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Abstract

Background

Severe leptospirosis is challenging as it could evolve rapidly and potentially fatal if appropri-

ate management is not performed. An understanding of the progression and pathophysiology

of Leptospira infection is important to determine the early changes that could be potentially

used to predict the severe occurrence of leptospirosis. This study aimed to understand the

kinetics pathogenesis of Leptospira interrogans strain HP358 in the hamster model and iden-

tify the early parameters that could be used as biomarkers to predict severe leptospirosis.

Methodology/Principal findings

Male Syrian hamsters were infected with Leptospira interrogans strain HP358 and eutha-

nized after 24 hours, 3, 4, 5, 6 and 7 days post-infection. Blood, lungs, liver and kidneys

were collected for leptospiral detection, haematology, serum biochemistry and differential

expression of pro- and anti-inflammatory markers. Macroscopic and microscopic organ

damages were investigated. Leptospira interrogans strain HP358 was highly pathogenic

and killed hamsters within 6–7 days post-infection. Pulmonary haemorrhage and blood ves-

sel congestion in organs were noticed as the earliest pathological changes. The damages in

organs and changes in biochemistry value were preceded by changes in haematology and

immune gene expression.

Conclusion/Significance

This study deciphered haemorrhage as the earliest manifestation of severe leptospirosis

and high levels of IL-1β, CXCL10/IP-10, CCL3/MIP-α, neutrophils and low levels of
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lymphocytes and platelets serve as a cumulative panel of biomarkers in severe

leptospirosis.

Author summary

As the severe form of leptospirosis could progress rapidly and be potentially fatal if not

treated earlier, deciphering the pathophysiology kinetics of infection is crucial to deter-

mine the parameters of disease severity. To understand this, we challenged hamsters with

the highly virulent Leptospira interrogans strain HP358. Pulmonary haemorrhage was

observed as the earliest pathological change followed by liver and kidneys damages. The

increased expression of IL-1β, CXCL10/IP-10, CCL3/MIP-α, high neutrophils and low

lymphocytes and platelets production observed in the present study indicate that these

parameters could serve as a cumulative panel of biomarkers in severe leptospirosis.

Introduction

The severe manifestation of leptospirosis could be either Weil’s disease, a triad of jaundice,

renal impairment and haemorrhages; or severe pulmonary forms of leptospirosis (SPFL) with-

out distinct renal and hepatic impairments [1]. The multi-organs involvement often appears as

a sudden onset of clinical manifestations, rapidly progressive and associated with high mortal-

ity rates [2–5]. This severe manifestation of leptospirosis could be either due to infecting strain

of Leptospira, the load of leptospiral inoculum and the age and immune status of the infected

host.

Despite the existence of the disease for many years, the evolution and factors determining

the development of severe leptospirosis in the infected host are still not well defined. Clinical

features and pathological changes in severe leptospirosis are described and suggested its associ-

ation with cytokine storm [6–9]. Several studies have been focused on identifying the factors

associated with severe leptospirosis [10–14]. However, the majority of these studies were per-

formed on samples collected at a single time point. For a detailed understanding of the param-

eters that could be monitored to prevent the illness from progressing to a severe form, a

kinetics study of the pathogenesis is vital.

In our earlier study, we isolated and identified a new genotype of Leptospira interrogans
strain HP358 (L. interrogans strain HP358) with Sequence Type (ST) 238 in rodents trapped

from the hotspot of human leptospirosis in the forest area of Hulu Perdik, Selangor, Malaysia

[15]. We performed an in vivo pathogenesis screening for the strain HP358 in the hamster

model and found that this strain is highly pathogenic manifesting pulmonary haemorrhage,

liver and kidneys damages and death as early as six days of post-infection (p.i.) [16]. The evi-

denced life-threatening clinical manifestations prompted us to investigate and understand the

kinetics of the pathophysiology of severe leptospirosis. Therefore, this study was carried out to

decipher the progression of the illness by monitoring the clinical manifestation of infected

hamsters, histopathological changes in tissues (lungs, liver and kidneys), the leptospiral load,

hemogram and serum biochemistry and the cytokines and chemokines expression profiles.

We hypothesised that understanding the virulence severity and the time course progression of

the disease development may identify factors that are expressed or altered during the early

stage of infection which could be recruited for further evaluation and subsequently utilized as

biomarkers in severe leptospirosis.
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Methods

Ethics statement

All experiments were conducted following the guidelines of the Code of Practice for the Care

and Use of Animals for Scientific Purposes, Universiti Putra Malaysia. Male golden Syrian

hamsters aged between four and six weeks purchased from Monash Universiti Malaysia, Ban-

dar Sunway, Selangor were housed (three per cage) with sterile sawdust bedding, fed with

commercial feed and given water ad lib in sterile bottles during the study course. The hamsters

were acclimatized for 14 days prior to the experiment. All animal procedures carried out in

this study were reviewed and approved by the Institutional Animal Care and Use Committee

(IACUC), Universiti Putra Malaysia with Animal Use Protocol (AUP) number: UPM/

IACUC/AUP-R044/2018. This study also is in compliance with the ARRIVE guidelines.

Infection, monitoring and euthanization of hamsters

Upon completion of two weeks of acclimatization, the hamsters (n = 21) were infected intra-

peritoneally (IP) with 2 x 108 of L. interrogans strain HP358 in 500μl Ellinghausen-McCul-

lough-Johnson-Harris (EMJH) medium. The bacterial load (to develop infection) to be

inoculated were selected based on our earlier investigation [16] and in previous studies

[17,18]. Control hamsters (n = 7) were injected intraperitoneally with 500μl sterile EMJH

medium (without any Leptospira). The infectivity study was carried out for seven days. The

hamsters were monitored throughout the study for clinical signs such as progressive loss of

weight, loss of appetite, reduced physical activity and dyspnea. One control and three infected

hamsters were euthanized from day 1 to 7 p.i. except for day 2 to study the pathological events.

