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Abstract. neonatal hypoxic-ischemic brain damage (HiBd) 
is a common clinical syndrome in newborns. Hypothermia is 
the only approved therapy for the clinical treatment; however, 
the therapeutic window of hypothermia is confined to 6 h after 
birth and even then, >40% of the infants either die or survive 
with various impairments, including cerebral palsy, seizure 
disorder and intellectual disability following hypothermic 
treatment. The aim of the present study was to determine 
whether nasal transplantation of cytoglobin (cYGB) geneti-
cally modified human umbilical cord‑derived mesenchymal 
stem cells (cYGB-HuMScs) exhibited protective effects 
in neonatal rats with HiBd compared with those treated 
without genetically modified CYGB. A total of 120 neonatal 
Sprague-dawley rats (postnatal day 7) were assigned to either 
a Sham, HiBd, HuMScs or cYGB-HuMScs group (n = 30 
rats/group). For HiBd modeling, rats underwent left carotid 
artery ligation and were exposed to 8% oxygen for 2.5 h. 
a total of 30 min after Hi, HuMScs (or cYGB-HuMScs) 
labeled with enhanced-green fluorescent protein (eGFP) 
were intranasally administered. After modeling for 3, 14 and 
29 days, five randomly selected rats were sacrificed in each 
group, and the expression levels of cYGB, erK, JnK and p38 

in brain tissues were determined. nissl staining of the cortex 
and hippocampal Cornu Ammonis 1 area of rats in each group 
were compared after 3 days of modeling. Tunel assay and 
immunofluorescence were performed 3 days after modeling. 
long term memory in rats was assessed using a Morris-water 
maze 29 days after modeling. The HiBd group demonstrated 
significant deficiencies compared with the Sham group based 
on nissl staining, Tunel assay and the Morris-water maze 
test. HuMSc treated rats exhibited improvement on in all 
the tests, and cYGB-HuMScs treatment resulted in further 
improvements. Pcr and western blotting results indicated 
that the cYGB mrna and protein levels were increased from 
day 3 to day 29 after transplantation of cYGB-HuMScs. 
Furthermore, it was identified that cYGB-HuMSc trans-
plantation suppressed p38 signaling at all experimental time 
points. Immunofluorescence indicated the scattered presence 
of HuMScs or cYGB-HuMScs in damaged brain tissue. 
no eGFP and glial fibrillary acidic protein or eGFP and 
neuron-specific enolase double-stained positive cells were 
found in the brain tissues. Therefore, cYGB-HuMScs may 
serve as a gene transporter, as well as exert a neuroprotec-
tive and antiapoptotic effect in HiBd, potentially via the p38 
mitogen-activated protein kinase signaling pathway.

Introduction

neonatal hypoxic-ischemic brain damage (HiBd) is a 
common clinical syndrome in newborns caused by anoxia and 
reduced cerebral blood flow or temporary severance during 
the perinatal period (1‑3). It has been reported that 2‑6/1,000 
newborns experience HiBd (4), and ~25% of infants who have 
HIBD develop neurologic sequela (5,6). Hypothermia is the 
only admitted therapy for treatment of neonatal HiBd in the 
clinic; however, the therapeutic window of hypothermia is 
confined to 6 h after birth, and even then, >40% of the infants 
either died or survive with various impairments following 
hypothermic treatment (7-9). Thus, alternative effective and 
safe therapies for treatment of HiBd are required.
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Globins are hemoproteins that bind o2 and serve an 
important role in the animal's respiration and oxidative energy 
production (10,11). However, globins may also possess other 
functions, such as the decomposition of nitric oxide (no), the 
detoxification of reactive oxygen species (ROS) or intracel-
lular signaling (12). Cytoglobin (CYGB), the fourth member of 
the vertebrate globin family of hemoproteins, is ubiquitously 
expressed in various tissues and organs, including the liver, 
kidney, brain and retina (13). CYGB may serve a cytoprotec-
tive role under hypoxic and/or ischemic conditions (14‑17). 
Previous studies have also reported that pretreatment of 
cYGB-overexpression reduces Hi injury and improves 
long term memory and athletic ability following neonatal 
HIBD (18). However, a safe and effective method of upregu-
lating cYGB expression in animals remains a challenge that 
requires further investigation.

Previous studies have revealed that several types of 
cells may serve important roles in relieving HIBD (19‑21). 
Preclinical trials on stem cells in cerebral palsy have been 
conducted and have reported significant improvements in 
acute hypoxic injury animal models (22). Mesenchymal stem 
cells (MScs) are well-known for their ‘immunosuppressive’ 
properties, and thus may be important candidates for allo-
geneic cell therapy (23). in recent years, human umbilical 
cord-derived MScs (HuMScs) have become an alternate 
source of MScs. Moreover, studies have observed that trans-
plantation of HuMScs at an early stage following HiBd can 
reduce Hi injury in rats and decrease gliosis (24,25). Stem 
cells can also act as a gene transporter in gene therapy (26). 
The use of stem cells as transgenic strategies does not require 
integration of the therapeutic dna into the chromosomes of 
the patient's cells, and instead, the transferred dna is stabi-
lized extrachromosomally (27). However, it has been identified 
that there are major risks associated with the use of integrating 
vectors, including retroviral vectors, arising from their poten-
tial for insertional mutagenesis, in which the vector inserts 
into the dna of a cell and disrupts a functional element of 
that dna (27); it has been reported that stem cell transgenic 
therapy can reduce this risk (28).

