spectral
density and increment of diversity, combined with AAC
and PseAAC, and built an SVM-based predictor [17]. In
addition, Zou et al. introduced a multilabel learning method
to identify multifunctional enzymes [18]. Later, a new
method was put forward by Niu et al. that used a protein-
protein network [19]. In recent years, deep-learning methods
like convolutional neural networks were used for the classifi-
cation of enzymes and achieved good results [20, 21].

All of these classification methods improved the classifi-
cation performance based on previous research. Neverthe-
less, all of these researchers concentrated on classifying
different types of enzymes, and very few methods have been
developed to predict whether a protein is an enzyme or a
nonenzyme. Wu et al. devoted themselves to this issue and
designed an SVM-based method combining PseAAC with
the rigidity [22], flexibility, and irreplaceability of amino
acids to identify human enzyme classes. However, this
method only reached an overall accuracy of 72.6% by 5-fold
cross-validation using 372 features, and thus, the perfor-
mance of this task needs to be further improved.

On the basis of the above research, in this work, we
developed a new machine learning method to classify
human enzymes and nonenzymes. First, we introduced a
feature representation strategy based on AAC and the
composition of k-spaced amino acid pairs (CKSAAP).
Next, for features represented by the methods above, the
feature selection technique based on analyses of variance
(ANOVA) was applied to minimize the features we used
and to improve its overall accuracy. Finally, the selected
features were fed into the classifiers found from SVM for
training. As a result, an accuracy of 76.46% and 76.21%
by 6-fold cross-validation was achieved in the training
set and test set, respectively, by using 40 feature parame-
ters. Furthermore, the performances of different feature
representation strategies under the SVM classifier and the
performances of different classifiers were compared and
discussed, and important feature parameters in this task
were selected and compared.

2. Materials and Methods

2.1. Datasets. The training sequence data used in this study
were first reported by Wu et al. [22] and were obtained from

the Universal Protein Resource (UniProt), the protein data-
base with the most abundant information and resources;
the training sequence data were composed of data from
three databases: Swiss-Prot, TrEMBL, and PIR-PSD [23].
Six subclasses of human enzymes and nonhuman enzymes
can be filtered and downloaded for free. To ensure the
correctness and representativeness of the training data,
the following data preprocessing process was used: (1)
Human enzyme sequences of enzymes whose function
had not been experimentally verified and those labeled as
fragments were eliminated. (2) Enzyme sequences contain-
ing ambiguous residues (“B,” “J,” “O,” “U,” “X,” and “Z”)
were excluded. (3) The CD-HIT program was applied to
remove highly similar enzyme sequences using 30% as
the cutoff of sequence identity [24, 25].

After the above data preprocessing steps were completed,
1117 human enzymes and 2099 nonhuman enzymes were
selected as training sequences in the analysis. Among them,
the human enzyme sequences consist of 6 subclasses, as
shown in Figure 1(a), with the overall workflow in our study
shown in Figure 1(b).

Furthermore, to evaluate the effect of the model more
accurately, a set of test data was selected from the dataset used
by Cai and Chou [11] and downloaded from UniProt [23];
these data included a total of 1954 sequences, including 684
enzymes and 1270 nonhuman enzyme sequences, respectively.

2.2. Feature Extraction. One of the most important steps in
our method was to extract the feature vector of the selected
sequences. Many works have focused on feature extraction
of proteins. AAC [26, 27], dipeptide composition (DPC)
[28, 29], Geary correction [30], composition-transition-
distribution [10, 31, 32], PseAAC [33–37], and other feature
extraction methods [38–40] have been proposed and widely
applied to describe different kinds of protein primary
sequences. Here, we presented and then applied AAC and
CKSAAP to extract features.