Due to unforeseen reasons, we were not able to sacrifice the hamsters on day 2. The hamsters

were anaesthetized with 100 mg/kg ketamine and 5 mg/kg xylazine injected intraperitoneally

and subsequently whole blood was collected by cardiac puncture. Blood was collected for (1)

direct culture in EMJH medium, (2) detection of leptospiral DNA and haematological analysis

in EDTA tube, (3) biochemistry analysis in plain tube and (4) detection of immune genes in

RNAprotect animal blood tube. Hamsters were euthanized by atlanto-occipital dislocation

and following dissection, lungs, liver and kidneys were harvested and examined macroscop-

ically for any morphological changes. Twenty-five milligrams of each lung, liver and kidney

tissues were collected and transferred into tubes containing absolute ethanol for leptospiral

DNA detection and RNAlater for immune genes expression study. The remaining parts of the

organs were fixed in 10% neutral buffered formalin for histopathological investigations.

Macroscopic and microscopic examinations of infected organs

Formalin-fixed organs (lung, liver and kidney) were processed for light microscopy and

stained with hematoxylin and eosin (H&E) using the standard protocol. Lesions and changes

in the target organs were graded according to previously reported criteria [17,19,20].

Leptospira growth and DNA quantification in blood and organs

Portions of the kidneys of all hamsters were cultured in EMJH medium and observed for up to

two months for the growth of leptospires. Leptospiral DNA from blood, lungs, liver and kid-

neys were extracted using the DNAeasy Blood & Tissue Kit (Qiagen, German) according to

the manufacturer’s instructions. The 242bp lipL32 (primers: LipL32-45F: 50-AAGCATTACC

GCTTGTGGTG-30, LipL32-286R: 50-GAACTCCCATTTCAGCGATT-30, probe: LipL32-

189P: FAM-50-AAAGCCAGGACAAGCGCCG-30-BHQ1) [21] gene amplification was per-

formed for detection of leptospires in blood and organs. A serial dilution of pure culture of L.
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interrogans strain HP358 was used as a standard curve to determine the leptospiral counts, lin-

ear range, efficiency and reproducibility of the qPCR assay.

Haematology and serum biochemistry analyses

Blood samples taken from the hamsters were sent to the Haematology and Biochemistry labo-

ratory, Faculty of Veterinary Medicine, Universiti Putra Malaysia for complete blood counts

and biochemical analysis. The parameters for biochemical analysis were selected based on

their association with organs damage in human leptospirosis.

Expression of pro-inflammatory and anti-inflammatory markers

Total RNA extraction. Total RNA from blood (RNeasy Protect Animal Blood kit, Qiagen,

German), lungs, liver and kidneys (HiYield Total RNA Mini Kit) were extracted following the

manufacturers’ instructions. The extracted RNA was eluted in 20μl of RNase-free water. Before

storage at -80˚C, the quantity and quality of the purified RNA were measured using the Nano-

Drop 2000 spectrophotometer (Thermo Fisher Scientific) at OD 260/280 and OD 260/230

ratios. The integrity of RNA was verified using gel electrophoresis.

Reverse-transcription. DNA-free total RNA extracted from blood, lungs, kidneys, (1μg)

and liver (0.5μg) was reverse transcribed into cDNA using the Quantinova Reverse Transcrip-

tion kit (Qiagen, German). Genomic DNA from the RNA samples was removed using gDNA

removal mix (2μl). The total volume of 20μl reverse transcription (RT) reaction mix contained

RT enzyme (1μl), RT mix (4μl) and template RNA (entire gDNA elimination reaction, 15μl).

RT was conducted on a BioRad machine and consisted of annealing (3 min, 25˚C), RT step

(10 min, 25˚C) and inactivation step (5 min, 85˚C). The transcribed cDNA was diluted in 1:2.5

with RNase-free water and kept at -40˚C until used.

Real-time PCR and amplification program. Primers for immune genes were synthesized

(MyTACG Bioscience Enterprise, Malaysia) utilizing sequences from the previous studies

(Table 1). These immune genes were selected based on the association of these genes with lep-

tospirosis. For every sample, the amplification (real-time PCR) was carried out in duplicates

containing 1μl cDNA in a 20μl final volume for each cytokine and chemokines (Table 1) using

Quantinova SYBR green I master kit (Qiagen, German). The amplification was performed on

the Eppendorf instrument using Realplex software. The amplification program consisted of an

activation step at 95˚C for 2 min followed by amplification cycle of the target cDNA for 40

cycles (95˚C for 5 s and a combined annealing/extension at 55.7˚C for 10 s). Negative control

with RNase-free water was included in each run. The specificity of the amplification was veri-

fied by analysis of the melting curves of the PCR products.

Gene expression analysis. The level of expression of each gene was normalized to

the levels of glyceraldehyde-3-phosphate dehydrogenase (GADPH) housekeeping gene

using a comparative delta delta CT method (ΔΔCT Method). The average Ct values of

genes tested obtained from the control and infected hamsters for blood and organs (lungs,

liver and kidneys) were directly normalized to the reference gene. Then, the difference

between the Δct value of infected and control hamsters was calculated to arrive at the dou-

ble delta Ct value. Finally, the value of 2-ΔΔCt was calculated to obtain the expression fold

change.

Statistical analysis. Statistical analysis was performed using GraphPad Prismv8 (Graph-

Pad Software Inc.) Unpaired t-test was used for the analysis of significant differences in hae-

matology, serum biochemistry and cytokine genes expression between controls and infected

animals.
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Results

Clinical response to infection

The earliest clinical sign observed in the infected hamsters was weight loss which occurred as

early as day 3 p.i. Body weight continued to decrease over the days, with average weight loss of

0.3% (D3), 2.2% (D4), 4.6% (D5), 7.3% (D6) and 7.7% (D7). On day 5 p.i., all hamsters showed

loss of appetite, reduced physical activity and developed dyspnea. On day 6 p.i., three hamsters

died and one hamster died on day 7 p.i.. All control (non-infected) hamsters euthanized on

days 1 and 3 to 7 p.i. showed normal behaviour and progressive weight increase (16.6%

increase at the end of the study).

