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Simple Summary: The aim of the study is to combine blood oxygenation level dependent mag-
netic resonance imaging (BOLD-MRI), dynamic contrast enhanced MRI (DCE-MRI), and diffusion
weighted MRI (DW-MRI) in differentiation of benign and malignant breast lesions. The results sug-
gest that the combined use of DCE-MRI, DW-MRI and/or BOLD-MRI does not provide a dramatic
improvement compared to the use of DCE-MRI features alone, in the classification of breast lesions.
However, an interesting result was the negative correlation between R2* and D.

Abstract: Purpose. To combine blood oxygenation level dependent magnetic resonance imaging
(BOLD-MRI), dynamic contrast enhanced MRI (DCE-MRI), and diffusion weighted MRI (DW-MRI)
in differentiation of benign and malignant breast lesions. Methods. Thirty-seven breast lesions
(11 benign and 21 malignant lesions) pathologically proven were included in this retrospective
preliminary study. Pharmaco-kinetic parameters including Ktrans, kep, ve, and vp were extracted by
DCE-MRI; BOLD parameters were estimated by basal signal S0 and the relaxation rate R2*; and
diffusion and perfusion parameters were derived by DW-MRI (pseudo-diffusion coefficient (Dp),
perfusion fraction (f p), and tissue diffusivity (Dt)). The correlation coefficient, Wilcoxon-Mann-
Whitney U-test, and receiver operating characteristic (ROC) analysis were calculated and area under
the ROC curve (AUC) was obtained. Moreover, pattern recognition approaches (linear discrimination
analysis and decision tree) with balancing technique and leave one out cross validation approach
were considered. Results. R2* and D had a significant negative correlation (−0.57). The mean value,
standard deviation, Skewness and Kurtosis values of R2* did not show a statistical significance
between benign and malignant lesions (p > 0.05) confirmed by the ‘poor’ diagnostic value of ROC
analysis. For DW-MRI derived parameters, the univariate analysis, standard deviation of D, Skewness
and Kurtosis values of D* had a significant result to discriminate benign and malignant lesions and
the best result at the univariate analysis in the discrimination of benign and malignant lesions was
obtained by the Skewness of D* with an AUC of 82.9% (p-value = 0.02). Significant results for
the mean value of Ktrans, mean value, standard deviation value and Skewness of kep, mean value,
Skewness and Kurtosis of ve were obtained and the best AUC among DCE-MRI extracted parameters
was reached by the mean value of kep and was equal to 80.0%. The best diagnostic performance in the
discrimination of benign and malignant lesions was obtained at the multivariate analysis considering
the DCE-MRI parameters alone with an AUC = 0.91 when the balancing technique was considered.
Conclusions. Our results suggest that the combined use of DCE-MRI, DW-MRI and/or BOLD-MRI
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does not provide a dramatic improvement compared to the use of DCE-MRI features alone, in the
classification of breast lesions. However, an interesting result was the negative correlation between
R2* and D.

Keywords: breast cancer; hypoxia; perfusion; BOLD MRI; DCE-MRI

1. Introduction

Cancer is the first or second leading cause of death in 112 of 183 countries and ranks
third or fourth in a further 23 countries. Breast cancer in women is the most commonly
diagnosed cancer and the leading cause of cancer death [1]. However, an early diagnosis of
breast cancer reduces mortality.

Magnetic resonance imaging (MRI) allows quantifying biological, physiological, and
pathological processes at the cellular and molecular level and provides information on key
processes in cancer development and progression. Several researches have assessed the
MRI role in the characterization of tumor properties such as vessel permeability, cellularity,
and chemical composition [2–6]. Recently, one feature that is gaining increasing interest
for tumor microenvironment characterization is hypoxia, a condition of low oxygenation,
which is present in many solid tumors as rapidly proliferating cells outgrow the existing
vasculature [7,8]. This propriety can be quantified in MRI following the differences be-
tween the magnetic susceptibility of oxyhemoglobin (diamagnetic) and deoxyhemoglobin
(paramagnetic): This phenomenon is known as the blood oxygen level dependent (BOLD)
effect [9–12]. Fractional oxygenation of blood changes are expected to affect T2* measure-
ments in the vascular spaces and their neighborhoods. Literature results in breast cancer
indicated an indirect association between T2* variations and tissue oxygenation [13,14].