The aim of the present study was to investigate whether 
nasal transplantation of CYGB genetically modified HuMSCs 
(cYGB-HuMScs) exhibited higher protective effects in 
neonatal rats from HiBd compared with rats treated without 
CYGB genetically modified HuMSCs. Additionally, the poten-
tial underlying mechanism was examined.

Materials and methods

Preparation of HuMSCs. ethical approval was obtained 
from the institutional review Board of Maternal and 
child Health care Hospital of Shenzhen university 
(approval no. SZPSFY2017‑06). HuMSCs were prepared as 
previously described (29). With the written consent of the 
patients, human umbilical cords from 5 patients (age range, 
23-34 years old) who underwent full-term caesarian sections 
in the Maternal and child Health care Hospital (Pingshan, 
Shenzhen, China) from February 2018 to March 2018 were 
collected immediately into sterilized 50 ml tubes. after 
washing with PBS for 30 sec, the human umbilical cord was 
cut into 2-3 cm thick sections. The umbilical arteries and veins 

were removed, and the remaining tissue, the Wharton's jelly, 
was dissected into smaller fragments and transferred to 75 cm2 
flasks containing DMEM/F12 media (Gibco; Thermo Fisher 
Scientific, Inc.) supplemented with 10% FBS (Gibco; Thermo 
Fisher Scientific, Inc.), 100 µg/ml penicillin/streptomycin 
(Sangon Biotech Co., Ltd.), 1 g/ml amphotericin B (Gilead 
Sciences, inc.), 5 ng/ml epidermal growth factor (PeproTech, 
Inc.) and 5 ng/ml basic fibroblast growth factor (PeproTech, 
Inc.). Cultures remained undisturbed for 5‑7 days at 37˚C with 
95% air/5% co2 in a humidified incubator to allow migra-
tion of cells from the explants. Subsequently, the media was 
replaced. after three passages, cells were harvested. cells 
were observed under a Zeiss Axio Imager Z1 light inverted 
microscope (magnification, x100; Carl Zeiss AG).

Adenovirus‑mediated transfection. adenovirus plasmid 
carrying cYGB (ad-cYGB) was purchased from Guangzhou 
Forevergen Technology co., ltd. adenovirus plasmid carrying 
only enhanced green fluorescent protein (eGFP) was used 
as the transfection control. The transfection was performed 
using lipofectamine® 2000 reagent (invitrogen; Thermo 
Fisher Scientific, Inc.). HuMSCs were seeded into 12‑well 
plates at a concentration of 2x105 cells per well. after culture 
for 12 h, Ad‑CYGB (2 µl; multiplicity of infection, 10) were 
added to the respective wells; the same volume of control 
adenovirus was added. on the second day after infection, the 
virus-containing medium was aspirated and replaced with 
fresh complete medium to continue the culture. The culture 
medium was replaced every 2 days thereafter for a total period 
of 7 days. Follow-up experiments were performed 48 h after 
the transfection. cells were observed under a Zeiss axio 
Imager Z1 fluorescent inverted microscope (magnification, 
x200; carl Zeiss aG).

Experimental animals. Sprague‑Dawley rats (age, 7 days; 64 
females; 56 males; weight, 12.5‑16.3 g) were obtained from 
the experimental animal center of Shantou university 
Medical college. The present study was approved by the 
institutional animal care and use committee of Shenzhen 
University (approval no. 2017‑06) and strictly adhered to the 
arriVe guidelines (30). all animals were maintained in a 
temperature- and humidity-controlled room (temperature, 
22‑24˚C; humidity, 40‑70%) with a 12 h light/dark cycle, and 
free access to food and water. Throughout the experiment, all 
animals were treated in accordance with the Guide for the 
care and use of laboratory animals in Shenzhen university, 
and all procedures conformed to internationally accredited 
guidelines and ethical regulations on animal research. Surgery 
was performed under isoflurane anesthesia, and all efforts 
were made to reduce the total number of animals used and 
minimize their potential suffering.

Animal groups. A total of 120 Sprague‑Dawley rats were 
used in the present experiment. The rats were divided into 
four groups, with 30 rats in each group. Sham group animals 
received only anesthesia and exposure of the left common 
carotid artery, but no ligation and hypoxia operation. animals 
in the HiBd, HuMScs and cYGB-HuMScs groups received 
ligation of the left common carotid artery combined with 
hypoxia. a total of 30 min after HiBd model preparation, 
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animals in the HuMScs group and cYGB-HuMScs group 
received intranasal administration of 1x106 HuMScs or 
CYGB‑HuMSCs (3 µl), respectively. Animals in the HIBD 
group received only PBS (3 µl) via intranasal administration.