Macroscopically pulmonary haemorrhage occurred earliest

All three hamsters euthanized on day 1 p.i. showed normal morphology of the liver and kid-

neys, however, few focal haemorrhagic areas were observed in the lungs. Beginning from day 3

p.i., haemorrhage in the lung continued to spread (Fig 1). The kidneys appeared pale from day

6 p.i. while the liver did not show any marked changes. Another notable finding observed was

yellowish discolouration of adipose tissues in some of the dead and euthanized hamsters on

days 6 and 7 p.i. (Fig 2). The lungs, liver and kidneys harvested from the control hamsters

showed no gross changes.

Microscopically all organs showed progressive damages

The earliest pathological changes observed were congestion of the lung and liver on day 1 p.i.

and kidneys on day 3 p.i. (Figs 3–5; Table 2). Haemorrhage was observed in the lung as early

Table 1. List of inflammatory markers and primers used in this study.

No. Inflammatory markers Type Primers sequences Size bp References

Pro-inflammatory

1. Hamster -IFN-γ Cytokine F-GACAACCAGGCCATCC

R-CAAAACAGCACCGACT

226 [22]

2. Hamster IL-1β Cytokine F-ATCTTCTGTGACTCCTGG

R-GGTTTATGTTCTGTCCGT

156 [17]

3. Hamster IL-6 Cytokine F-AGACAAAGCCAGAGTCATT

R-TCGGTATGCTAAGGCACAG

252 [17]

4. Hamster TNF-α Cytokine F-AACGGCATGTCTCTCAA

R-AGTCGGTCACCTTTCT

278 [17]

5. Hamster CXCL10/IP-10 Chemokine F-CTCTACTAAGAGCTGGTCC

R-CTAACACACTTTAAGGTGGG

150 [17]

6. Hamster CCL3/MIP-1a Chemokine F-CTCCTGCTGCTTCTTCTA

R-TGGGTTCCTCACTGACTC

210 [17]

7. Hamster COX-2 Enzyme F-CAACTCCCTTGGGTGTGA

R-TCCTCGTTTCTGATCTGTCT

173 [17]

8. Hamster-iNOS Enzyme F-CCATTCTACTACTATCAGGTCG

R-TCGCCTTGTACTGGTTCAT

274 [23]

Anti-inflammatory

9. Hamster IL-10 Cytokine F-TGGACAACATACTACTCACTG

R-GATGTCAAATTCATTCATGGC

308 [17]

10. Hamster TGF-β1 Cytokine F-ACGGAGAAGAACTGCT

R-ACGTAGTACACGATGGG

245 [23]

Normalization gene

11. Hamster GAPDH Housekeeping gene F-CCGAGTATGTTGTGGAGTCTA

R-GCTGACAATCTTGAGGGA

170 [17]

https://doi.org/10.1371/journal.pntd.0010409.t001
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as on day 1 and day 4 p.i. in kidneys. In the lung, apart from congestion and haemorrhage, sep-

tal thickening and collapsed alveoli were observed from day 1 p.i. while mild alveoli dilation

was noted from day 5 p.i. Inflammatory cells infiltration appeared in the liver and kidneys

from day 4 p.i. henceforth. In the liver, disorganized hepatic cords and enlargement of hepato-

cytes were observed from day 4 p.i. and progressively deteriorated. Marked pathological

changes were also observed in the kidney. Shrinkage of glomerulus capillaries leading to dila-

tion of Bowman’s space and renal tubular damages characterized by tubular dilation and

degeneration of epithelial cells lining of the proximal and distal convoluted tubules were

observed in kidneys on day 4 p.i. and henceforth increased in severity. Hamsters that died

Fig 1. Gross appearance of organs. Petechial haemorrhages were observed in the lungs from day 1 p.i. and became severe from day 3 p.i. onwards. Kidneys became

progressively pale from day 6 p.i. onwards. No notable changes were observed in the liver. C: Control; D1-D7: Day 1 to Day 7. The arrow shows a petechial haemorrhage.

https://doi.org/10.1371/journal.pntd.0010409.g001

Fig 2. Gross finding in dissected areas. The yellowish discolouration was observed on adipose tissue on day 6 p.i. in

infected hamsters. C: control; D6: day 6 p.i.

https://doi.org/10.1371/journal.pntd.0010409.g002
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Fig 3. Histopathological lesions in the lung of infected hamsters. Congestion and haemorrhage occurred as early as day 1 p.i. while

dilated and collapsed alveoli occurred on days 6 and 7 p.i. and in dead hamsters. CG: Congestion, H: Haemorrhage, CA: Collapsed

alveoli, ST: Septal thickening, DA: Dilated alveoli. C: Control, D1-D7: Day 1- day 7 and DD: Dead. Magnification: x100, bar: 100 μm.

https://doi.org/10.1371/journal.pntd.0010409.g003
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Fig 4. Histopathological lesions in the liver of infected hamsters. Congestion occurred as early as day 1 p.i. while infiltration of

inflammatory cells, disorganized hepatocyte cords and swelling of hepatocytes occurred on day 4 p.i. onwards. SC: Sinusoid congestion,

IC: Infiltration of inflammatory cells, DHC: Disorganized hepatocyte cords, SH: Swollen hepatocytes and H: Haemorrhage. C: Control,

D1-D7: Day 1- day 7 and DD: Dead. Magnification: x100, bar: 100 μm.

https://doi.org/10.1371/journal.pntd.0010409.g004
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earlier before day 7 p.i. showed similar pathological changes which were haemorrhagic lungs

and kidneys and congested liver. No lesions or any pathological changes were observed in the

organs of control hamsters.

