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Abstract

Due to error-prone replication, RNA viruses exist within hosts as a heterogeneous population of non-identical, but related
viral variants. These populations may undergo bottlenecks during transmission that stochastically reduce variability leading
to fitness declines. Such bottlenecks have been documented for several single-host RNA viruses, but their role in the
population biology of obligate two-host viruses such as arthropod-borne viruses (arboviruses) in vivo is unclear, but of
central importance in understanding arbovirus persistence and emergence. Therefore, we tracked the composition of West
Nile virus (WNV; Flaviviridae, Flavivirus) populations during infection of the vector mosquito, Culex pipiens quinquefasciatus
to determine whether WNV populations undergo bottlenecks during transmission by this host. Quantitative, qualitative and
phylogenetic analyses of WNV sequences in mosquito midguts, hemolymph and saliva failed to document reductions in
genetic diversity during mosquito infection. Further, migration analysis of individual viral variants revealed that while there
was some evidence of compartmentalization, anatomical barriers do not impose genetic bottlenecks on WNV populations.
Together, these data suggest that the complexity of WNV populations are not significantly diminished during the extrinsic
incubation period of mosquitoes.
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Introduction

West Nile virus (WNV; Flaviviridae, Flavivirus) was introduced into

North America in 1999 and has since spread across the continental

United States and into Canada, Mexico, the Carribean, and South

America [1]. Molecular epidemiologic studies of WNV in the US

revealed that minor changes at the genomic level were associated

with a dramatic shift in the genotypic composition of WNV

circulating in North America [2–6]. Specifically, the introduced

genotype, termed NY99, was displaced by a new variant, WN02.

The WN02 genotype differs from NY99 by only a few nucleotide

and/or amino acid changes, but is more efficiently transmitted by

native Culex mosquitoes [5,7,8]. It was determined that the WN02

genotype requires a shorter extrinsic incubation period in

mosquitoes (EIP, time from vector infection to transmission) thereby

resulting in an increased vectorial capacity of local mosquitoes.

Similarly, the emergence of Chikungunya virus (CHIKV; Togavir-

idae, Alphavirus) seems to have been facilitated by analogous

mutations that result in increased transmission efficiency by the

vector Aedes albopictus [9,10]. Thus, relatively minor consensus

genetic changes can significantly influence arbovirus transmission

patterns and disease emergence. Determining the mechanistic

underpinnings of genetic change in arboviruses is therefore critical

to understanding their persistence and emergence.

RNA viruses exist within hosts as a dynamic distribution of non-

identical, but related viral variants [11–14]. High genetic diversity

profoundly influences the population biology of RNA viruses,

including WNV, polio, mumps and hepatitis C viruses [15–18]. In

the case of WNV, high genetic diversity is associated with

increased fitness in mosquitoes [19]. Population bottlenecks may

reduce fitness by stochastically reducing the genetic diversity of the

virus population. In vitro studies of vesicular stomatitis virus, an

RNA virus, have demonstrated that repeated bottlenecks can lead

to fitness loss through the action of Muller’s ratchet [20]. The

extent to which mosquitoes impose such population bottlenecks on

arthropod-borne viruses (arboviruses) is unclear. Analysis of WNV

populations from naturally infected birds revealed that non-

consensus, minority genotypes were shared among samples

collected from multiple birds, suggesting that WNV populations

may not be subject to bottlenecks during the natural transmission

cycle [14]. Similarly, it was suggested that dengue virus type 1

(DENV1; Flaviviridae, Flavivirus) is not subject to widespread

population bottlenecks during the natural transmission cycle

because putatively defective genomes persist through complemen-

tation, requiring frequent coinfection of cells in both mosquitoes

and humans [21]. Similarly, a high frequency of coinfection of

midgut cells has been reported for Venezuelan equine encephalitis

virus (VEEV; Togaviridae, Alphavirus) in Aedes taeniorhynchus [22].
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Conversely, studies examining early infection of mosquitoes by

WNV and VEEV demonstrated that only a few (,15) midgut cells

are susceptible to arbovirus infection [22,23]. These findings

suggest that anatomical barriers, specifically cells of the midgut,

may act as genetic bottlenecks by restricting the population of

infecting virions thereby diminishing the genetic diversity of the

population. Importantly, these observations are not mutually

exclusive as several viral genomes may coinfect a single midgut

cell. Importantly, population bottlenecks associated with mosquito

transmission have not been assessed from a virus genetics

perspective.