Establishment of an animal model of HIBD and transplan‑
tation of HuMSCs. The HiBd neonatal rat model was based 
on the classical Rice‑Vannucci model (31). The experimental 
rat was deeply anesthetized via inhalation of isoflurane (3% 
to effect). Then, the left common carotid artery was exposed, 
followed by double-ligation with 5-0 silk sutures and the 
artery between the ligations was cut off. The wound was 
then sutured. The total time for surgery in each animal was 
≤3 min. The body temperature of the animal was maintained 
at 37˚C with a radiant warmer table. After surgery, animals 
were allowed 1‑2 h to recover from anesthesia with their 
mother. after recovery, animals were placed in a container 
with a lowered oxygen percentage (8% oxygen balanced with 
92% nitrogen) and placed in a 37˚C water bath for 2.5 h to 
induce systemic hypoxia. animals in the sham group only 
received anesthesia and exposure of the left common carotid 
artery. A total of 30 min after HI, 1x106 cells HuMScs or 
CYGB‑HuMSCs (3 µl) were intranasally administered, 
respectively. as described previously (32), prior to the admin-
istration of HuMScs, to increase the permeability of the nasal 
mucosa, nostrils were treated with 3 µl hyaluronidase (100 U; 
Sigma-aldrich; Merck KGaa) in PBS. a total of 30 min later, 
animals were administered 3 µl HuMSCs, CYGB‑HuMSCs 
(1x106 cells) or PBS (3 µl) twice in each nostril. 

Observation. After modeling for 3, 14 and 29 days, five 
randomly selected rats were sacrificed via inhalation anes-
thesia with isoflurane (3% to effect) followed by decapitation 
in each group. Then, reverse transcription-quantitative (rT-q)
Pcr and western blotting were used to detect cYGB expres-
sion in brain tissues. additionally, erK, phosphorylated-(p-)
erK, JnK, p-JnK, p38 and p-p38 protein expression levels 
were assessed using western blotting. nissl staining results of 
the cortex and hippocampal Cornu Ammonis 1 (CA1) area of 
rats in each group were compared after modeling for 3 days. 
TUNEL assays and immunofluorescence were performed on 
day 3 after modeling; immunofluorescence was also performed 
on day 14. Moreover, a Morris‑Water maze experiment was 
used 29 days after modeling.

Nissl staining. The obtained brain specimens were fixed 
in 4% (w/v) formaldehyde at room temperature for 36 h, 
paraffin‑embedded and sliced into 3‑µm thick sections. The 
paraffin sections were deparaffinized in xylene and rehydrated 
in a descending ethanol series at room temperature, then, the 
sections were immersed in 1% toluidine blue stain at 37˚C. 
after 5 min, the sections were washed with water, differenti-
ated with 1% glacial acetic acid and placed in xylene for 5 min 
at room temperature. Then the slices were removed from the 
xylene, dried and sealed with neutral gum. Samples were 
observed under a light microscope (olympus BX43; olympus 
Corporation) at x200 magnification.

TUNEL staining. TUNEL staining was performed on paraffin 
sections using an in‑situ cell death detection kit (deadend™ 

Fluorometric Tunel system; Promega corporation), 
according to the manufacturer's protocol. Paraffin sections 
were prepared and fixed as previously described for nissl 
staining. Paraffin sections were dewaxed in xylene and rehy-
drated in a descending ethanol series at room temperature, 
then treated with 20 mg/l DNase proteinase K at 20‑37˚C for 
15 min. Subsequently, the sections were washed with PBS three 
times. Sections were then covered with 100 µl equilibration 
buffer and incubated at room temperature for 5‑10 min. After 
removing the balance solution, 50 µl rTdT incubation buffer 
was added and the sections covered with plastic coverslips to 
incubate at 37˚C for 60 min. Sections were then immersed in 
2X saline sodium citrate in a dyeing tank at room temperature 
for 15 min. To stop the reactions, sections were washed twice 
with PBS. Subsequently, sections were stained with 1X Hoechst 
nuclear stain at 37˚C for 15 min and mounted with neutral 
gum. Samples were observed under a Zeiss Axio Imager Z1 
fluorescent microscope (magnification, x200; Carl Zeiss AG) 
in three randomly selected fields of view. image-Pro-Plus 
software (version 6.0; Media Cybernetics, Inc.) was used to 
perform the semi-quantitative analysis of the apoptotic cells. 