Today, the standard acquisition protocol in breast cancer evaluation includes the
dynamic contrast enhanced (DCE) MRI exam that requires a contrast agent intravenous
injection allowing to highlight morphology, shape of breast lesions, and to depict areas
with increased blood perfusion with intense contrast enhancement [15].

DCE-MRI provides information on morphology and vascularization of the tumor [16–19].
BOLD MRI gives information on blood hemoglobin oxygenation including the contribution
of blood volume, hematocrit, flow, hemoglobin oxygen saturation, as well as pH, 2,3
DPG [20,21].

Moreover, diffusion weighted MRI (DW-MRI) sequences can be used in the MRI
acquisition protocol for breast cancer assessment to depict water diffusion mobility, cellular
density, and vessel structure [22–24]. Typically, breast cancer due to higher cellular density
exhibits restricted water diffusion corresponding a low apparent diffusion coefficient (ADC)
value by DWI-MRI [25–28]. ADC values have proven useful in the differentiation of breast
cancer [25–28]. Moreover, the use of the intravoxel incoherent motion model (IVIM) in
DWI-MRI data analysis provides information on cellularity, diffusion, and perfusion of
tumors [29,30] using multi-b-value diffusion weighted images and bi-exponential curve
fit [31]. Pseudo-diffusivity (Dp indicated also with D*), perfusion fraction ( fp), and tissue
diffusivity (Dt) can be calculated by IVIM [29–32].

In this study, we combined DCE-MRI, BOLD-MRI, and DW-MRI features including
model based parameters by DCE-MRI data and IVIM parameters by DW-MRI data, after
automatic registration and preprocessing of three volumes, to assess the accuracy in
differentiation of benign and malignant breast lesions.

2. Methods
2.1. Patient Characteristics

National Cancer Institute of Naples Local Ethical Committee approved the study
with the deliberation n. 617 of 9 August 2016. Therefore, each patient signed the in-
formed consent. The study was performed in accordance with an up-to-date Declaration of
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Helsinki version and International Conference on Harmonization of Good Clinical Practice
Guidelines.

We included in the analysis patients that performed a breast MRI exam including
DCE-MRI, DW-MRI, and BOLD-MRI sequences to suspected breast lesions characterization.
In this retrospective study, in a 1-year period from January–December 2020, we included
37 women with 11 benign and 21 malignant lesions, their age ranging from 30 to 77 years
(median, 53; standard deviation 11).

Exclusion criteria were: Patients undergoing chemotherapy and radiotherapy; patients
without histopathological tests.

2.2. MRI Protocol

The MR 1.5 T scanner (Magnetom Symphony, Siemens Medical System, Erlangen,
Germany) equipped with a 16-element breast dedicated coil was used to acquire the MRI
examinations.

Ten series including one before and nine series after intravenous injection of 0.1
mmol/kg body weight of a positive paramagnetic contrast material (Gd-DOTA; Dotarem,
Guerbet, Roissy CdG Cedex, France) were acquired. The temporal interval between two
successive scans was 56 s. An automatic injection system was used (Spectris Solaris EP
MR, MEDRAD, Inc., Indianola, PA, USA) and the injection flow rate was set to 2 mL/s,
followed by a flush of 10 mL saline solution at the same rate.

DW-MRI included 7 fat suppressed scans in axial plane with different b-values (0, 50,
100, 150, 400, 800, and 1000 s/mm2), acquired with spectral adiabatic inversion recovery
(SPAIR).

The BOLD-MRI included 10 fat suppressed scans in sagittal plane with different TE
values (4, 8, 12, 16, 20, 24, 28, 32, 36, and 40 ms) acquired with SPAIR at breath hold (BH).

Details of the MRI sequences were provided in Table 1.

Table 1. MRI sequence parameters.