Therefore, we determined whether WNV experiences genetic

bottlenecks during the EIP in the vector mosquito Culex pipiens

quinquefasciatus. We hypothesized that WNV experiences genetic

bottlenecks during the EIP in mosquitoes, and reasoned that

sequential reductions in viral genetic diversity would occur as

infection progressed throughout the mosquito. To assess this,

WNV genetic diversity was quantified in mosquito midguts,

hemolymph, and salivary secretions, compartments that represent

three well-characterized infection stages (midgut colonization,

dissemination, and transmission). Three mosquitoes at three time

points (7, 14, and 21 days post infection (dpi)) were sampled. Our

data suggest that stochastic reduction of genetic diversity in

mosquitoes is at most a minor component of WNV population

biology during horizontal transmission.

Results

Mosquito Infection Rates
Mosquito tissues were screened for the presence of WNV RNA

by one-step RT-PCR. All freshly fed mosquitoes were positive for

WNV RNA representing ‘input’, blood-meal associated virus. The

infection rates for midguts at 7, 14, and 21 days post infection

(dpi), reflecting viral populations able to overcome the midgut

infection barrier, were 88% (21/24), 86% (19/22), and 70% (14/

20), respectively. The percentage of mosquitoes positive for WNV

RNA in the legs, indicating virus dissemination from the midgut

and into surrounding hemolymph, was 58% (14/24), 36% (8/22),

and 55% (11/20) at 7, 14, and 21 dpi, respectively. In order for

mosquitoes to transmit WNV, the virus must be able to overcome

the salivary gland infection and escape barriers. The percentage of

mosquitoes with WNV in salivary secretions was 25% (6/24), 14%

(3/22), and 35% (7/20) at 7, 14, and 21 dpi, respectively. Three

mosquitoes per time point with WNV RNA in midgut,

hemolymph and saliva were selected for further analysis and

WNV genome equivalents quantified (Text S1). Genome equiv-

alents were highest in midguts and progressively decreased in the

hemolymph and saliva. Further, genome equivalents increased

with time post infection (21 dpi.14 dpi.7 dpi) (Figure S1). In

addition, three mosquitoes, representing the ‘input’ group, were

collected immediately post-engorgment. WNV genome equiva-

lents determined for each of these individuals were 3.2, 4.1 and

5.96105 genome equivalents/ml (Figure S1). The bloodmeal

contained 66106 pfu/ml, assuming 10–100 genomes per infec-

tious particle and an engorgment volume of ,3 ml, engorged

mosquitoes would be expected to contain ,1.46105 or 6 genome

equivalents. The concentrations for the three individuals in the

‘input’ group are in agreement with these calculations and thus

faithfully represent the population of the bloodmeal as a whole.

Some arboviruses may enter mosquito hemolymph directly,

bypassing midgut infection via a ‘leaky midgut’ [24,25]. In order

to determine whether this occurred in the WNV-Cx. quinquefasciatus

system, hemolymph was removed from mosquitoes at 1, 3, 24, and

48 hpi as well as 8 and 16 dpi and tested for WNV by plaque assay

(Text S1). Hemolymph collected at 8 and 16 dpi commonly held

high titers of WNV. In contrast, hemolymph collected at early

timepoints after feeding almost never contained infectious WNV

(Figure S2).

WNV Genetic Diversity
The percent nucleotide diversity and proportion of unique viral

variants were used as indicators of viral genetic diversity in each of

the samples. The percent nucleotide diversity was determined by

calculating the total number of nucleotide changes for all clones

within a given sample divided by the total number of nucleotides

sequenced per sample. The data was grouped either by days post

infection (Figure 1 A, B, and C) or by tissue type (Figure 1 D, E,

and F). Analysis of the data set by days post infection revealed that

there was no significant difference in the percent nucleotide

diversity among the viral populations sequenced at 7 and 14 dpi

between ‘input’, midgut, legs or saliva (p = 0.2739 and p = 0.2662,

respectively) (Figures 1 A & B). Interestingly, genetic diversity

seemed to decrease with time post infection as there was a

significant reduction in diversity from the ‘input’ to the three tissue

types at 21 dpi (ANOVA p = 0.0015; Tukey’s HSD post test,

‘input’ vs midgut q = 7.262 p,0.05, ‘input’ vs legs q = 8.493

p,0.05, and ‘input’ vs saliva q = 5.293 p,0.05), but no difference

between tissue types (Figure 1C). Analyzing the data by tissue type

revealed that there was a significant reduction in diversity from the

‘input’ to midguts at 14 and 21 dpi (ANOVA p = 0.0125, Tukey’s

HSD post test, ‘input’ vs 14 dpi q = 5.404 p,0.05 and ‘input’ vs

21 dpi q = 5.694 p,0.05), but no significant difference between

midguts at 7 dpi and ‘input’ (Figure 1D). There was no statistical

differences between any of the leg or saliva samples at 7, 14 or

21 dpi (legs p = 0.0996, saliva p = 0.3563) (Figure 1E & 1F).