The AAC encoding strategy calculates the frequency of
each type of the 20 amino acids in a primary protein
sequence [26], which can be formulated as follows:

RAAC = f 1ð Þf 2ð Þ⋯ f ið Þ⋯ f 20ð Þ½ �T20,

f ið Þ = N ið Þ
L

1 ≤ i ≤ 20ð Þ,

8
><

>:
ð1Þ

whereNðiÞ denotes the number of the amino acid types i (i.e., A,
C, D, E, etc.) and L denotes the length of the sequence. This strat-
egy obtains a 20-D feature vector for each primary sequence.

The CKSAAP encoding strategy reflects the short-range
interaction of the sequence. The frequency of 400 amino acid
pairs in k-space is calculated using this strategy [41]. The fre-
quency can be defined as follows:

RCKSAAP = f 1, 1ð Þ f 1, 2ð Þ⋯ f i, jð Þ⋯ f 20, 20ð Þ½ �T400,

f i, jð Þ = N i, jð Þ
L − k

1 ≤ i, j ≤ 20ð Þ,

8
><

>:

ð2Þ

2 BioMed Research International



where Nði, jÞ denotes the number of the amino acid types
i and j in k-space. L denotes the length of the sequence.
This strategy obtains a 400-D feature vector for each pri-
mary sequence. Taking k = 1 as an example, there are
400 amino acid pairs in 1-space, i.e., A∗A, A∗C, A∗D,
etc., where ∗ denotes other amino acids as the gap [42].
In this research, k = 0, 1, 2, 3, 4, and 5 are used to extract
features and measure the comparative effectiveness. There-
fore, the dipeptide composition (DPC) is the same descriptor
as CKSAAP when k = 0 [43]. Moreover, in our work, features
of sequences are extracted by the iFeature toolkit [44].

2.3. Feature Selection. Feature selection was utilized to opti-
mize the prediction model and improve the accuracy of the
human-enzyme classification task. In previous research,
principal component analysis (PCA), the minimal redun-
dancy maximal relevance (mRMR) algorithm [45, 46], the
maximum relevance maximum distance (MRMD) algorithm
[47], the genetic algorithm, etc., were proposed for feature
selection and applied in protein classification. Here, ANOVA
is used to select the most representative features.

ANOVA is an effective method used in statistics to test
for a significant relationship between the selected variable
and group variables [48, 49]. In our paper, ANOVA can be
applied to measure the correlation between a selected feature
and all features. The F statistic (FðδÞ) of a feature δ is defined
as follows:

F δð Þ = s2MSB δð Þ
s2MSW δð Þ , ð3Þ

where s2MSBðδÞ and s2MSWðδÞ represent the mean square
between (MSB) and the mean square within (MSW), respec-
tively, which can be interpreted as the sample variance
between groups and the sample variance within groups. In
the theory of statistics, FðδÞ satisfies the F-distribution,
which is used for the significance test. However, in our study,
we only focused on the relative values of FðδÞ to indicate the
correlation between the feature and the overall size. Features
with a larger FðδÞ are selected because a larger FðδÞ implies
that they are more strongly related to the group features
and more likely to contribute to the classification.

2.4. Support Vector Machine. The SVM algorithm is one of
the most popular machine learning algorithms which has
been successfully applied in many areas [50–58]. The SVM
algorithm is based on statistical learning theory and is widely
used in various domains. In the field of protein prediction,
SVM has been applied to predicting protein category, sec-
ondary structure, physical and chemical properties, etc. and
has achieved remarkable results [31, 59–63].

The core idea of SVM is to map the vectors from a low-
dimension input space to a high-dimension Hilbert space,
in which a linear separating hyperplane is constructed by a
kernel function, and to try to maximize the margin among
the support vectors of each class by adjusting the linear sep-
arating hyperplane. Usually, varieties of kernel functions can
be used in SVM algorithms, including linear function, poly-
nomial function, sigmoid function, and radial basis function
(RBF). Previous research has shown that RBF performs much
better than the other three kinds of kernel functions. Hence,
RBF was used in our work as the kernel function [31, 59–63].