Immunofluorescence. Paraffin sections were prepared and 
fixed as previously described for Nissl staining. The paraffin 
sections were deparaffinized in xylene and rehydrated using 
a descending ethanol series at room temperature. Then, the 
sections were permeabilized with 0.1% Triton X‑100 at room 
temperature for 10 min. Sections were blocked with normal 
goat blocking serum (Abbkine Scientific Co., Ltd.) at a volume 
fraction of 3% at room temperature for 1 h. After washing three 
times with PBS for 2 min/time, sections were treated overnight 
with primary antibody at 4˚C. The primary antibodies used 
were glial fibrillary acidic protein (GFaP; cell Signaling 
Technology, Inc.; cat. no. 80788S; 1:50) and neuron‑specific 
enolase (NSE; ProteinTech Group, Inc.; cat. no. 10149‑1‑AP; 
1:50). The sections were rinsed twice with PBS and then incu-
bated with the secondary alexa Fluor 555 antibody (abcam; 
cat. no. ab150074; 1:200) for 1 h at room temperature in the 
dark. Samples were observed under a Zeiss Axio Imager Z1 
fluorescent microscope (magnification, x200; Carl Zeiss AG).

RT‑qPCR. After HI modeling for 3, 14 or 29 days, rats from 
different groups were anesthetized and decapitated. Samples 
of injured brain tissues were collected rapidly and total rna 
was prepared from samples collected using Trizol® reagent 
(invitrogen; Thermo Fisher Scientific, inc.) as previously 
described (33). Total RNA (2 µg) was reverse transcribed 
using M-MlV reverse transcriptase (Promega corporation). 
In a sterile RNase‑free microcentrifuge tube, 2 µg total RNA 
and 1 µg primer in a total volume of 15 µl in water were added. 
The tube was heated tube to 70˚C for 5 min. Then, the tube 
was cooled immediately on ice and centrifuged (500 x g; 4˚C; 
1 min) briefly to collect the solution at the bottom of the tube. 
In total, 5 µl 5X buffer, 6.25 µl 2 mM dNTP, 1 µl M‑MLV and 
12.75 µl RNase‑free water were added to the tube, which was 
mix gently and incubated for 60 min at 42˚C. cDNA expres-
sion levels were determined via qPCR using specific primers 
and GoTaq® qPcr Master mix (Promega corporation) in a 
StepOne Plus amplifier (Bio‑Rad Laboratories, Inc.). The ther-
mocycling protocol was as follows: Initial denaturation at 95˚C 
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for 120 sec; followed by 40 cycles at 95˚C for 15 sec, 60˚C for 
30 sec and 72˚C for 45 sec, and then a final elongation at 72˚C 
for 10 min. Data were quantified using the 2-ΔΔcq method (34). 
The primers used were as follows: CYGB (NM_134268.5; 
product length, 152 bp) forward, 5'‑TTG CCA GTG ACT TCC 
cac c-3' and reverse 5'-ccc Gaa GaG GGc aGT GTG-3'; and 
GAPDH (NM_001289745.3; product length, 185 bp) forward, 
5'-GaG Tca acG GaT TTG GTc G-3' and reverse 5'-GaG 
Tca acG GaT TTG GTc GT-3'.

Western blotting. Brain tissues collected simultaneously for 
the qPcr experiments were homogenized in ice-cold riPa 
lysis buffer (Beyotime institute of Biotechnology), and the 
protein concentrations were measured using a bicinchoninic 
acid protein assay kit (Beyotime institute of Biotechnology). 
A total of 40 µg total protein per lane was loaded on a 12% 
SdS-gel, resolved using SdS-PaGe and transferred to a 
PVdF membrane (eMd Millipore). The membrane was 
blocked with TBS‑Tween (20 mM Tris; pH 7.6; 135 mM NaCl; 
0.05% Tween) containing 5% non-fat dry milk overnight at 
4˚C, washed with 1X TBS‑0.1% Tween‑20 and then incubated 
at 4˚C with primary antibodies in blocking solution. The 
following primary antibodies were used: GAPDH (1:10,000; 
cat. no. 10494‑1‑AP; ProteinTech Group, Inc.), CYGB (1:1,000; 
cat. no. 13317‑1‑AP; ProteinTech Group, Inc.), p‑p38 (1:1,000; 
cat. no. 4511S; Cell Signaling Technology, Inc.), p38 (1:1,000; 
cat. no. 8690S; Cell Signaling Technology, Inc.), p‑ERK 
(1:1,000; cat. no. 4370; Cell Signaling Technology, Inc.), ERK 
(1:1,000; cat. no. 9102; Cell Signaling Technology, Inc.), p‑JNK 
(1:1,000; cat. no. 4668; Cell Signaling Technology, Inc.) and 
JNK (1:1,000; cat. no. 9252; Cell Signaling Technology, Inc.). 
after washing the membrane four times with TBS-Tween, 
the horseradish peroxidase-labeled secondary goat anti-rabbit 
IgG antibody (1:8,000; cat. no. RS0002; Immunoway; Suzhou 
ruiying Biotechnology co., ltd.), was added and incubated 
for 2 h at room temperature, and then washed again. Protein 
bands were visualized using an ecl Plus chemiluminescence 
kit (Guangzhou Forevergen Technology co., ltd.). imageJ 
software version 1.52 h (National Institutes of Health) was 
used to perform the densitometric analysis.