Leptospiral load in blood and organs

Blood and kidneys samples of infected hamsters from day 1 to day 7 p.i. cultured in the EMJH

medium yielded positive growth for leptospires while no growth was observed in the control

hamsters. Likewise, qPCR also showed positive amplification for all samples (blood, lungs,

liver and kidneys) collected from the infected hamsters from day 1 to day 7 p.i. (Fig 6). No cul-

tures were performed for the lungs and liver. The leptospiral load (qPCR) in blood and organs

showed a progressive increase from day 1 to day 5 p.i. for blood, lungs and kidneys and until

day 6 for the liver. On day 7 p.i., the leptospiral load was lower than day 1 p.i. in blood, lungs

and liver while the load remained unchanged in the kidneys.

Fig 5. Histopathological lesions in kidneys of infected hamsters. Congestion occurred as early as day 3 p.i., haemorrhage, infiltration

of inflammatory cells, dilation and collapse of Bowman’s space on day 4 p.i. and dilation of tubule and degeneration of epithelial cells

in proximal and distal tubules occurred on day 5 p.i. onwards. CG: Congested glomerulus, CB: Collapse of Bowman’s space, DB:

Dilated Bowman’s space, DT: Dilated tubule, DPD: Degeneration of epithelial cells in proximal and distal tubules, IC: Infiltration of

inflammatory cells, and H: Haemorrhage. C: Control, D1-D7: Day 1- day 7 and DD: Dead. Magnification: x100, bar: 100 μm.

https://doi.org/10.1371/journal.pntd.0010409.g005

Table 2. Histological scoring in hamsters infected with L. interrogans strain HP358.

Parameters Scoring

D1 D3 D4 D5 D6 D7 Dead

Lungs

Capillary congestion 4 4 4 4 4 4 4

Haemorrhage 1 3 4 4 3 3 3

Thickening of interalveolar septa 4 4 4 4 4 4 4

Dilated alveoli (Emphysema) 0 0 0 1 1 1 2

Collapsed alveoli (Atelectasis) 0 0 0 4 4 4 4

Liver

Sinusoid congestion 3 3 3 4 4 4 4

Infiltrating mononuclear or polymorphonuclear cells/inflammatory cells/Periportal hepatitis 0 0 2 4 4 4 4

Disorganized hepatic cords 0 0 2 4 4 4 4

Swelling of hepatocytes 0 0 1 4 4 4 4

Kidneys

Congestion in glomerulus 0 2 4 4 4 4 4

Haemorrhage 0 0 2 4 4 4 4

Dilation of Bowman’s space 0 0 2 2 2 3 4

Collapse of Bowman’s space 0 0 2 2 2 3 4

Dilation of tubule 0 0 0 1 1 1 1

Inflammatory infiltration 0 0 1 2 3 3 3

Degeneration of epithelial cells lining of the proximal and distal convoluted tubules 0 0 0 2 4 4 4

�Scoring system:

0: No lesion

1: Lesion observed in one quadrant

2: Lesion observed in two quadrants

3: Lesion observed in three quadrants

4: Lesion observed in four quadrants/all areas

https://doi.org/10.1371/journal.pntd.0010409.t002
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Haematological and serum biochemical changes

Haematological changes. White blood cells (WBC), neutrophils and monocytes counts

in infected hamsters showed an increase from as early as day 1 p.i. (p-value =<0.05) (Fig 7)

while lymphocytes and platelets showed a decreasing trend (p-value =<0.05).

Serum Biochemical changes. The level of total bilirubin (TB), direct bilirubin (DB) and

creatinine kinase (CK) in infected hamsters showed a significant increase (p-value<0.05) com-

pared to that of control hamsters from day 5 p.i. onwards (Fig 8). Similarly, alanine transami-

nase (ALT) and aspartate aminotransferase (AST) levels rose significantly (p-value = <0.05)

beginning on day 5 p.i. The levels of creatinine and urea in infected hamsters began to increase

beginning from day 3 p.i. and 5 p.i. respectively.

Fig 6. Leptospiral load in blood and organs tissues of hamsters infected with L. interrogans HP358. D1-D7: day 1 to day 7;

DD: dead hamsters. The leptospiral copies number in blood and organs can be found in S1 Table.

https://doi.org/10.1371/journal.pntd.0010409.g006
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Expression of immune mediators in infected animals

Pro-inflammatory mediators. Among the pro-inflammatory cytokines and enzymes

(interleukin-1beta: IL-1β, interleukin-6: IL-6, Tumor necrosis factor alpha: TNF-α, interferon

gamma: IFN-γ, cyclooxygenase-2: COX-2 and inducible nitric oxide synthase: iNOS) tested,

IL-1β was found to be significantly expressed in blood and all organs (Figs 9–12) from day 3

onwards. Expression of IL-6 and TNF-α was only observed in the lungs and kidneys. IL-6 was

significantly higher in the lungs on days 1 and 7 p.i. while in kidneys, it demonstrated a pro-

gressive increase from day 3 p.i. TNF-α showed increased expression in the lungs from day 1

to day 4 p.i. while in kidneys, it showed a progressive increase from day 3 p.i. IFN-γ was higher

until day 4 p.i. in blood and lungs. COX-2 was higher than the control in blood until day 5 p.i.

while in kidneys, it increased progressively from day 3 p.i. In the lungs, COX-2 was found to

be downregulated beginning on day 1 p.i. IL-1β, TNF-α and COX-2 were found to be highly

expressed in the liver of dead hamsters. iNOS was downregulated in lungs and kidneys and

not detected in blood and liver.

Fig 7. The pattern of WBC, neutrophils, monocytes, lymphocytes and platelets levels in control (blue line) and infected hamsters (red line). D1-D7: Day 1 to day 7.
�P�0.05, ��P�0.01, ���P�0.001.

https://doi.org/10.1371/journal.pntd.0010409.g007
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Chemokines CXCL10/IP-10 and CCL3/MIP-α. Increased expression of C-X-C motif

chemokine ligand 10 (CXCL10/IP-10) in the blood (from day 1 to 4 p.i), liver (day 1 to 5 p.i.)

and kidneys (day 1 to 7 p.i.) (Fig 13). Likewise, chemokine (C-C motif) ligand 3 (CCL3/MIP-

α) expression increased in blood, liver and kidneys.