i) raw dataset and data processing
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Figure 1: Overall workflow. (a) The original sequence dataset used. The dataset consists of human enzymes and nonhuman enzymes. Among
them, human enzymes consist of 6 subsets, which represent the catalytic effects on different types of biochemical reactions: oxidoreductases,
transferases, hydrolases, lyases, isomerases, and ligases. (b) The workflow of our study. Raw protein sequences were first preprocessed and fed
into a feature extraction process, and then, a three-step feature selection technique was used to reduce feature parameters. Last, the selected
feature parameters were used to train an SVM-based model, and the performance of the model was evaluated by several evaluation indexes.
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During the course of algorithm implementation, the
open-source package libSVM supplied by Chang and Lin
was used to implement the SVM algorithm [64]. Two param-
eters, c and γ, related to loss function and kernel function,
respectively, were optimized by the method of gridding
search using 6-fold cross-validation.

2.5. Performance Evaluation. Overfitting is an inevitable
problem in machine learning. To reduce the influence of
overfitting on model training, jackknife cross-validation or
n-fold cross-validation is used to examine the power of the
model on the training set [65]. The jackknife cross-
validation method divides the training set into k subsets ran-
domly, one of which is used to verify the accuracy of the
model, and the other k‐1 subsets are used to train the model.
This method can avoid overfitting by generalizing the model
with k-times repetition and is widely used in the machine
learning process of small sample size data.

The performance of each model can be measured in
terms of accuracy (ACC), sensitivity (SE), and specificity
(SP) [66–72]. A confusion matrix can be set up with the help
of the classification results, which further classifies the classi-
fication results of a binary classifier into four categories: true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN) [73, 74]. These metrics are usually
adopted to evaluate prediction quality [75–89]. Based on this,
the parameters above can be expressed as follows:

ACC = TP + TN
TP + TN + FP + FN

∗ 100%,

SP =
TP

TP + FN
∗ 100%,

SE =
TN

TN + FP
∗ 100%,

8
>>>>>><

>>>>>>:

ð4Þ

where ACC is used to evaluate the overall performance of the
model and SE and SP are used to measure the predictive abil-
ity of the model for positive and negative cases. Higher values

of these parameters represent a better prediction perfor-
mance of the model.

In addition, the receiver operating characteristic (ROC)
curve is applied to evaluate the performance of the model fur-
ther [90–100]. ROC curves are used to illustrate the diagnos-
tic ability of a binary classifier, which shows the changes of SP
and SE with varied thresholds. The area under the ROC curve
(AUC) can be used to determine which classifier performs
better in a quantitative way. ROC curve analysis can reflect
the real performance of the model, especially for an unbal-
anced dataset.

3. Results and Discussion

3.1. Comparison of Feature Extraction Methods. We first
compared the performance of common feature extraction
methods on the training set identified by the SVM classifier.
Feature vectors with high dimensions were selected by
ANOVA or mRMR methods, depending on which method
could maximize accuracy. The features of the sequences were
extracted by the iFeature toolkit [44] and were then selected
and classified using MATLAB and libSVM. The accuracies
of the various methods are shown in Supplementary Mate-
rials (available here), calculated by 6-fold cross-validation.
We found that AAC and composition, transition, and distri-
bution (CTD) descriptors can classify human enzymes accu-
rately, with an accuracy from 74.4% to 75.9%, and that AAC
can achieve the highest accuracy, which means the frequency
of all 20 amino acids can provide the most useful information
about human enzyme classification, and thus, more useful
information can be added to AAC to improve the model’s
prediction performance.

Based on the above discussion, other descriptors can be
added to AAC to improve the model. The results of the pre-
dicted accuracy using different added descriptors are shown
in Table 1, where the feature selection technique in ANOVA
and mRMR with higher accuracy was used. The control var-
iable method is used to find the optimal feature extraction
method. Specifically, the dimension used for feature selection

Table 1: Accuracy of models trained with various feature parameters added into AAC by 6-fold cross-validation.