Morris‑Water maze test. The water maze was composed 
of a cylindrical pool and a platform. The height of the pool 
was 70 cm and the diameter was 80 cm. The diameter of 
the platform was 8 cm. over the pool, there was a digital 
camera connected to the computer. The pool was filled with 
water until the surface of the water was ~0.5 cm above the 
surface of the platform, the water temperature was controlled 
at 22.0±0.5˚C. A specific point on the pool was used as the 
point of entry for rats. The platform was placed in the third 
quadrant, and the position of the platform was unchanged 
throughout the entire experimental process. Training twice a 
day started 4 days prior to the formal experiment; rats were 
placed in the water from the four quadrants. if the animal 
found the platform within 120 sec, it was left on the platform 
for 20 sec. If the animal did not find the platform, it was placed 
on the platform and left for 20 sec. on the second day after the 
training finished, experiments were performed to record the 
time and the path length (Pl) from the point of entry to the 
platform in 120 sec.

Statistical analysis. Statistical analysis was performed 
using GraphPad Prism version 8 (GraphPad Software, inc.). 
continuous experimental data are presented as the mean ± stan-
dard deviation of ≥3 experimental repeats. A one‑way ANOVA 
followed by Tukey's of Bonferroni post hoc test was used to 
compare the differences between multiple groups. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Morphology of cultured HuMSCs and transfection. after 
5‑7 days of culture, fibroblast‑like cells migrated out from 
the surrounding tissues. Primary HuMScs were passaged 
when they were cultured for 10‑14 days and the cells 
reached 80% confluence. in the 3rd generation, cells had 
a stable fibroblast‑like morphology (Fig. 1A). The results 
of eGFP immunofluorescence analysis demonstrated that 
the adenovirus plasmid transfection efficiency was ~80% 
(Fig. 1B and C). Furthermore, RT‑qPCR results suggested 
that the transfected CYGB gene was efficiently expressed in 
HuMSCs (Fig. 1D and E).

Observation of histological changes in the brain using Nissl 
staining after modeling for 3 days. neuronal cell loss in both 
the cerebral cortex and hippocampus was observed via nissl 
staining after modeling for 3 days. Hi markedly reduced the 
number of cells and resulted in irregularly arranged and smaller 
neurons in the brain 3 days after Hi compared with the sham 
group (Fig. 2). However, in the HuMScs group, nerve cells 
were regularly arranged and survival numbers were notably 
increased compared with the Hi group (Fig. 2). Furthermore, 
high numbers of nissl-stained cells were observed in the 
cYGB-HuMScs group compared with the HuMScs group 
(Fig. 2).

TUNEL staining. To determine whether HuMScs and 
cYGB-HuMScs transplantation prevented apoptosis at 
the acute stage of neonatal Hi injury, Tunel staining of 
tissue sections was performed after 3 days of modelling 
(Fig. 3a and B). Significantly fewer apoptotic cells were 
observed in the HuMScs group compared with the Hi groups 
(P<0.01), and the number of apoptotic cells was significantly 
lower in the cYGB-HuMScs group compared with the 
HuMScs groups (Fig. 3a-c).

Immunofluorescence. To assess whether HuMScs or 
cYGB-HuMScs underwent cell replacement via differentia-
tion into neuron‑like cells, immunofluorescence co‑localization 
analysis was performed 3 and 14 days after HI. It was identified 
that HuMScs or cYGB-HuMScs were present and scattered 
in the damaged brain tissue (Fig. 4). Moreover, no eGFP 
and GFaP or eGFP and nSe double-stained positive cells 
were observed and no substantial differences were observed 
between 3 and 14 days.

Expression of CYGB after transplantation of HuMSCs. To 
investigative the mrna and protein expression levels of 
cYGB following cYGB-HuMScs transplantation, rT-qPcr 
and western blotting were performed on samples collected 
from all groups following HI modeling for 3, 14 and 29 days. 
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rT-qPcr results demonstrated that cYGB mrna expression 
was significantly increased in the cYGB-HuMScs group 
compared with the HiBd and HuMScs groups (Fig. 5c) at 
all experimental time points. cYGB mrna expression was 
significantly increased in the HuMSCs group compared with 
the HIBD group, but significantly decreased compared with 
the CYGB‑HuMSC group at 14 and 29 days (Fig. 5C). Western 
blotting results identified that CYGB protein expression was 

also increased in the cYGB-HuMScs group compared with 
the HiBd and HuMScs groups. at all experimental time 
points, cYGB protein expression was also increased in the 
HuMScs group compared with the HiBd group, while 
decreased compared with the cYGB-HuMScs group. The 
expression levels of cYGB protein in both the HuMScs and 
cYGB-HuMScs groups gradually declined from 3 to 29 days 
(Fig. 5a and B).

