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Sarah Lutteropp 1,*, Céline Scornavacca2, Alexey M. Kozlov 1, Benoit Morel 1,3

and Alexandros Stamatakis 1,3

1Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg 69118, Germany, 2Institut des

Sciences de l’Évolution Université de Montpellier, CNRS, IRD, EPHE Place Eugène Bataillon, 34095 Montpellier Cedex 05, France and
3Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe 76128, Germany

*To whom correspondence should be addressed.

Associate Editor: Russell Schwartz

Received on December 16, 2021; revised on May 11, 2022; editorial decision on May 30, 2022; accepted on June 14, 2022

Abstract

Motivation: Phylogenetic networks can represent non-treelike evolutionary scenarios. Current, actively developed
approaches for phylogenetic network inference jointly account for non-treelike evolution and incomplete lineage
sorting (ILS). Unfortunately, this induces a very high computational complexity and current tools can only analyze
small datasets.

Results: We present NetRAX, a tool for maximum likelihood (ML) inference of phylogenetic networks in the absence
of ILS. Our tool leverages state-of-the-art methods for efficiently computing the phylogenetic likelihood function on
trees, and extends them to phylogenetic networks via the notion of ‘displayed trees’. NetRAX can infer ML phylogen-
etic networks from partitioned multiple sequence alignments and returns the inferred networks in Extended Newick
format. On simulated data, our results show a very low relative difference in Bayesian Information Criterion (BIC)
score and a near-zero unrooted softwired cluster distance to the true, simulated networks. With NetRAX, a network
inference on a partitioned alignment with 8000 sites, 30 taxa and 3 reticulations completes within a few minutes on a
standard laptop.

Availability and implementation: Our implementation is available under the GNU General Public License v3.0 at
https://github.com/lutteropp/NetRAX.

Contact: sarah.lutteropp@h-its.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

It is broadly accepted that one cannot always describe evolution via
a phylogenetic tree. Events such as horizontal gene transfer, hybrid-
ization or recombination induce non-treelike evolutionary relation-
ships among taxa. In such cases, a (rooted) phylogenetic network
better describes the evolutionary relationships. A rooted phylogenet-
ic network differs from a rooted phylogenetic tree as it also com-
prises nodes with two parents, so-called reticulations, in addition to
regular tree nodes with one parent. A reticulation represents a non-
treelike event.

Initially, phylogenetic network inference methods based on max-
imum likelihood (ML) such as NEPAL (NEPAL, 2006) and
PhyloDAG (Nguyen and Roos, 2015) did not account for incom-
plete lineage sorting (ILS). Very recently, a new ILS-unaware ML
network inference tool, PhyLiNC, has been proposed (Allen-
Savietta, 2020). The tool is available as part of the PhyloNetworks

(Sol�ıs-Lemus et al., 2017) package. However, it is deactivated by de-
fault and the authors emphasize that it is not ready for use yet (Ané,
2021). Unfortunately, NEPAL and PhyloDAG do also not appear to
be able to reconstruct phylogenetic networks from genomic data, as
we elaborate in Section 3.4.

In recent years, the focus shifted toward developing methods for
ML network inference that also account for ILS. While models
accounting for ILS are expected to yield more accurate networks as
they incorporate additional mechanisms to explain non-treelike evolu-
tion, they face substantial computational challenges. For example, the
ILS-aware ML method implemented in PhyloNET (Wen et al., 2018)
can only be applied to extremely small datasets with 10 taxa and up
to 4 reticulations (Sol�ıs-Lemus and Ané, 2016). Consequently, faster-
to-compute pseudolikelihood models accounting for ILS, such as
implemented in SNaQ (Sol�ıs-Lemus and Ané, 2016), were developed.
These pseudolikelihood models first compute ILS-aware likelihoods
of 4-taxon subtrees (quartets) on gene trees, and subsequently
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compute a pseudolikelihood for the entire network from these quartet
likelihoods. More recent versions of the aforementioned PhyloNET
tool also deploy pseudolikelihoods (Wen et al., 2018), but still face
scalability challenges (Cao et al., 2019). Apart from ML-based net-
work inference tools, there also exist tools that rely on maximum par-
simony (e.g. Nakhleh et al., 2005), which often perform poorly
(Hejase and Liu, 2016), or Bayesian inference (e.g. Zhang et al.,
2018), which also face substantial scalability challenges.

Here, we present NetRAX, a tool for ML inference of phylogen-
etic networks that does not account for ILS. By leveraging state-of-
the-art methods for efficiently computing the phylogenetic
likelihood function on trees and extending them to networks, our
tool permits to run—on a standard laptop and within minutes—
phylogenetic analyses on partitioned alignments for evolutionary
scenarios comprising up to four reticulations. Based on its perform-
ance on simulated data and on an empirical dataset, NetRAX allows
to routinely infer non-treelike evolutionary histories. The remainder
of this article is structured as follows. We start by introducing the
NetRAX likelihood model (Section 2.1) and outline its implementa-
tion (Section 2.2). We then describe the optimization of branch
lengths and model parameters that are not associated with the net-
work topology (Sections 2.3 and 2.4). Next, we outline the available
topology-rearrangement moves (Section 2.5) and present the search
algorithm for finding the best-scoring network (Section 2.6). To
compare network topologies, we implement normalized versions of
common network distance measures (Section 3.1). We then describe
the synthetic data generation (Section 3.2) and our experimental
setup (Section 3.3). The NetRAX performance is assessed on
synthetic data (Section 3.4) and on empirical data (Section 4). We
conclude and discuss future work in Section 5.

2 Materials and methods

In the following, we provide a general, abstract outline of NetRAX.
Additional technical details are provided in the Supplementary
Material.