Fig 8. Serum level of total bilirubin, direct bilirubin, CK, ALT, AST, creatinine and urea in control (blue line) and infected hamsters (red lines). The biochemical

measurements convey the function state of the liver and kidney. D1-D7: Day 1 to Day 7. �P�0.05, ��P�0.01, ���P�0.001.

https://doi.org/10.1371/journal.pntd.0010409.g008

Fig 9. Modulation of pro-inflammatory cytokines and enzyme in the blood of control (blue line) and infected hamsters (red line). Total RNA was extracted from

whole blood on day 1 and days 3 to 7 p.i.. D1-D7: Day 1 to day 7. �P�0.05. The fold gene expression value can be found in S2 Table.

https://doi.org/10.1371/journal.pntd.0010409.g009
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Fig 10. Modulation of pro-inflammatory cytokines and enzymes in the lungs of control (blue line) and infected hamsters (red line). Total RNA was extracted from

lungs on day 1 p.i. and days 3 to 7 p.i. D1-D7: Day 1 to day 7. DD: dead. ��P�0.01, ���P�0.001. The fold gene expression value can be found in S2 Table.

https://doi.org/10.1371/journal.pntd.0010409.g010

Fig 11. Modulation of pro-inflammatory cytokines and enzymes in the liver of control (blue line) and infected hamsters (red line). Total RNA was extracted from

liver on day 1 p.i. and days 3 to 7 p.i. D1-D7: Day 1 to day 7. DD: dead. �P�0.05, ��P�0.01, ���P�0.001.The fold gene expression value can be found in S2 Table.

https://doi.org/10.1371/journal.pntd.0010409.g011
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Anti-inflammatory mediators. The expression of transforming growth factor-beta 1

(TGF-β1) showed an increasing pattern in the liver and kidneys (Fig 14) beginning on day 4 p.

i. and significantly high on days 6 and 7 p.i. TGF-β1 was found to be downregulated in blood

while in the lungs it was slightly higher on days 3 and 4 p.i. Two hamsters showed amplifica-

tion of IL-10 in lungs, liver and kidneys with a ct value of> 35 on days 5 and 6 p.i. One dead

hamster showed amplification of IL-10 in the lung with a ct value of 33.63.

Association between clinical manifestations and pathophysiology in infected hamsters:

Identification of biomarkers for severe leptospirosis. As summarized in Table 3, the patho-

physiological presentations observed for severe leptospirosis in the hamster model included:

(1) occurrence of pulmonary haemorrhage earlier than liver and kidney damages (before any

clinical manifestations), (2) increased WBC, monocytes and neutrophils and decreased lym-

phocytes and platelets (before severe signs and symptoms), (3) serum biochemistry parameters

changes were concurrent with the apparent clinical manifestations and (4) earlier expression

of pro-inflammatory mediators IL-1β, CXCL10/IP-10 and CCL3/MIP-α in all organs (blood,

lungs, liver and kidneys) prior to observable damages. The early expression of IL-1β, CXCL10/

IP-10 and CCL3/MIP-α, increase of neutrophils and decrease of lymphocytes and platelets

suggesting that these parameters could be used as a cumulative panel for potential biomarkers

in severe leptospirosis.

Fig 12. Modulation of pro-inflammatory cytokines and enzymes in the kidneys of control (blue line) and infected hamsters (red line). Total RNA was extracted from

kidneys on day 1 p.i. and days 3 to 7 p.i. D1-D7: Day 1 to day 7. DD: dead. �P�0.05, ��P�0.01, ���P�0.001. The fold gene expression value can be found in S2 Table.

https://doi.org/10.1371/journal.pntd.0010409.g012
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Discussion

Leptospirosis presents a protean clinical manifestation and most cases (90%) are mild. Severe

cases account for 5 to 15% and usually occur in the immune phase of illness [12,24,25]. Severe

leptospirosis also presents with a fulminant monophasic illness [26–28]. In both conditions,

the evolution of the disease is rapid and potentially fatal if not treated. Hence, early manage-

ment of the disease is vital. Given the fact that the prompt diagnosis of this illness is challeng-

ing and the sudden progression to severe leptospirosis is life-threatening; understanding the

sequence of disease progression and determination of early prognosis markers are of utmost

importance for a favourable outcome.

In the present study, the first investigation was focused on the clinical manifestation devel-

oped in the hamsters when infected with the L. interrogans strain HP358. Hamsters reproduce

the severe form of human leptospirosis [29] thereby suitable to be used as a model for studying

the progression of severe leptospirosis. As seen from the results, loss of body weight started

from day 3 p.i. and from day 5 p.i., all hamsters showed loss of appetite, reduced physical activ-

ities and difficulty in breathing (dyspnea). Similar clinical signs were also reported in several

previous studies [19,30,31].

To relate the above clinical manifestations with the sequence of events occurring within the

body during the infection, four hamsters (one control and three infected) were euthanized on

days 1 (24 hours post-infection), 3, 4, 5, 6 and 7 p.i. The earliest pathological changes (macro-

scopically and microscopically) observed in the infected hamsters were pulmonary

Fig 13. Modulation of chemokines in blood, lungs, liver and kidneys of control (blue line) and infected hamsters (red line). D1-D7: Day 1 to day 7. DD: dead
�P�0.05, ��P�0.01, ���P�0.001. Control. The fold gene expression value can be found in S3 Table.

https://doi.org/10.1371/journal.pntd.0010409.g013
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Fig 14. Expression of TGF-β1 in blood, lungs, liver and kidneys of control (blue line) and infected hamsters (red

line). D1-D7:Day 1 to day 7. DD: dead. �P�0.05, ��P�0.01, ���P�0.001.The fold gene expression value can be found in

S4 Table.

https://doi.org/10.1371/journal.pntd.0010409.g014

Table 3. Summary of disease progression in hamsters infected with L. interrogans strain HP358.