Figure 1. Morphology of cultured HuMSCs. (A) HuMSCs after the third passage exhibited a fibroblast‑like morphology. Magnification, x100. eGFP fluores-
cence of HuMSCs transfected with (B) Ad‑eGFP or (C) Ad‑CYGB. Magnification, x200. (D) mRNA and (E) protein expression levels of CYGB in HuMSCs 
transfected with ad-eGFP or ad-cYGB after 48 h. ***P<0.001 vs. HuMSC. HuMSC, human umbilical cord‑derived mesenchymal stem cells; eGFP, enhanced 
green fluorescent protein; Ad‑eGFP, Adenovirus plasmid carrying eGFP; CYGB, Cytoglobin. 

Figure 2. Morphology of neuronal cells in both the cortex and hippocampus CA1 area 3 days after HI and in the sham group. Magnification, x200. HI, 
hypoxia-ischemia injury; ca, cornu ammonis. HiBd, hypoxic-ischemia brain damage; HuMSc, human umbilical cord-derived mesenchymal stem cells; 
cYGB, cytoglobin.
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Morris‑Water maze test. The Morris-Water maze experiment 
was performed 29 days after Hi to evaluate long term learning 
and memory, which is dependent on the function of the hippo-
campus and cortex (18). The results indicated a longer escape 
latency (el) in the HiBd group compared with the sham 
group. EL in the HuMSCs group was significantly shorter 
compared with the HiBd group, and in the cYGB-HuMScs 
group, el was shorter compared with the HuMScs group 
(Fig. 6A). The PL was also recorded. PL was longer in the HIBD 
group compared with the sham group (Fig. 6B). Furthermore, 
HuMSCs transplantation significantly reduced PL compared 
with the HiBd rats, and cYGB-HuMScs transplantation 

resulted in further reduced Pl values compared with HuMScs 
transplantation. These results indicated a long-term neuropro-
tective effect of either HuMScs or cYGB-HuMScs on HiBd.

CYGB‑HuMSCs treatment modulates the p38 pathway. as 
demonstrated by the western blotting results (Fig. 7), compared 
with the Sham group, the ratio of p‑p38/p38 was significantly 
increased in the HIBD group after HI modeling for 3, 14 and 
29 days (Fig. 7a-c), suggesting that hypoxia and oxidative stress 
mediated the stimulation of p38 signaling. HuMScs treatment 
significantly reduced the ratio of p‑p38/p38 after HI modeling 
for 3 and 29 days (Fig. 7a and c). The ratio of p-p38/p38 at all 

Figure 3. levels of neural cell apoptosis 3 days after Hi. (a) Tunel staining was performed to evaluate neural cell apoptosis at an acute stage of 
neonatal HI injury and in the sham group (n=5). Magnification, x100. (B) TUNEL staining on day 3 after HI and in the sham group. Magnification, x200. 
(C) Significantly fewer apoptotic cells were observed in the HuMSCs group compared with the HIBD group. The number of apoptotic cells was signifi-
cantly lower in the cYGB-HuMScs group compared with the HuMScs groups. aP<0.01 vs. Sham group at the same time; bP<0.01 vs. HIBD group at the 
same time; cP<0.01 vs. HuMSCs group at the same time. HI, hypoxia‑ischemia injury; HuMSC, human umbilical cord‑derived mesenchymal stem cells; 
cYGB, cytoglobin; HiBd, hypoxic-ischemia brain damage.
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experimental time points in the cYGB-HuMScs group was 
significantly lower compared with the HuMSCs group (Fig. 7). 
Moreover, the ratio of p-p38/p38 in the cYGB-HuMScs group 
was significantly lower compared with the sham group on 
day 3 after transplantation of cYGB-HuMScs (Fig. 7a). 

The ratio of p-JnK/JnK in the HiBd group was 
significantly increased compared with the Sham group 
after HI modeling for 14 and 29 days (Fig. 7B and C). On 
day 14 after HI modeling, compared with the HIBD group, 
the ratio of p-JnK/JnK was decreased in the HuMScs 
group and cYGB-HuMScs group; however, the ratio in the 
cYGB-HuMScs group remained higher than the HuMScs 
group (Fig. 7B). on day 29 after Hi modeling, there were no 
significant differences in the ratio of p‑JNK/JNK between the 
HiBd group and HuMcSs or cYGB-HuMScs groups, but the 
ratio in the cYGB-HuMScs group was lower compared with 
the HuMScs group (Fig. 7c). 

The ratio of p-erK/erK in the HiBd group was 
significantly decreased compared with the Sham group after 
HI modeling for 3 days, while increased at day 14 after HI 
modeling (Fig. 7a and B). on days 3 and 29 after Hi modeling, 
compared with the HiBd group, the ratio of p-erK/erK was 
increased in the HuMScs group and cYGB-HuMScs group 
(Fig. 7A and C). On day 14 after HI modeling, compared with 
the HiBd group, the ratio of p-erK/erK was decreased in 
the HuMScs group, while increased in the cYGB-HuMScs 
group (Fig. 7B).