Settings DCE-MRI BOLD-MRI DW-MRI Units

TR/TE/FA 5.08/2.39/15 358/4–
40.187/40 7700/128/90 ms/ms/deg

Plane Axial Sagittal Axial
FOV 500 × 500 211 × 260 203 × 400 mm2

Matrix size 384 × 384 104 × 128 120 × 236 pixel
Pixel spacing 0.885 × 0.885 2.03 × 2.03 1.69 × 1.69 mm2

Slice thickness 1.60 6 4 mm
Gap between

slices 0 7.2 6 mm

No. of slices 128 80 168 -

2.3. Manual ROI and Volume Coregistration

Two expert radiologists with 15 and 20 years of breast imaging experience, in con-
sensus, manually drew slice by slice regions of interest (ROIs) following the margins of
breast lesion, in order to obtain the volume of interest. In DCE-MRI, the ROIs were drawn
on a third series considering the arterial phase of contrast agent uptake. In BOLD-MRI,
the ROIs were defined on the R2* image (BOLD) at TE of 16 ms. In DW-MRI, the ROIs
were defined on diffusion weighted images at the highest b-value (1000 s/mm2). Then, the
validation of the lesion contours was made by another expert radiologist with 30 years of
breast imaging experience.

The volume intersection and a 3D linear interpolation was performed in order to align
DCE-MRI, DW-MRI, and BOLD-MRI volumes on a common grid. For the subsequent
analysis, only voxels included in all datasets were considered. The post-processing was
performed using MATLAB (The MathWorks, Inc., Natik, MA, USA).
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2.4. BOLD Image Analysis

Per each voxel of volume of interest and considering all echoes, two features were
extracted from BOLD-MRI data assuming that the T∗

2 mono-exponential decay of the signal
follows this equation [10–14]:

S(TE) = S0e−TE/T∗
2 (1)

where S(TE) is the signal intensity at a given echo time, S0 is the signal intensity at TE = 0
and represents water proton density. The extracted BOLD-MRI parameters are: S0 and R∗

2
(1/T∗

2 ), the relaxation rate.
Indeed Equation (1) can be written as follows:

S(TE) = S0e−R∗
2 TE (2)

The echo images were used as input for fitting and calculation of S0 and R∗
2 values

using the conventional non-linear least squares (NLLS) [33] algorithm.

2.5. DW-MRI Image Analysis

Per each voxel of volume of interest, three features (pseudo-diffusivity (Dp indicated
also with D*, perfusion fraction (f ), and tissue diffusivity (D)) were extracted by DW-MRI
data using the IVIM model and all b-values. A bi-exponential model and the conventional
NLLS [28–33] was used to estimate the parameters with the following equation:

Sb
S0

= fp· exp
(
−b ·Dp

)
+ (1 − f )· exp(−b·D) (3)

2.6. DCE-MRI Image Analysis

Per each voxel of volume of interest, three quantitative model based features were
extracted from DCE-MRI. The contrast medium concentration in time is typically modelled
using the extended Tofts model [34–36].

Ct
(
t, Ktrans, kep

)
= Cp(t) ∗ Ktrans. e−kept + vp. Cp(t) (4)

where Ct (t) is the concentration of contrast medium in the tissue; Cp(t) is the concentration
of contrast medium within the plasma; Ktrans is the volume transfer constant (the diffusion
rate constant from EES to plasma); vp is the volume fraction occupied by plasma. We
assumed the bi-exponential arterial input function proposed by Weinmann et al. [37]:

Cp(t) = d (a1 exp(−m1t) + a2 exp(−m2t)) (5)

where d is the administered dose (mL/kg), a1 = 3.99 kg/L, a2 = 4.78 kg/L, m1 = 0.144 min−1,
and m2 = 0.0111 min−1. The contrast medium concentration was calculated using the time
intensity curve by Schabel et al. [38] with a fixed pre-contrast longitudinal relaxation time,
T1,0 of 820ms, appropriate for breast parenchyma.

2.7. Reference Standard and Pathological Methods

The reference standard was the pathology from a surgical specimen for malignant
lesions and pathology from a surgical specimen or core needle biopsy for benign lesions.
Breast tumors were classified according to the American Joint Committee on Cancer staging.
Malignant lesions included the ductal carcinoma in situ, invasive cancers tumors. Benign
lesions included lobular carcinoma in situ, fibroadenoma, ductal hyperplasia, dysplasia,
cysts, fibrosis, and phyllodes tumor.

2.8. Statistical Analysis

The analysis of the extracted parameters was made as both voxel based and ROI
based. The mean, standard deviation, Skewness and Kurtosis values were calculated as
representative values of the extracted parameters.
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2.8.1. Univariate Analysis

The Mann-Whitney U-test was used to assess the differences in DCE-MRI, DW-MRI,
and BOLD-MRI derived parameters to differentiate benign and malignant lesions. The
diagnostic performance of extracted parameters was assessed using the receiver operating
characteristic (ROC) curve analysis. The best cut-off, area under the curve (AUC), sensitiv-
ity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were
calculated.