Parameters D1 D3 D4 D5 D6 D7

Clinical Signs .None .Reduction in body

weight

.Reduction in body

weight

.Reduction in body

weight

.Loss of appetite

.Reduced physical

activity

.Developed dyspnea

.Reduction in body

weight

.Loss of appetite

.Reduced physical

activity

.Dyspnea

.3 animals died

.Reduction in

body weight

.Loss of appetite

.Reduced physical

activity

.Dyspnea

.1 animal died

Macroscopy of organs .Haemorrhage in

lungs

.Haemorrhage in lungs .Haemorrhage in

lungs

.Haemorrhage in

lungs

.Haemorrhage in

lungs

.Pale kidney

.Haemorrhage in

lungs

.Pale kidney

Microscopic (Cumulative

score of organ damage)

.Lungs (9)

.Liver (3)

.Kidney (0

.Lungs (11)

.Liver (3)

.Kidney (2)

.Lungs (12)

.Liver (8)

.Kidney (11)

.Lungs (17)

.Liver (16)

.Kidney (17)

.Lungs (16)

.Liver (16)

.Kidney (20)

.Lungs (16)

.Liver (16)

.Kidney (22)

(Continued)
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Table 3. (Continued)

Parameters D1 D3 D4 D5 D6 D7

Hemogram "WBC

"Monocytes

"Neutrophils

#Lymphocytes

# Platelets

"WBC(�)

"Monocytes

"Neutrophils

# Lymphocytes #Platelets

(��)

"WBC

"Monocytes

"Neutrophils

# Lymphocytes

#Platelets

"WBC(�)

"Monocytes (���)

"Neutrophils (���)

# Lymphocytes (���)

#Platelets (���)

"WBC

"Monocytes

"Neutrophils

# Lymphocytes

#Platelets

"WBC(���)

"Monocytes(���)

"Neutrophils(���)

# Lymphocytes

(���)

#Platelets

Serum Biochemistry Same as control Same as control "Creatinine (�) "TB (��)

"DB (���)

"AST (�)

"ALT(���)

"Creatinine (�)

"Urea (�)

"TB (��)

"DB (���)

"AST (�)

"ALT(���)

"Creatinine (�)

"Urea (�)

"TB (��)

"DB (��)

"CK (���)

"ALT(�)

"Creatinine (���)

"Urea (��)

Pro-inflammatory and anti-inflammatory markers

Blood "IL-1β
"IFN-γ(�)

"COX-2

"CXCL10/IP-1

"CCL3/MIP-α

"IL-1β
"IFN-γ
"COX-2

" CXCL10/IP-10 "CCL3/

MIP-α(�)

"IL-1β(�)

" IFN-γ
"COX-2

"CXCL10/IP-10

"CCL3/MIP-α (�)

"IL-1β(�)

"COX-2

"CXCL10/IP-10,

"CCL3/MIP-α

"IL-1β(�)

"IFN-γ
"CXCL10/IP-10,

"CCL3/MIP-α (�)

"CCL3/MIP-α

Lungs "IL-1β
"IL-6(��)""TNF-

α
"IFN-γ
"CXCL10/IP-10

"IL-1β
"TNF-α
"IFN-γ
"CCL3/MIP-α
"TGF-β1(��)

"IL-1β(��)""IL-6

"TNF-α
"IFN-γ
"CXCL10/IP-10

"CCL3/MIP-α
"TGF-β1(��)

" IL-1β(��)

"IL-6

"IL-1β
"TGF-β1

"CCL3/MIP-α
"TGF-β1

Liver "COX-2

"CXCL10/IP-10

"IL-1β(���)

" TNF-α "CXCL10/IP-

10(��) "CCL3/MIP-α
"TGF-β1

"IL-1β(�)

"TNF-α
"CXCL10/IP-10(�)

"CCL3/MIP-α
"TGF-β1

"IL-1β(��)

"COX-2

"CXCL10/IP-10

"CCL3/MIP-α
"TGF-β1(��)

" IL-1β(�)

"CCL3/MIP-α
"TGF-β1(�)

"IL-1β(��)"COX-

2

"CXCL10/IP-10

"TGF-β1 (�)

Kidneys "IL-1β
"TNF-α
"CXCL10/IP-10

"CCL3/MIP-α

"IL-1β(�)

"IL-6

"TNF-α
" COX-2

"CXCL10/IP-10(�)

"CCL3/MIP-α
"TGF-β1

"IL-1β(�)

"IL-6

"TNF-α
"COX-2(�)

"CXCL10/IP-10

"CCL3/MIP-α
"TGF-β1

"IL-1β(���)

"IL-6(���)

"TNF-α, COX-2(�)

"CXCL10/IP-10(��)"

CCL3/MIP-α(�)

"TGF-β1

"IL-1β(�)

"IL-6(��)

"TNF-α(���)

"COX-2

"CXCL10/IP-10

"CCL3/MIP-α(��)

"TGF-β1(���)

"IL-1β(��)

"IL-6, TNF-α
"COX-2

"CXCL10/IP-10

(�)

"CCL3/MIP-α(��)

"TGF-β1(���)

Note

-The number of indicated in microscopic organ observation is the cumulative score of organs damage (Table 2)

-": Increase

-Only immune mediators showing expression are included.