The second indicator of genetic diversity used in these studies

was the proportion of unique viral variants. This was determined

by calculating the number of unique clones per sample and

dividing by the total number of clones sequenced per sample.

Again the data was grouped either by days post infection (Figure 2

A, B, & C) or tissue type (Figure 2 D, E, & F). At 7 dpi, the midguts

and saliva were significantly lower than the ‘input’ (ANOVA

p = 0.0052, Tukey’s HSD post test, ‘input’ vs midguts q = 7.038

p,0.05, ‘input’ vs saliva q = 5.841 p,0.05), but the tissues were

not significantly different from one another (Figure 2A). Interest-

ingly, by 14 dpi the proportion of unique viral variants between

the tissues and ‘input’ was not significant (ANOVA p = 0.0517),

but at 21 dpi each of three tissue types were significantly lower

than the ‘input’ (ANOVA p = 0.0021, Tukey’s HSD post test,

‘input’ vs midguts q = 6.898 p,0.05, ‘input’ vs legs q = 8.028

p,0.05, and ‘input’ vs saliva q = 5.306 p,0.05) (Figure 2B & 2C).

Analysis by tissue type revealed that midguts from all three time

points were significantly lower than the ‘input’, but not different

between time points (ANOVA p = 0.0014, Tukey’s HSD post test,

‘input’ vs 7 dpi q = 7.298 p,0.05, ‘input’ vs 14 dpi q = 7.838

p,0.05, and ‘input’ vs 21 dpi q = 7.576 p,0.05) (Figure 2D). Like

the midguts, the legs at 14 and 21 dpi contained significantly less

diversity than the ‘input’ (ANOVA p = 0.0018, Tukey’s HSD post

test, ‘input’ vs 14 dpi q = 6.597 p,0.05 and ‘input’ vs 21 dpi

q = 8.458 p,0.05), but was not different from the 7 dpi time point.

Further, there was no difference between the time points

(Figure 2E). Finally, comparison of the saliva samples at each of

the time points revealed no significant difference between the three

time points and the ‘input’ or between time points (ANOVA

p = 0.1431) (Figure 2F).

Because our frequency and location analysis of viral variants

revealed that numerous variants were found in both the ‘input’

and saliva, but not the midgut or legs, we performed a correlation

WNV Diversity is Maintained in Mosquitoes
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analysis between the genetic diversity metrics and log transformed

viral genome equivalents. The Pearson correlation analysis

revealed that percent nucleotide diversity is significantly inversely

correlated to viral genome equivalents (p = 0.003; Pearson

r2 = 20.2747) (Figure 3A). Similarly, viral genome equivalents

are inversely correlated to the proportion of unique viral variants

(p = 0.0205; Pearson r2 = 0.1772) (Figure 3B).

Frequency and Migration Analysis
Analysis of the frequency and location of viral variants revealed

that 78 of 883 sequences sampled were unique. These variants were

found in all three tissue types and at all three time points. There

were 16 variants unique to the ‘input’ mosquitoes, 6 were found in

all four categories (input, midgut, legs, saliva), 19 were unique to

saliva, 15 unique to legs, and 9 unique to midguts, and the

remaining variants were found in multiple tissues. The 14 most

common variants were then plotted to display their relative

proportion in each mosquito sample (Figure 4). By analyzing the

data by this approach we were able to track individual variants from

‘input’ through infection (midguts), dissemination (legs), and

transmission (saliva). The ‘input’ set is a combination of all three

0 hpi mosquitoes and as expected represents a complex population

of multiple variants. Generally, the midgut populations, at all three

time points, are composed of only a few variants with no one variant

Figure 1. Percent nucleotide diversity by time and tissue. The percent nucleotide diversity was determined for each sample and ploted by
either days post infection (7 dpi (A), 14 dpi (B), & 21 dpi (C)) or by tissue type (midguts (D), legs (E), & saliva (F)). Dotted lines connect the means for
each sample set. P-values were determined by ANOVA using Tukey’s multiple comparison post test. Letters above sample sets represent statistically
significant groupings (p-value,0.05). Figures without letters denote that samples were not significantly different from one another.
doi:10.1371/journal.pone.0024466.g001
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dominating in all samples. Likewise, the WNV populations

recovered from the legs had, in general, low intrahost variability,

but with no overrepresentation of any one variant between

mosquitoes. Interestingly, there was an expansion in the total

number of variants identified in the saliva compared to the midguts

and legs. These findings are supported by the proportion of unique

viral variants analysis (Figure 2). Further, many of the variants that

were present in the input samples and subsequently undetected in

the midguts and legs were recovered from the saliva (Figure 4).