A p-value < 0.05 was considered as significant for univariate analysis. Statistical
analysis was performed with the Rstudio software [39].

2.8.2. Multivariate Analysis

At the multivariate analysis, pattern recognition approaches (linear discriminant
analysis (LDA) and decision tree (DT)) were considered.

The leave-one-out validation approach was used as a cross-validated approach and
median values of AUC, accuracy, sensitivity, and specificity were reported.

To help balance the two classes (benign and malignant lesions), the adaptive synthetic
sampling (ADASYN) approach was used. The adaptive synthetic sampling (ADASYN)
approach is one of the most successful advanced over-sampling approaches. It is an
extension of the synthetic minority over-sampling technique (SMOTE) [40,41], which [42]
tackles the class imbalance problem by creating linear interpolations between randomly
selected minority class samples and their neighbors of the same class. The essential idea of
ADASYN is to prioritize samples near decision boundaries and to focus on these hard-to-
learn minority class samples by assigning weights calculated per sample, according to their
level of difficulty in learning, as the ratio of neighbors belonging to the majority class [43].

A p-value < 0.05 was considered as significant for the univariate analysis. The statisti-
cal analysis was performed with the Rstudio software [39].

3. Results
3.1. Univariate Analysis Results

Table 2 shows the mean and standard deviation value of extracted parameters voxel
by voxel.

Table 2. Mean and standard deviation value of extracted parameters voxel by voxel.

S
0[A.U.]H R2* [Hz]

D
[104 mm2

s−1]
f [%]

D*
[104 mm2

s−1]

Ktrans

[1/min]
kep

[1/min] vp [%] ve [%]

Benign
Mean 506.0 54.1 5.3 9.1 48.6 0.1 0.8 0.2 12.8

Standard
Deviation 57.3 31.7 10.2 4.9 15.2 0.0 0.3 0.2 5.3

Malignant
Mean 578.0 45.2 4.9 9.4 34.6 0.2 0.5 0.5 36.4

Standard
Deviation 242.0 13.0 4.3 3.8 14.1 0.1 0.2 0.4 15.5

Total
Mean 564.0 48.5 5.0 9.3 37.3 0.2 0.6 0.4 31.9

Standard
Deviation 220.0 17.5 5.6 3.9 15.1 0.1 0.3 0.4 16.9

Table 3 shows the mean and standard deviation value of extracted parameters ROI
based.
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Table 3. Mean and standard deviation value of extracted parameters ROI based.

S0 [A.U.] R2* [Hz] D [104

mm2 s−1] f [%] D* [104

mm2 s−1]
Ktrans

[1/min]
kep

[1/min] vp [%] ve [%]

Benign
Mean 487.0 47.8 5.1 8.6 34.8 0.0 0.1 0.3 46.2

Standard
Deviation 62.9 26.0 10.2 5.3 24.8 0.0 0.1 0.3 30.0

Malignant
Mean 555.0 41.9 4.3 9.3 24.4 0.2 0.3 0.2 44.4

Standard
Deviation 233.0 11.3 3.9 5.1 23.4 0.2 0.2 0.3 19.2

Total
Mean 542.0 43.0 4.4 9.2 26.4 0.1 0.3 0.2 44.7

Standard
Deviation 212.0 14.7 5.4 5.0 23.6 0.1 0.2 0.3 20.6

Table 4 shows the p-value at the Wilcoxon-Mann-Whitney U-test for each extracted
parameter in the voxel by voxel analysis. The significant results in the discrimination of
benign and malignant lesions were obtained by Skewness of S0, mean value of Ktrans, mean
value, standard deviation value and Skewness of kep, mean value, Skewness and Kurtosis
values of ve, standard deviation value of D, Skewness and Kurtosis values of D*. The ROI
based analysis had similar results.