Discussion

HIBD is a significant threat to neonatal health, which results in 
disability and mortality in infants and children (5,6). Despite 
an increase in the number of studies that have been performed 
to investigate the pathogenesis of HiBd, hypothermia and 
systemic supportive treatment are the primary therapeutic 

options for HiBd (35). To the best of our knowledge, the 
present study was the first to demonstrate that intranasal trans-
plantation of cYGB-HuMScs exhibited neuroprotective and 
antiapoptotic effects in HiBd. in a rat model of HiBd, intra-
nasal administration of both HuMScs and cYGB-HuMScs 
resulted in reduced severity of histological and functional defi-
cits. in addition, the reduction in the cYGB-HuMScs group 
was more prominent compared with the HuMScs group.

CYGB has been extensively studied in the past 15 years (13), 
following its discovery. different from hemoglobin, cYGB 
is found outside of red blood cells and is classified as a 
non-erythroid globin, similar to other globins, such as neuro-
globin and myoglobin (36). The potential functions of these 
non-erythroid globins are associated with tissue and cell 
protection under hypoxic conditions, ischemic conditions 
and during oxidative stress (37). due to the structure of the 
hemeglobin, cYGB can reversibly bind to oxygen and other 
small molecules (38). The ability of cYGB to store and sense 
oxygen, as well as its involvement in nitrite and no metabo-
lism, are being increasingly studied and understood (39,40). it 
has been reported that, similar to other hemoglobins, cYGB 
can scavenge roS and no, as well as produce no from nitrite, 
thus reducing oxidative stress and protecting organs and 
cells (41‑44). Our previous study revealed that pretreatment of 
cYGB-overexpression reduced neonatal rat Hi injury, as well 
as improved long term memory and athletic ability following 
neonatal HI (18). However, whether overexpression of CYGB 
serves a protective role in neurons following HiBd has not 
been previously studied, and there is no established means of 
introducing the cYGB gene safely into living animals. 

in the present study, the effect of transplantation of 
cYGB-HuMScs in an HiBd rats model was determined, and 
was developed based the application of stem cells for treat-
ment of various brain diseases and our previous study (18). 
The current results suggested that cYGB-HuMScs reduced 

Figure 4. Distribution, survival and differentiation of HuMSCs or CYGB‑HuMSCs 3 and 14 days after HI. HuMSCs or CYGB‑HuMSCs were scattered in the 
damaged brain tissue. No eGFP and GFAP or eGFP and NSE double stained positive cells were observed. Magnification, x100. HuMSC, human umbilical 
cord‑derived mesenchymal stem cells; HI, hypoxia‑ischemia injury; CYGB, Cytoglobin; eGFP, enhanced GFP; GFAP, glial fibrillary acidic protein; NSE, 
neuron‑specific enolase.
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neuron cell apoptosis caused by HiBd. The improvement in 
long term neurological function 29 days after HiBd further 
demonstrated the neuroprotective effect of cYGB-HuMScs 
transplantation. HuMScs also exhibited a neuroprotective 
and antiapoptotic effect in HiBd, but the cYGB-HuMScs 
exhibited more prominent neuroprotective effects. in addition, 
RT‑qPCR and western blotting results identified that CYGB 
mrna and protein expression levels were increased from 
day 3 to day 29 after transplantation of cYGB-HuMScs. 
Thus, it was suggested that cYGB functions as an endogenous 
neuroprotective protein, and that cYGB-HuMScs may act 
as a gene transfer vector for cYGB, allowing cYGB and 
HuMScs to work together to improve the neuroprotective 
effects. Therefore, these results highlight a novel approach for 
treatment of neonatal HiBd.

Previous studies have shown that HuMScs do not undergo 
cell replacement via differentiation into neuron-like cells, but 
rather exert neuroprotective effects (45,46). In the present 

study, HuMScs or cYGB-HuMScs administered via nasal 
transplantation did not differentiate into cells expressing 
neural or glial cell marker proteins; a result that is similar 
to previous studies (45,46). Therefore, it was speculated that 
the neuroprotective effects of HuMScs may be achieved 
via the action of exosomes to promote endogenous repair of 
nerve cells (47-49). Proteins secreted by MScs can promote 
the repair of damaged tissues via a variety of mechanisms, 
including prevention of apoptosis, regulation of inflammatory 
responses and promotion of endogenous repair mechanisms, 
such as angiogenesis and neurogenesis, rather than cell 
replacement (48). in a HiBd animal model, MScs provide 
a suitable environment, including increasing the local levels 
of brain‑derived neurotrophic factor, basic fibroblast growth 
factor, neurotrophic factor and nerve growth factor, whilst 
downregulating the expression of proinflammatory cytokines, 
such as IL‑1 and IL‑6, which may also contribute to the repair of 
nerve cells (47,50). Previous studies have reported that cYGB 
serves a neuroprotective role by reducing cerebral infarctions 
and apoptosis caused by oxidative stress in vivo, and also 
revealed that hypoxia inducible factor‑1α/cYGB/vascular 
endothelial growth factor signaling may serve an important 
role in the CYGB‑mediated antioxidant mechanism (18). 
Therefore, it was hypothesized that the neuroprotective effects 
of cYGB-HuMScs is not via cell replacement, but via the 
various cytokines secreted by HuMScs and the antioxidant 
effects of overexpression of cYGB transfected into animals 
by HuMScs.