Included in this data was a variant that contained a single nucleotide

deletion at nucleotide 2194 in the E-glycoprotein. This deletion

mutant was found in the legs or saliva of three different mosquitoes

at 7 and 14 dpi (black colored sections of Figures 4A & 4B).

Migration analyses were performed in order to more closely look

for evidence of genetic bottlenecks and test for tissue compartmen-

talization (Figure 5). A hypothetical tree was generated to represent

what would be expected if strong genetic bottlenecks were

influencing WNV populations during the EIP (Figure 5A). Under

this scenario, a single ‘input’ variant initiates infection in the midgut.

Subsequently, a single midgut variant establishes an infection in the

hemolymph from which a single variant invades the salivary glands

and is transmitted. However, this is not what we observed. Three

Figure 2. Proportion unique viral variants by time and tissue. The proportion of unique viral variants was determined for each sample and
plotted by either days post infection (7 dpi (A), 14 dpi (B), & 21 dpi (C)) or by tissue type (midguts (D), legs (E), & saliva (F)). Dotted lines connect
means for each sample set. P-values were determined by ANOVA using Tukey’s multiple comparison post test. Letters above sample sets represent
statistically significant groupings (p-value,0.05). Figures without letters denote that samples were not significantly different from one another.
doi:10.1371/journal.pone.0024466.g002
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representative mosquitoes, one from each time point, are shown and

the remaining six trees are provided in a supplement (Figure S3).

The migration analysis indicates some evidence for compartmen-

talization based on the p-values for ordered character states as

estimated from 10,000 randomly sampled trees. A cluster of closely

related variants isolated from legs was identified in our represen-

tative mosquito at 7 dpi (Figure 5B p,0.0001). Similarly, clusters of

saliva variants were identified at 14 dpi and 21 dpi (p,0.0001 and

p,0.0001, respectively) (Figures 5C & 5D).

In vivo Competition Assay
To test for the presence of genetic bottlenecks using a less

genetically complex virus population, mosquitoes were fed on chicks

infected with a known mixture of marked-reference and wild-type

WNV (Text S1). The mean proportion of wild-type to reference

virus in chick viremia was 0.73 (n = 4, SEM 0.011) (Figure S4).

Subsequent analysis of the mosquito samples revealed that there was

no change in the proportion of wild-type to reference WNV in any

mosquito tissue compared to chick viremia (bodies 0.8 SEM 0.031,

legs 0.73 SEM 0.07, and saliva 0.75 SEM 0.087).

Discussion

Population bottlenecks during transmission may profoundly

influence the evolution of arboviruses by stochastically reducing

population variation, thereby selecting random genomes that may

be less fit than the overall population. Currently, it is unclear

Figure 3. Viral genome equivalents and genetic diversity are
inversely correlated. Black = ‘input’, Orange = midguts, Green = legs,
and Purple = saliva. (A) Log transformed genome equivalents for each
sample plotted against percent nucleotide diversity, n = 30, p = 0.003,
Pearson r2 = 0.2747. (B) Log transformed genome equivalents for each
sample plotted against the proportion of unique viral variants, n = 30,
p = 0.0205, Pearson r2 = 0.1772.
doi:10.1371/journal.pone.0024466.g003

Figure 4. Frequency and location of unique viral variants. There
were 883 clones sequenced, of which 78 sequences were unique. The
frequency of the fourteen most common viral variants was mapped
back to each sample. The column labeled input combines the data from
all three 0 hours post infection mosquitoes. Samples are broken down
by days post infection (7 dpi (A), 14 dpi (B), & 21 dpi (C)). Each time
point includes three mosquitoes (denoted mosquitoes 1–3) and further
broken down by tissue (M (midguts), L (legs), & S (saliva)). The white
sections of the histograms represent the remaining 64 uncommon
variants and the black sections represent a single nucleotide deletion
mutant found in multiple samples.
doi:10.1371/journal.pone.0024466.g004

WNV Diversity is Maintained in Mosquitoes
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whether arboviruses experience genetic bottlenecks during infec-

tion of the mosquito vector. Therefore we tracked the composition

of WNV populations during mosquito infection to quantify genetic

bottlenecks associated with infection of these hosts.