(�):P�0.05

(��):P�0.01

(���):P�0.001

-WBC: White blood cell

-ALT: Alanine transaminase

-AST: Aspartate aminotransferase

-TB: Total bilirubin

-DB: Direct bilirubin

-IL-1β: interleukin-1β

-TNF-α: Tumor necrosis factor alpha

-IL-6: interleukin-6

-COX-2: cyclooxygenase-2

-CXCL10/IP-10: C-X-C motif chemokine ligand 10/ interferon gamma-induced protein 10

-CCL3/MIP-α: Chemokine (C-C motif) ligand 3 (CCL3)/macrophage inflammatory protein 1-alpha

-TGF-β1: Transforming growth factor beta

https://doi.org/10.1371/journal.pntd.0010409.t003
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haemorrhage and blood vessel congestion in the lungs, liver and kidneys. The earliest sign of

haemorrhage was observed in the lungs from day 1 p.i. while in kidneys on day 4 p.i. Marked

organ damages (Table 3) were detected beginning from day 4 p.i concurrent with the clinical

manifestations. These were followed by the death of four hamsters on days 6 and 7 p.i. while

progressive moribund conditions were observed in the remaining hamsters. A similar observa-

tion was reported in a recent study where pulmonary haemorrhage appeared much earlier fol-

lowed by liver and renal damages prior to the animal’s state of moribund and death [31]. In

human leptospirosis, pulmonary haemorrhage is the severe form of the illness, though it

occurs only in a small number of cases, mortality is seen higher among these patients (more

than 70%) [32,33]. The ability of the leptospires to invade multiple organs also depends on the

Leptospira species or strain [16]. It could be postulated that in patients with severe leptospiro-

sis, the patients might be infected with a highly virulent Leptospira strain invading multiple

organs. As observed in the present study, the lungs were the first organ showing damage,

hence it is important to monitor the respiratory problems or bleeding in leptospirosis patients

as a prognostic factor for severe leptospirosis. As reported in previous studies, pulmonary

haemorrhage could occur prior to jaundice and renal failure and led to severe disease and

fatality in human leptospirosis [34,35].

Leptospiral DNA was detected in the blood and all organs on day 1 p.i. indicating rapid dis-

semination and successful colonization of L. interrogans strain HP358 in the hamster as

reported in other studies [17,36]. The bacterial load in blood and all organs continued to

increase until day 5 p.i. denoting the replication of leptospires. We observed a decrease in the

leptospiral load from day 6 p.i. onwards in blood, lungs and liver while it was maintained in

kidneys. Hamsters that died before the completion of the study had a high load of leptospires

in all organs (lungs, liver and kidneys) compared to those euthanized on day 7 p.i.

Changes in haematological parameters were observed to occur as early as on day 1 p.i. indi-

cating the response of the innate immunity of hamsters against the invading leptospires.

Monocytes and neutrophils continued to increase while lymphocytes and platelets showed

decreasing trends. Although neutrophils and monocytes could recognize leptospires, both

have limited capacity to control the pathogen [37–42]. It was reported that pathogenic Leptos-
pira spp. could bind to platelets and induce cytotoxic effects resulting in dysfunction and clear-

ance of platelets [43–47]. A low level of platelets noticed in the present study could also play

important role in the haemorrhagic presentation as observed in both animal [46] and human

leptospirosis [48–50]. Significant neutrophilia and lymphocytopenia had also been reported in

severe and fatal cases of human leptospirosis [6,51–55]. The significant changes in total and

direct bilirubin, AST, ALT, creatinine, urea and CK appeared much later than the haematolo-

gical parameters which were on days 4 and 5 p.i. henceforth concurrent with the appearance of

damage in the liver and kidneys. These changes in the liver and kidney function tests were in

agreement with changes in human leptospirosis [51,55–59].

Both pro-inflammatory cytokines and chemokines were expressed in the infected hamsters.

Pro-inflammatory cytokines and enzymes which were IL-1β, IL-6, TNF-α, IFN-γ and COX-2

and chemokines CXCL10/IP-10 and CCL3/MIP-α showed upregulation as reported in both

human and animal leptospirosis [6,17,18,23,60–62]. Pro-inflammatory enzyme iNOS was

downregulated in lungs and kidneys and not expressed in blood and liver which was similarly

reported in a previous study [63]. Anti-inflammatory cytokine TGF-β1 showed expression

from day 3 p.i. while IL-10 was slightly induced in some of the dead hamsters on days 5 and 6

p.i. as similarly reported in the previous study [64].

Overall, two main manifestations of pathophysiology in severe leptospirosis were observed;

haemorrhage and organ damage where pulmonary haemorrhage appeared as the earliest path-

ological event. The mechanism of pulmonary haemorrhage is still poorly understood and
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could result from multiple factors [65]. Direct injury by leptospires or their circulating prod-

ucts (leptospiral outer membrane proteins, glycoproteins, hemolysins and lipopolysaccha-

rides) and indirectly by the host’s immune dysregulation have been proposed to contribute to

the haemorrhagic manifestation in leptospirosis [66–69]. Pathogenic leptospires could bind to

the endothelial lining of the blood vessels [50,67,70–72] and potentially disrupts the endothe-

lial cell layer [69,73]. IL-6 has been associated with severe pulmonary haemorrhage [6]. In the

present study, IL-6 was significantly high in the lung on day 1 p.i. and while in the kidney, it

only appears on day 4 p.i. concurrent with the haemorrhagic presentation, thereby could sup-

port the role of this cytokine in the haemorrhagic presentation in leptospirosis.

Haemorrhagic manifestation of leptospirosis could also be due to vascular cell damage by

reactive oxygen species (ROS) and arterial hypertension [74]. Neutrophils could produce ROS

[75], thus the high production of neutrophils in the infected animals may indirectly contribute

to the haemorrhagic manifestation observed in this study. Nitric oxide (NO) production cata-

lyzed by the enzyme iNOS [76,77] functions as a vasodilator [78] and is also able to control the

production and activity of ROS [79,80] in inhibiting the replication of the pathogen [81–83].

The down-regulation of iNOS influences the release and activities of NO [76,77]. Low or spe-

cific inhibition of iNOS is associated with pulmonary haemorrhage [63], increased mortality,

bacterial load in the kidney and reduced specific humoral response [84] in the hamster model

and patients with severe disease [85].