The p38 mitogen-activated protein kinase (MaPK) 
signaling pathway allows cells to interpret a wide range of 
external signals and respond appropriately by generating 
a plethora of different biological effects (51). It has been 
revealed that p38 MaPK is a mediator of hypoxia-induced 

Figure 5. Expression of CYGB in all groups after HI modeling for 3, 14 and 
29 days (n=5 per group). (a) expression of cYGB protein was assessed using 
(B) western blotting. GaPdH was used as the internal control. (c) mrna 
expression of cYGB mrna was determined using reverse transcrip-
tion-quantitative Pcr. The results demonstrated that both the protein and 
mrna expression levels of cYGB were increased in the cYGB-HuMScs 
group compared with the HiBd and HuMScs groups. aP<0.01 vs. Sham 
group at the same time; bP<0.01 vs. HIBD group at the same time; 
cP<0.01 vs. HuMSCs group at the same time; a'P<0.05 vs. Sham group at the 
same time; b'P<0.05 vs. HiBd group at the same time. Hi, hypoxia-ischemia 
injury; cYGB, cytoglobin; HuMSc, human umbilical cord-derived mesen-
chymal stem cells; HiBd, hypoxic-ischemia brain damage.

Figure 6. Morris‑Water maze experiments 29 days after HI (n=5 per group). 
(a) el values of the Hi group were longer compared with the sham group. el 
values in the HuMSCs group was significantly shorter compared with the HI 
group, and the el values in the cYGB-HuMScs group were shorter compared 
with the HuMScs group. (B) Pl values were longer in the Hi compared with 
the sham group. in the HuMScs group, Pl was shorter compared with the 
Hi group, and the Pl value in the cYGB-HuMScs group was also shorter 
compared with the HuMScs group. aP<0.01 vs. Sham group at the same time; 
bP<0.01 vs. HIBD group at the same time; cP<0.01 vs. HuMSCs group at the 
same time; b'P<0.05 vs. HiBd group at the same time; c'P<0.05 vs. HuMScs 
group at the same time. Hi, hypoxia-ischemia injury; cYGB, cytoglobin; 
HuMSc, human umbilical cord-derived mesenchymal stem cells; el, escape 
latency; Pl, path length; HiBd, hypoxic-ischemia brain damage.
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cerebrovascular inflammation (52). The p38 MAPK signaling 
pathway enhances the production of a range of proinflam-
matory cytokines, including il-β, TnF-α and il-8 (53,54). 
Moreover, p38 MaPK has been suggested to be involved in 
the context of ischemia-induced stress in the brain (55). For 
example, p38 MaPK inhibits the hypoxia response pathway 
via EGL‑9 in neurons (56). The p38 MAPK can also func-
tion as a mediator of roS-mediated signaling, and either 
activate or suppress cell cycle progression, depending on the 
activation stimulus (57). Proteomic and biochemical analyses 
further demonstrated that p38 MaPK signaling mediates cell 
apoptosis (58), while in vitro studies have shown that overex-
pression of cYGB suppressed p38 expression and protected 
glomerular mesangial cells from oxidative stress (59). 

In the present study, the ratio of p‑p38/p38 was signifi-
cantly increased in the HiBd group. However, HuMScs 
supplementation protected against neuron cell apoptosis 
as demonstrated by the decreased ratio of p-p38/p38. in 
addition, the cYGB-HuMScs group had an improved 
antiapoptotic effect accompanied with a greater degree of 
decreased p38 expression compared with the HuMScs group. 
The present results also suggested that the cYGB-HuMScs 
group had significantly downregulated phosphorylation 

levels of p38, which was accompanied with a significantly 
increased expression level of cYGB, compared with the 
sham group on day 3. Thus, it was indicated that exogenous 
cYGB may modulate p38 expression. The current results 
highlight the involvement of p38 MaPK signaling in HiBd, 
as well as suggesting that cYGB-HuMScs treatment may 
protect animals from HiBd by avoiding activation of the 
p38 MaPK signaling pathway.

in conclusion, to the best of our knowledge, the present 
study was the first to demonstrate that intranasal transplanta-
tion of cYGB-HuMScs can serve as a gene transporter, and 
that it exerts neuroprotective and antiapoptotic effects in 
HIBD. Additionally, it was identified that CYGB‑HuMSCs 
may exert its protective properties via the p38 MaPK 
pathway. The results of the current study demonstrate a novel 
therapeutic approach for treatment of HiBd. However, further 
investigation is required to identify the mechanism via which 
cYGB-HuMScs contributes to the molecular pathogenesis of 
HiBd.
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