Feature parameters added into AAC Feature selection method Added number of features/total number of features Accuracy

CTD-C [10] mRMR 20/39 75.1547%

CTriad [101] mRMR 30/343 71.0349%

DPC [28] ANOVA 30/400 75.5569%

DDE [28] ANOVA 30/400 67.0483%

TPC [26] ANOVA 30/8000 75.5569%

PseAAC [33] ANOVA 30/50 73.5075%

Geary [30] mRMR 30/240 75.8706%

CKSAAP (k = 0~5) ANOVA 30/2400 75.9282%

CKSAAP (k = 0) ANOVA 30/400 75.7776%

CKSAAP (k = 1) ANOVA 30/400 76.0885%

CKSAAP (k = 2) ANOVA 30/400 75.7147%

CKSAAP (k = 3) ANOVA 30/400 76.0878%

CKSAAP (k = 4) ANOVA 30/400 75.8708%

CKSAAP (k = 5) ANOVA 30/400 75.8701%
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is unchanged (30-D), and the performance of the SVM clas-
sifier under different feature extraction methods is compared
to find the best feature extraction method for the identifica-
tion of human enzymes. Based on the performance of the dif-
ferent descriptors on the training set, CKSAAP, which
included not only information about the composition and
sequence order but also information about the residue corre-
lation, was determined to be the descriptor that can provide
new valid information on the basis of AAC to improve the
model performance.

3.2. Necessity of Feature Selection. Then, the performance of
our method, using the AAC and CKSAAP descriptors as fea-
tures, was measured in different dimensions that were
selected to determine whether the feature selection method
should be used to reduce redundant information and further
improve the performance of our model. We employed AAC
alone and AAC and 6 types of CKSAAP together as the pre-
dictor to train the SVM model. The results are presented in
Figure 2. Relative to SE, SP, the ACC model using all of the
features of AAC and CKSAAP was not much improved com-
pared to using AAC alone and was even decreased, in spite of
features in CKSAAP that include useless information that
influences the precision of our model. This result could lead
to the conclusion that a feature selection technique is neces-
sary to reduce redundant information and improve the preci-
sion of our model.

3.3. Selection of Significant Features. After determining the
feature selection techniques necessary to improve the predic-
tion accuracy of the model, the size of the significant features
of the CKSAAP descriptors that we selected needed to be
identified. We used ANOVA to select informative k-spaced
amino acid pairs. The definite means are as follows: (1) Eval-
uate all of the amino acid pairs and sort them according to
the difference between the two types of amino acids. (2) Each
CKSAAP feature is sequentially added to the parameter sub-

set with AAC according to the sorted order. (3) The SVM-
based model is trained using the parameter subset. Then, all
of the results are compared to find the best feature subset of
the significant features we selected.

According to these methods, taking k = 3 as an exam-
ple, the top 30 feature parameters of CKSAAP were
selected and are shown as Figure 3, and the variance of
50 feature parameters in both the training and test sets
are also shown. A∗∗∗A and L∗∗∗L have a large variance
in both the training and test sets, foreshadowing that they
contain more information.
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Figure 2: Comparison of SVM models trained by AAC alone versus AAC plus 6 types of CKSAAP.
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We used the top 30 feature parameters of CKSAAP
from ANOVA added into the AAC parameters to train
the model, change the value of k during feature extraction,
and change the number of features added to AAC at the
same time to select the model with the best performance,
instead of only changing the feature extraction method,
and the results are shown in Figure 4. We obtained a
maximum accuracy when we used 20 AAC parameters
and 20 CKSAAP parameters (k = 3) for 40 feature param-
eters overall. The c/γ values used in the SVM-based model
are 1.1487 (20.2) and 147.0334 (27.2), respectively. The

accuracy reached 76.2135%, and SP and SE reached
0.7530 and 0.6760, respectively, which are all higher than
the accuracy achieved in past research. We also measured
the performance of the above model by making predic-
tions on the test set and obtained an overall accuracy of
76.4585%, which indicates that the SVM model we estab-
lished performs well in the classification of human
enzymes. The 20 informative 3-spaced amino acid pairs
that are used in the model training stage are L∗∗∗L, P∗∗∗