Mild alveoli dilation observed on day 5 p.i. is a contributing factor for dyspnea which is in

agreement with a report in a recent study [86]. The dilated alveolus is a characteristic of

chronic obstructive pulmonary disease (COPD) with dyspnea as the cardinal symptom.

Enlargement of the alveolus destructs the alveoli walls through inflammation [87]. Cytokine

IL-1β has been shown to exert airway inflammation and emphysema in the COPD mice model

[88–92]. The raised level of serum IL-1β in patients with mild alveolar dilation is in agreement

with the present investigation where expression of IL-1β was significantly high from day 4 p.i.

onwards [93].

The progression of damage in the liver and kidneys is associated with the changes in the

serum biochemistry and increased expression of inflammatory cytokines and chemokines.

The liver and kidney functions test markers (total bilirubin, direct bilirubin, ALT, AST, creati-

nine and urea, CK) showed a significant increase from day 4 p.i. The progressive upregulation

of inflammatory cytokines and chemokines in the kidney (IL-1β, IL-6, TNF-α, COX-2, TGF-

β1, CXCL10/IP-10 and CCL3/MIP-α) and liver (IL-1β, TGF-β1, CXCL10/IP-10 and CCL3/

MIP-α) beginning from day 3 p.i. support the possibility that damage in these organs is associ-

ated with the increased inflammatory response. CXCL10/IP-10 and CCL3/MIP-α are known

to mediate the migration of T cells, monocytes, neutrophils and natural killer (NK) cells from

the bloodstream to tissues in response to inflammation [94–97].

A severe manifestation of leptospirosis is comparable to sepsis that occurs due to an imbal-

ance in the inflammatory responses in the host infected with pathogens. The infected hosts

release inflammatory mediators in an attempt to neutralize the pathogenic effect. The occur-

rence of a sustained and increased expression of pro-inflammatory cytokines characteristic of

a “cytokine storm” will lead to persistent inflammation [9] and this is followed by a massive

and systemic production of anti-inflammatory mediators resulting in a state of “immunopara-

lysis” and tissue oedema [98,99]. Tissues oedema could impair the local organ perfusion lead-

ing to loss of organ function and endothelial permeabilization [98,100]. In asymptomatic or

mild leptospirosis and mice animal models, homeostasis between pro-inflammatory and anti-

inflammatory is maintained where both are produced early and strictly regulated [9,17]. In

severe leptospirosis in humans, two scenarios have been reported; either high IL-10 and low

TNF-α [6,61] or low IL-10 and high TNF-α [17,101,102]. In this present study, we saw a
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sudden surge of the pro-inflammatory mediators (cytokines and chemokines) beginning from

day 3 p.i.without the prominent expression of anti-inflammatory IL-10. A low expression of

IL-10 (ct value of>33 cycles) and early (day 3) expression of TNF-α, TGF-β and IP-10 in ham-

sters infected with L. interrogans serovar Pyrogenes has been reported earlier [64]. In conclu-

sion, severe leptospirosis due to the L. interrogans strain HP358 could be characterized as a

sudden and increased pro-inflammatory response with delayed and significantly low expres-

sion of anti-inflammatory IL-10. The severe leptospirosis characterized in the hamster model

in the present study is in accordance with the severe form of leptospirosis in humans where

patients showed mild symptoms during the early course of the disease and developed a rapidly

worsening condition leading to fatality within 72 hours [70,103]. As observed in this study, the

rapid evolution to severe illness and fatality in hamsters occurred when most inflammatory

mediators were expressed and all organs (lungs, liver and kidneys) were affected. Likewise, the

severe form of human leptospirosis involves haemorrhage and multiple organ damages.

Identification of biomarkers in leptospirosis is important not only for diagnosis but also to

predict the progression to severity. The main characteristic of ideal biomarkers is their early

detection [104] for timely intervention in patients management. A panel of biomarkers will

increase the specificity and sensitivity of the diagnosis compared to a single biomarker

[101,105]. Serum biochemistry may not be a good predictor for severe leptospirosis as these

markers are detected only after the occurrence of serious damage to the liver and kidneys.

Cytokines play a major role in host-pathogen interaction and prognosis [18]. Several earlier

studies have identified significant expression of IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10 and TNF-α
in severe leptospirosis [6,102,106]. However, these studies were conducted in one-time sam-

pling. Progressive monitoring is important to elucidate the progression of cytokines levels and

to determine the most appropriate biomarker for disease severity. As the damage in leptospiro-

sis surge rapidly, we recommend performing blood and cytokines profiling at 24 hours interval

to monitor the biomarkers for the severe illness that could prevent substantial damage to the

organs. From the present investigation, we found the expression of IL-1β, CXCL10/IP-10 and

CCL3/MIP-α increased in the blood and most organs day by day as the infection progressed.

On the other hand, neutrophils increased progressively from day 1 p.i. while lymphocytes and

platelets showed a declining trend. Taken all these data together, we suggest that high levels of

IL-1β, CXCL10/IP-10, CCL3/MIP-α, neutrophils and low levels of lymphocytes and platelets

could serve as a cumulative panel of potential biomarkers in the disease progression from mild

to severe in leptospirosis. As this study was conducted in an animal model, a progressive vali-

dation study in human leptospirosis is recommended.

Conclusion

Severe leptospirosis is characterized by a sudden over-expression of pro-inflammatory cyto-

kines after infection of L. interrogans strain HP358 and without prominent expression of regu-

latory cytokines. The massive expression of cytokines and chemokines led to sudden and rapid

damage to the liver and kidneys. Damages in the lungs, liver and kidneys were preceded by the

early occurrence of haemorrhage in the lungs. High levels of IL-1β, CXCL10/IP-10, CCL3/

MIP-α, neutrophils and low levels of lymphocytes and platelets might serve as a cumulative

panel of biomarkers in severe leptospirosis.
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