Table 4. p-value at the Wilcoxon-Mann-Whitney U-test (bolding indicates significance p ≤ 0.05).

p Value at
Wilcoxon-

Mann-Whitney
U-Test

Mean Standard
Deviation Skewness Kurtosis

S0 0.90 0.71 0.05 0.11

R2∗ 0.08 0.75 0.14 0.09

Ktrans 0.05 0.22 0.37 0.20

kep 0.04 0.04 0.03 0.18

vp 0.34 0.18 0.41 0.37

ve 0.00 0.07 0.01 0.01

f 0.95 0.22 0.06 0.22

D 0.22 0.04 0.31 0.06

D∗ 0.08 0.53 0.02 0.04

Figure 1 reports the boxplot and ROC curve of S0 Skewness (a and b) and R2* mean
value (c and d).
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Figure 1. Boxplot and ROC curve of S0 Skewness (a,b) and R2* mean value (c,d). 

  

Figure 1. Boxplot and ROC curve of S0 Skewness (a,b) and R2* mean value (c,d).

Figure 2 reports the boxplot and ROC curve of Ktrans mean value (a and b) and kep
mean value (c and d).
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Figure 2. Boxplot and ROC curve of Ktrans mean value (a,b) and kep mean value (c,d).

Figure 3 reports the boxplot and ROC curve of D standard deviation value (a and b)
and D* Skewness D* (c and d).
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Figure 3. Boxplot and ROC curve of Ktrans mean value (a,b) and kep mean value (c,d).

The best result at the univariate analysis in the discrimination of benign and malignant
lesions was obtained by the Skewness of D* with an AUC of 82.9% (p-value = 0.02).

Figure 4 reports in (a) the representative diagram of correlation coefficients between
BOLD, DCE, and DWI extracted parameters at the voxel by voxel analysis, while in (b) the
scatter plot for the couple of parameters with the best correlation.



Cancers 2021, 13, 2421 10 of 15Cancers 2021, 13, x  10 of 15 
 

 

 

Figure 4. (a) Representative diagram of correlation coefficients between BOLD, DCE, and DWI extracted parametersat the voxel by 

voxel analysis; in (b) the scatter plot for the couple of parameters with the best correlation (R2* and D). 

 

Figure 5. (a) Representative diagram of correlation coefficients between BOLD, DCE, and DWI extracted parameters 

at the ROI based analysis; in (b) the scatter plot for the couple of parameters with the best correlation (R2* and D). 
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lesions has been artificially increased, thus obtaining a balance of classes. Moreover, in 

this case, in the voxel by voxel analysis the best results was obtained on the DCE param-

eters using the LDA classifier (accuracy = 0.95, sensitivity = 0.90, specificity = 1.00, AUC = 
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Figure 4. (a) Representative diagram of correlation coefficients between BOLD, DCE, and DWI extracted parametersat the
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Figure 5 reports in (a) the representative diagram of correlation coefficients between
BOLD, DCE, and DWI extracted parameters at the ROI based analysis, while in (b) the
scatter plot for the couple of parameters with the best correlation.
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Figure 5. (a) Representative diagram of correlation coefficients between BOLD, DCE, and DWI extracted parameters at the
ROI based analysis; in (b) the scatter plot for the couple of parameters with the best correlation (R2* and D).

R2* and D showed the best significant correlation coefficient equal to −0.57 at the
voxel by voxel analysis and −0.56 at the ROI based analysis.

3.2. Multivariate Analysis Results

In the case of voxel by voxel, the best performance was obtained considering only
the parameters DCE and using an LDA classifier (accuracy = 0.88, sensitivity = 0.90,
specificity = 0.80, AUC = 0.72) (Figure 6a)). In the case of ROI based analysis, the best result
is obtained with a decision tree and with a combination of BOLD parameters and DWI
(accuracy = 0.81, sensitivity = 0.90, specificity = 0.40, AUC = 0.65) (Figure 6b)).
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With the application of the SMOTE algorithm the number of subjects with benign
lesions has been artificially increased, thus obtaining a balance of classes. Moreover,
in this case, in the voxel by voxel analysis the best results was obtained on the DCE
parameters using the LDA classifier (accuracy = 0.95, sensitivity = 0.90, specificity = 1.00,
AUC = 0.91) (Figure 6c)). For the ROI based analysis, the best performance was achieved
with the decision tree and always considering the DCE parameters (accuracy = 0.90,
sensitivity = 0.81, specificity = 1.00, AUC = 0.91) (Figure 6d)).