Cx. p. quinquefasciatus mosquitoes were exposed to a bloodmeal

containing a highly fit, genetically diverse WNV population (M24)

that has been described in detail elsewhere [19]. Most mosquitoes

exposed to M24 had WNV RNA in midgut tissues after either 7,

14 or 21 days EI. Although fewer mosquitoes had WNV in

hemolymph and salivary secretions, at all timepoints at least three

individual mosquitoes had WNV in midgut, hemolymph and

salivary secretions. WNV from these mosquitoes was used to assess

population bottlenecks associated with mosquito transmission.

Extreme care was taken to minimize the possibility that WNV

RNA from one tissue would contaminate other tissues. Hemo-

lymph was first sampled from newly anesthetized mosquitoes by

gently removing their legs. Second, the mosquito mouthparts were

inserted into a pulled capillary tube charged with buffer and the

mosquito was allowed to salivate for approximately 30 minutes.

Finally, the midgut was removed from the mosquito and washed

three times in PBS to remove hemolymph-associated WNV. This

approach was validated by intrathoracically inoculating adult

female mosquitoes with 26104 pfu/ml of WNV. Subsequently,

five whole mosquitoes, five unwashed midguts and three times

washed midguts were collected 45 minutes post inoculation. The

presence of WNV RNA was determined by one-step RT-PCR.

Expectedly, all five whole body mosquitoes were positive for WNV

RNA along with two of five unwashed midguts. All five of the

washed midguts were negative for WNV RNA (data not shown).

Since the greatest concentration of WNV RNA tended to be in the

mosquito midguts, handling this tissue last minimized the

possibility of contaminating samples from the same mosquito.

Several mosquitoes were detected that had midgut-limited

infections, or WNV in hemolymph but not salivary secretions

(data not shown). These results indicate that our efforts to

minimize contamination were effective and that the samples

selected for this study were not compromized by contaminating

WNV RNA.

Quantitative analysis of viral genetic diversity in mosquito

midguts compared with the highly genetically diverse ‘input’

WNV M24 clearly demonstrated that virus population diversity is

restricted in this tissue. Both the percent nucleotide diversity and

Figure 5. Bayesian trees with the most parsimonious reconstruction of tissue character states for three mosquitoes. Blue = input (i),
pink = midgut (m), gold = legs (l), black = salivary secretions (s), dotted = multiple tissues, with specific tissues indicated by abbreviations. Hatched
branches indicate equivocal reconstruction of character states. Numbers above nodes are the posterior probabilities inferred for each clade. A)
Hypothetical tree with predicted outcome assuming the presence of genetic bottlenecks. The most parsimonious reconstruction of ordered character
steps for each tree for three representative mosquitoes is as follows, B) 7 dpi mosquito 2 (22 steps, p,0.0001), C) 14 dpi mosquito 1 (30 steps,
p,0.0001), D) 21 dpi mosquito 3 (23 steps, p = 0.0001).
doi:10.1371/journal.pone.0024466.g005
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proportion of unique viral variants in midguts are significantly

lower than in the ‘input’ population (Figures 1D & 2D).

Surprisingly, however, the genetic diversity of peripheral WNV

was not significantly different from virus in the bloodmeal, with

saliva-associated WNV (i.e. the WNV that would be transmitted

by a feeding mosquito) tending to be the most genetically diverse

of the three tissue types sampled (Figures 1 & 2). The mechanism(s)

that lead to increased genetic diversity outside of the midgut are

not clear. The presence of a ‘leaky midgut’ may explain this

discrepency between the percent nucleotide diversity in legs and

saliva compared to that of the midguts [24,25]. However, we

found little evidence of WNV bypassing the midgut and directly

infecting secondary tissues (Figure S2). In addition, we observed a

significant inverse correlation between viral genome equivalents

and the genetic diversity metrics (Figure 3). Taken together, these

findings suggest that although WNV populations appear to be

restricted in the midguts, and to a lesser extent in hemolymph, the

genetic diversity of transmitted WNV was similar to that of the

ingested virus population, and that variables other than tissue of

origin determine viral genetic diversity in mosquitoes.

It may be that WNV accumulates mutations during the course

of mosquito infection: relaxation of purifying selection on WNV

sequences has been associated with mosquito infection [15]. To

assess this possibility, we compared the frequency and location of

viral variants present in our mosquito tissue samples to those of the

‘input’ population. Not surprisingly, the majority of the viral

variants identified in the midguts were also present in the ‘input’

population (Figure 4). Interestingly, however, variants found in

legs and saliva were also represented in our ‘input’ dataset, without

being present in the mosquito midguts. These findings support our

quantitative analysis of genetic diversity, in these tissues, and

indicate that the increased variation observed in peripheral WNV

populations was more attributable to genetic diversity in the

‘input’ WNV population than to the generation of novel mutants

during mosquito infection.