P, A∗∗∗A, S∗∗∗S, G∗∗∗G, E∗∗∗E, K∗∗∗K, R∗∗∗R, A∗∗∗L,
Q∗∗∗Q, E∗∗∗K, L∗∗∗A, K∗∗∗E, A∗∗∗G, L∗∗∗G, G∗∗∗P, S∗∗∗L,
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Figure 4: Results of ACC, SP, and SE of the model trained by 20 AAC parameters and 1–30 important CKSAAP parameters selected by the
ANOVA technique.
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E∗∗∗L, V∗∗∗L, and G∗∗∗L (∗ indicates the other characters
between two amino acids, i.e., the space), which may play
important roles in human enzymes.

Furthermore, various mainstream classifiers, i.e., Naive
Bayes, Random Forest, Logistic, K-nearest neighbor (KNN),
and Ensembles for Boosting [102–105] are compared with
our model in both the training set and the test set using 6-
fold cross-validation in Table 2, and the result shows that
the SVM-based classifier in our paper performs best. In addi-
tion, the ROC curve of our model performed well on both the
training set and the test set, as shown in Figure 5, which con-
firms the classification effect of the model. The AUC reached
0.8019 and 0.7898 in the training set and the test set, respec-
tively, demonstrating that our method for human-enzyme
classification is effective and that more accurate classification
results can now be obtained.

4. Conclusion

In this study, we proposed an effective and novel method to
identify human enzymes using AAC and CKSAAP that is
based on short-range interactions of amino acid pairs rather

than the physicochemical properties of the sequences. By
using ANOVA to select informative feature parameters, 20
amino acid pairs in 3-space are selected to add 20 residues
and feed their frequency into an SVM classifier. The jack-
knife cross-validated accuracy was 76.46% in the training
set, demonstrating that fewer feature parameters were used
and a higher accuracy was reached compared to previous
research. Moreover, we compared the performance of the
model using different feature extraction methods, and the
results showed that residue-frequency-based methods per-
form better than other methods, and a web server based on
our method will be implemented in the future. In addition,
some important feature parameters selected by ANOVA,
e.g., A∗∗∗A and L∗∗∗L, may contain vital information in
regard to the identification of human enzymes, which we
hope to discuss more deeply in the future.

Data Availability

In our experiment, the sequence data of the training set
and the feature vectors of both the training set and the
test set extracted by the iFeature toolkit are available
online at https://github.com/Fu-Zhang/Identification-of-
human-enzymes. The sequence data of the test set are
available in the Supplementary Materials of Reference [11].
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Table 2: Comparison of the performance of various mainstream classifiers and the classifier implemented in our paper. ACC, SP, and SE of
different classifiers on both the training set and the test set are compared.

Classifiers
Training set Test set

ACC SP SE ACC SP SE

This work (SVM) 76.2135% 0.753 0.676 76.4585% 0.762 0.657

Naive Bayes 61.0697% 0.466 0.833 65.7625% 0.507 0.794

Random Forest 74.3781% 0.703 0.454 74.7691% 0.710 0.472

Logistic 69.5274% 0.598 0.374 68.4237% 0.587 0.329

KNN 62.8420% 0.474 0.646 63.0502% 0.480 0.658

Ensembles for Boosting 69.6206% 0.588 0.420 68.6796% 0.573 0.411
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Figure 5: The ROC curves of our model on both the training set and
test set, with AUCs of 0.8019 and 0.7898, respectively.
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Supplementary Materials

Accuracy of model training with various feature extraction
methods by 6-fold cross-validation. Two feature selection
methods, ANOVA and mRMR, are used and the feature
selection method with higher accuracy is selected and
included in the table. (Supplementary Materials)
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