4. Discussion

According to our knowledge, no previous study has combined DCE-MRI, BOLD-MRI,
and DW-MRI parameters including model based parameters evaluated by DCE-MRI data
and IVIM parameters by DW-MRI data, after automatic registration and preprocessing
of three volumes, in order to evaluate the accuracy in the differentiation of benign and
malignant breast lesions. In this study, we applied the combination of DCE-MRI, BOLD-
MRI, and DW-MRI techniques on a population of 37 patients with confirmed breast cancer.

Among the BOLD parameters, the parameter that gives more pathological information
is R2*, which increases with the deoxyhemoglobin concentration identifying a more hypoxic
area (typical of malignant lesion) [44]. In this study, the mean value, standard deviation,
Skewness and Kurtosis values of R2* did not show a statistically significant difference
between benign and malignant lesions confirmed by the ‘poor’ AUC values, probably
linked to breast cancer heterogeneity, movement artefacts, limited number of patients.
Some studies have shown a lack of utility of R2* alone, while the delta of R2* has shown
promise in both clinical and pre-clinical investigations [37,45,46]. Our results suggested that
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the univariate analysis of BOLD-MRI derived parameter did not allow the discrimination
of benign and malignant breast lesions. This result was in accordance with our previous
study [47] that reported no significant finding in the discrimination of benign and malignant
breast lesions considering BOLD parameters alone.

For DW-MRI derived parameters, the univariate analysis, standard deviation of D,
Skewness and Kurtosis values of D* had significant results to discriminate benign and
malignant lesions. The best result was obtained by the Skewness of D* with an AUC of
82.9% (p-value = 0.02). Our results are in accordance with findings of Liu et al. [43] that
have reported that IVIM quantitative parameters are helpful to discriminate benign and
malignant breast lesions. Mao et al. [42] reported that IVIM parameters could help improve
the specificity and accuracy to identify malignant lesions. The D-value is most relevant
and valuable in predicting the grading of malignant breast lesions.

Several authors have combined DCE and DW-MRI data in breast cancer to different
aims. Rahbar et al. [48] developed a model including DCE and DW-MRI features to
differentiate a high nuclear grade (HN) from non-HNG ductal carcinoma in situ (DCIS)
in vivo: DCE and DW-MRI imaging features could identify patients with high risk DCIS.
Partridge et al. [49] showed that ADC could improve the PPV of breast MRI for lesions
of varied types and sizes. Jena et al. [50] have tried to evaluate the combined effect of
capillary permeability (Ktrans) and tissue cellularity (ADC) on the diagnostic accuracy for
differentiating benign and malignant breast lesions by incorporating these parameters in
a routine clinical protocol for breast MRI. Fusco et al. [5] reported that the combination
of DWI and DCE-MRI did not increase the sensitivity and specificity in the classification
of breast lesions. DCE-MRI alone gave the same performance as in the combination with
DW-MRI.

We obtained significant results for the mean value of Ktrans, mean value, standard
deviation value and Skewness of kep, mean value, Skewness and Kurtosis values of ve. The
best AUC among DCE-MRI extracted parameters was reached by the mean value of kep
and was equal to 80.0%.

However, in this manuscript, the best diagnostic performance in the discrimination
of benign and malignant lesions was obtained at the multivariate analysis considering
the DCE-MRI parameters alone with an AUC = 0.91 when the balancing technique was
considered. The integration of DCE-MRI, DW-MRI, and BOLD-MRI did not improve the
diagnostic performance.

Our findings showed that R2* and D had a significant negative correlation. This finding
in accordance with Lee at al. [51] indicated that rapid R2* relaxation rates are associated
with lower diffusion rates, which is consistent with the action of macromolecules that cause
signal dephasing (through residual dipolar coupling) and also inhibit the free motion of
water molecules.

5. Conclusions

The current study had several limitations: Data were derived from only one oncolog-
ical center, a small group of women that may influence the generalization of the results.
However, we considered this study as a preliminary report with the objective to integrate
DCE-MRI, DW-MRI, and BOLD-MRI in breast lesion classification, which is the retrospec-
tive nature of the study. In this study, the technique to distinguish the subtypes of breast
lesions is not analyzed but this could be a future endpoint.

Although preliminary, our results seem to suggest that the combined use of DCE-MRI,
DW-MRI, and/or BOLD-MRI did not provide a dramatic improvement compared to the
use of DCE-MRI features alone, in the classification of breast lesions. Another interesting
result was the negative correlation between R2* and D.
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