Additional evidence supporting the infection of a single cell by

multiple WNV variants was obtained through examination of a

defective WNV sequence in our dataset. Specifically, we

identified a single nucleotide deletion mutant that was found in

multiple mosquito samples, including peripheral compartments,

but not in the ‘input’ (Figure 4). Although it is possible that these

mutants arose independently, it seems more likely that an

ancestral mutant was present but undetected in the M24

population and was maintained in mosquitoes by complementa-

tion. Numerous studies have observed complementation of

defective Flavivirus genomes in cell passage experiments [26,27].

Typically, these studies have found large, ,2 kb, in-frame

deletions at the 59-end of the genome in the structural genes.

Interestingly, one study found long-term transmission of a

defective DENV-1 virus with a premature stop codon in the E

gene [21]. This data suggests that defective WNV particles can

infect mosquitoes, propagate through complementation and

ultimately be transmitted (Figure 4; mosquito 3 saliva 7 dpi).

This implies that multiple WNV virions may frequently infect a

single midgut cell, providing a mechanism by which WNV

genetic diversity may be maintained in mosquitoes despite

limitations in the number of susceptible midgut cells [22,23].

Finally, we performed a migration analysis to formally test for

the presence of bottlenecks and compartmentalization. We

detected compartmentalization in legs and saliva, but found no

evidence of genetic bottlenecks (Figure 5). In this analysis, if

genetic bottlenecks exist, viral variants from the tissue samples

would originate from a single ‘input’ variant as demonstrated in

our hypothetical tree. Rather, variants identified in the saliva were

found to originate from multiple ‘input’ variants indicating the

ability of numerous ‘input’ variants to overcome multiple mosquito

barriers to infection (i.e. midgut infection, midgut escape, and

salivary gland escape barriers). The artificial nature of this

experimental system may explain the discrepancies between our

tests. Mosquitoes were offered a bloodmeal containing WNV M24

which contains an approximately 10 fold increase in the genetic

diversity compared to natural WNV populations [14,19]. This

approach was implemented as a means to more easily track

variation in our populations. It may be that the perceived

bottlenecks were artificial due to saturating the system. As a more

realistic approach to testing for bottlenecks we performed an in vivo

competition assay in which infectious clone-derived wild-type

WNV was competed against a marked reference virus [19]. It was

observed that the proportion of marked refernce virus to wild-type

WNV remained unchanged from ‘input’ to bodies, legs or saliva

(Figure S4). Together, these data suggest that genetic bottlenecks

do not significantly influence WNV populations during the EIP in

Cx. p. quinquefasciatus.

Our genetic approach to transmission bottlenecks provides an

intersting contrast to previous studies of bottlenecks in arbovirus

transmission cycles [22,23]. Using virus-like particles to track

binding and internalization, one study demonstrated that WNV

infects only a few midgut epithelial cells during infection of Cx.

quinquefasciatus [23]. Similar results were found during VEEV

infection of Aedes taeniorhynchus [22]. By virtue of the small number

of infected cells it was concluded that arbovirus populations may

be stochastically reduced at the point of infection. Our genetics

studies of WNV do not support this obsevation. Notably, these

conclusions are not necessarily mutually exclusive: It may be that

the small proportion of susceptible midgut cells are infected with

more than one virus particle or that an undetectable level of

infection occurred in a higher proportion of cells. In fact, a high

frequency of dual infections were observed in the VEEV-Aedes

system [22]. Essentially, only a few susceptible midgut cells may be

needed to propagate a diverse arbovirus population. Our

observation of a deletion mutant persisting, apparently through

complementation, during mosquito infection supports this possi-

bility.

The literature regarding the role of bottlenecks in natural

transmission cycles of RNA viruses is currently ambiguous.

Bottlenecks are seemingly unimportant for Cauliflower mosaic

virus in plants, but may exist for other RNA viruses [28–31].

Numerous factors may contribute to this discrepency such as

virus species, single vs two-host systems, mode of transmission

and/or site of inoculation. Further, environmental or host genetic

factors may influence differences between individual hosts within

a given population and likely explain the high variablity observed

between individual mosquitoes in this experiment [32]. Never-

theless, our data establish that transmitted WNV populations are

at least as diverse as those of the imbibed population and

therefore suggests that genetic bottlenecks are unlikely to

significantly influence WNV population biology during horizon-

tal transmission.

Materials and Methods

Virus and Mosquito Infections
The highly genetically diverse WNV population, WNV M24,

used for these studies has been previously described [19]. Briefly,

24 WNV isolates from naturally infected mosquitoes and birds

were passaged once on C6/36 Aedes albopictus cells [14]. Titers

were determined by plaque assay on Vero cells and mixed at a

1:1:1… ratio. This mixture was amplified once on C6/36 cells at
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an MOI of 0.1 and the resultant population titered and genetically

characterized.

To infect mosquitoes, WNV M24 was mixed 1:1 with

defibrinated goose blood and offered to adult female Culex pipiens

quinquefasciatus 7–8 days post emergence. The virus titer in the

bloodmeal was 66106 pfu/ml. Fully engorged females were

separated from the remaining unfed mosquitoes and housed in

an environmental chamber (27uC, 16:8 L:D photoperiod) for the

remainder of the experiment.

Sample Collection and Virus Detection
To quantify viral genetic diversity of the ‘input’ virus

population, three fully engorged mosquitoes were placed in

RNA extraction buffer immediately after feeding and homoge-

nized using a mixer mill. Viral genetic diversity was quantified as

described below. At 7, 14, and 21 days post-infection paired tissues

samples (midguts, legs, and saliva) were collected from 20–25

mosquitoes. To ensure that contaminating WNV from the

hemoceol was not introduced into our midgut samples, dissected

midguts were washed three times in PBS before placing the

samples in RNA extraction buffer. Dissecting forceps were flame

sterilized between dissections to avoid cross contamination

between samples. Total RNA was extracted from mosquito

hemolymph and tissues using the RNeasy Mini Protect kit

(Qiagen, Valencia, CA) and screened for the presence of WNV

RNA by one-step RT-PCR using the Superscript III kit with

platinum Taq (Invitrogen, Carlsbad, CA). WNV specific primers

used in this study spanned a 934 nt. region corresponding to the

E-NS1 junction (1971 nt–2928 nt). Three mosquitoes with

detectable WNV RNA in all three tissue types were selected from

each time point for further analyses.

Quantification of Viral Genetic Diversity
Viral genetic diversity was determined according to methods

previously described [14]. Briefly, cDNA was generated from 5 ml

of total RNA using the High Fidelity Reverse Transcription kit

(Stratagene, Cedar Creek, TX) according to the manufacturers

specifications and WNV specific primers, WNV 1971 F and WNV

2928 R. Subsequently, the cDNA served as template for high

fidelity Pfu Ultra polymerase amplification (Stratagene). Amplicons

were PCR purified and cloned into the pCR Script Amp (+) vector

(Stratagene). Between 21–30 individual clones from each of the

samples were sequenced using the M13F, M13R, WNV 2369 F,

and WNV 2768 R primers. DNAStar’s SeqMan module

(DNAStar Inc., Madison, WI) was used for sequence alignment

and analysis of genetic diversity. Only clones with two-fold

sequencing coverage were considered complete. As a means to

estimate genetic diversity, consensus sequences for each sample

were determined and individual clones within that sample were

then compared to the specimen-specific consensus sequence. The

percent nucleotide diversity (total number of mutations from all

clones within a sample divided by the total number of nulcoetides

sequenced per sample) and the proportion of unique viral variants

(the number of unique clones differing from the consensus divided

by the total number of clones sequenced per sample) were

calculated and used as indicators of genetic diversity.

Quantification of Viral Genome Equivalents
WNV genome equivalents were determined by quantitative-RT-

PCR (Q-RT-PCR). As a standard control for this assay a ,2 kb

fragment from the WNV E gene was amplified using the WNV

1031 F and WNV3430 R primers. The resultant amplicon was

cloned into the pCR2.1-TOPO vector (Invitrogen) downstream of

the T7 promoter. The recombinant vector was linearized with Kpn

I, purified and used as template for in vitro transcription using the T7

Megascript kit according the manufacturer’s instructions (Ambion,

Austin, TX). The resultant RNA was quantified and aliquoted in

serial ten-fold dilutions. Using a probe specific for the E gene, the

WNV 1160 F and WNV 1229 R primers, and the TaqMan H One-

Step RT-PCR Master Mix Reagent (Applied Biosystems, Foster

City, CA) viral RNA copy numbers were determined [33]. Samples

were run on the ABI Prism 7000 Sequence Detection System

(Applied Biosystems).

Frequency and Migration Analysis
The presence of genetic bottlenecks and/or compartmentaliza-

tion was further assessed by migration analyses. To determine the

frequency and location of viral variants, sequences from each

sample were aligned in DNAStar’s SeqMan module, exported as

FASTA files and duplicates removed using BioEdit [34].

Alignments were generated for each mosquito and tested for

recombination using the Genetic Algorithm for Recombination

detection program implemented on the datamonkey.org website

[35]. Evidence of recombination was not detected, so the

alignments were used to perform a migration analysis. To test

the null hypothesis of panmixis versus the alternative that there are

distinct WNV sub-populations within different mosquito tissues,

we used the Slatkin-Maddison test for gene flow in MacClade

version 4 (Sinauer Associates, Sunderland, MA) [36]. Tissue of

origin was assigned to each taxon in a one-character data matrix.

‘Input’ sequences from freshly-fed mosquitoes were included as an

estimate of the population of variants present in the infectious

bloodmeal. In total there were four character states (input, midgut,

legs, and saliva). The Slatkin-Maddison test was performed

independently for each mosquito. This analysis was performed

on Bayesian phylogenies, generated with MrBayes 3.1.2 [37].

These were run with a general time reversible (GTR) model with

invariable rates with substitution rates following a gamma plus

invariants distribution. Two Markov Chains Monte Carlo

(MCMC) tree searches of 5 million generations each were run in

parallel with sampling one in every 250 trees. 50% majority-rule

consensus trees are shown based on the last 19,000 trees. Briefly,

the phylogenetic tree resulting from the nucleotide data was

loaded into MacClade and the most parsimonious reconstruction

of this ancestral character inferred with the Fitch algorithm [38] in

order to estimate the minimum number of steps required to

explain the distribution of tissue states on the tree of interest. We

then generated 10,000 random trees by random joining and

splitting of the input tree and compared the number of steps on

our input tree to those calculated in the random trees, as described

previously for HIV-1, using ordered tissue states [39].

Statistical Analysis
Statistical analyses were completed in Microsoft Excel and

GraphPad Prism. A one-way analysis of variance (ANOVA) with

the Tukey’s multiple comparison post-test with a significance level

of a= 0.05 was used for analysis of the percent nucleotide diversity

and proportion of unique viral variants. A Pearson correlation

analyses was perfomed on log transformed viral genome

equivalents versus percent nucleotide diversity and proportion of

unique viral variants. Figures were generated in GraphPad.

Supporting Information

Figure S1 WNV genome equivalents per tissue sample.
WNV genome equivalents were determined by Q-RT-PCR for

each sample characterized.

(TIF)

WNV Diversity is Maintained in Mosquitoes

PLoS ONE | www.plosone.org 8 September 2011 | Volume 6 | Issue 9 | e24466



Figure S2 WNV titers in Culex pipiens quinquefasciatus
hemolymph at early time points. Mosquitoes were offered a

WNV Mix24 infectious bloodmeal and hemolymph extracted at

multiple time points. WNV titers were determined by plaque

assay.

(TIF)

Figure S3 Bayesian trees with the most parsimonious
reconstruction of tissue character states from the six
remaining mosquitoes. Blue = input (i), pink = midgut (m),

gold = legs (l), black = salivary secretions (s), dotted = multiple

tissues, with specific tissues indicated by abbreviations. Hatched

branches indicate equivocal reconstruction of character states.

Numbers above the nodes are the posterior probabilities inferred

for each clade. Mosquito analyzed and most parsimonious

reconstruction of ordered character steps for each tree is as

follows A) 7 dpi mosquito 1 (21 steps, p = 0.0002) B) 7 dpi

mosquito 3 (10 steps, p = 0.0057), C)14 dpi mosquito 2 (8 steps,

p = 0.087), D) 14 dpi mosquito 3 (23 steps, p = 0.0002), E) 21 dpi

mosquito 1 (12 steps, p = 0.0772), F) 21 dpi mosquito 2 (16 steps,

p = 0.007).

(TIF)

Figure S4 The proportion of wild-type WNV when
competed against a marked reference virus does not

change as the virus disseminates through the mosquito.
Culex pipiens quinquefasciatus mosquitoes were fed on live chicks

circulating a mixed population of WNV comprised of wild-type

(WT) and reference viruses. Tissues were harvested 7 dpi from 20

mosquitoes and the proportion of WT-WNV was determined by

RT-PCR followed by SNPS analysis. Samples negative for WNV

RNA by RT-PCR were omitted.

(TIF)

Text S1 Materials and Methods.

(DOC)
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