2.1 Phylogenetic network likelihood model
A rooted binary phylogenetic network N is a single-source, directed,
acyclic graph without parallel edges. We call its source node the
root node of N. Apart from the root, there are three types of nodes:
(i) internal tree nodes with one incoming edge and two outgoing
edges, (ii) reticulation nodes with two incoming edges and one out-
going edge and (iii) leaf nodes with one incoming edge and no out-
going edges. Each leaf is associated with a distinct taxon. Each edge
e in a phylogenetic network has a branch length and a probability
P(e). The incoming edges of a reticulation node (called reticulation
edges) are assigned inheritance probabilities that must sum to one.
The probability of observing a tree (i.e. non-reticulation) edge is
always one.

Figure 1 shows a simple example network.
Phylogenetic analyses are typically conducted on multiple se-

quence alignments (MSA) A subdivided into multiple blocks
A1; . . . ;Ap. A block consists of a set of sites that are likely to have
evolved together (e.g. sites of a single gene), following the same evo-
lutionary process. With NetRAX, our goal is to infer a phylogenetic

network N from a partitioned MSA A that maximizes a network
likelihood LðNjAÞ.

Here, we assume that neither ILS nor recombination occurs
among MSA sites. Given these assumptions, we can model reticulate
evolution in a network via its set of induced displayed trees (Jin et al.,
2006). We obtain a displayed tree from a network by choosing one
parent per reticulation node (disabling the incoming edges belonging
to parents that are not chosen). We can convert it into a phylogenetic
tree by suppressing unlabeled leaves as well as single-child paths.
Figure 1 shows a displayed tree in a phylogenetic network.

Let N ¼ ðV;EÞ be a phylogenetic network with a set of displayed
trees T ðNÞ. To compute the probability of a displayed tree T in
T ðNÞ, we proceed as follows. Let Er be the set of reticulation edges
that need to be taken in order to generate T. The probability of T in
N is then:

PðTjNÞ ¼
Y
e2Er

PðeÞ:

In cases where we encounter the exact same phylogenetic tree
more than once, we compute the sum over the respective log likeli-
hoods, which are weighted by the corresponding reticulation
probabilities.

To define LðNjAÞ, let A be a partitioned MSA with blocks
A1; . . . ;Ap, that is, every MSA site is assigned to exactly one block
Ai. Let # ¼ ð#1; . . . ; #pÞ be the parameter vector, comprising the
per-block network branch lengths and likelihood model parameters.
We consider each block as being independent. Thus, we define the
likelihood of a phylogenetic network given # as the product over the

per-block likelihoods: LðNjA; #Þ ¼
Qp
i¼1

LðNjAi; #iÞ:

To avoid numerical underflow, we take the logarithm. We assess
and implement two versions for computing the log likelihood (lnL)
on networks on partitioned MSAs. They both aggregate over the lnL
of the trees displayed by the network (Jin et al., 2006):

ln LðNjAi; #iÞ ¼ ln
X

T2T ðNÞ
LðTjAi; #iÞ � PðTjNÞ

� �
; (1)

ln LðNjAi; #iÞ ¼ ln max
T2T ðNÞ

LðTjAi; #iÞ � PðTjNÞ
� �

; (2)

where LðTjAi; #iÞ is the standard phylogenetic likelihood function
for a tree T, given an alignment Ai and the parameter vector
#i. Equation (1) presents the Weighted Average version
(LhModel.AVERAGE), and Equation (2) the Best Tree version
(LhModel.BEST). In the former, the likelihood of a network for a
given block is the weighted average over the displayed tree likeli-
hoods. We use the sum here, because the probability of event A or B
to occur corresponds to the sum over the probability of observing
A and the probability of observing B. The weighted average can thus
be interpreted as the expected value, if we treat each displayed tree
as a statistical event.

Note that both definitions face the same identifiability issue:
they cannot distinguish between different rooted network topologies
that display the same set of trees. Thus, the networks reconstructed
by NetRAX should be considered as semi-rooted (Sol�ıs-Lemus and
Ané, 2016) and unzipped (Pardi and Scornavacca, 2015).

Because we need to compute the logarithm of a sum over very
small numbers and we need to exponentiate the displayed tree lnLs,
we use arbitrary-precision arithmetic [using MPFR Cþþ library
(Holoborodko, 2010)] to compute LðNjAiÞ from the per-block dis-
played tree likelihoods. As in the RAxML-NG (Kozlov et al., 2019)
tool for ML phylogenetic tree inference, we use the libpll (Flouri,
2015b) and pll-modules (Darriba, 2016) libraries to compute dis-
played tree lnLs via the standard Felsenstein pruning algorithm
(Felsenstein, 1981).

Currently, NetRAX supports two branch length models. Under
the linked branches model, we share the same set of branch lengths
among all blocks. Under the unlinked branches model, each block
has its own, independent set of branch lengths. The choice of the
model has an effect on the type of reticulations we can recover.

Fig. 1. Left: A phylogenetic network with two reticulation nodes. Right: A displayed

tree of the phylogenetic network on the left. The probability of displaying the high-

lighted tree is the product p � q over the respective reticulation probabilities
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Figure 2 shows an example network with a reticulation that cannot
be recovered under the unlinked branches model. By default,
NetRAX uses the linked branch model.

2.2 Computing the likelihood of a phylogenetic network
In order to compute the lnL of a network N using the above formu-
las, we initially need to compute the per-block likelihoods
LðTjAi; #iÞi2f1;...;pg and the probabilities PðTjNÞ of all trees T 2
T ðNÞ displayed by N.

We use the libpll library to compute ln LðTjAi; #iÞ. To compute
the per-block lnLs of a phylogenetic tree, libpll uses an internal per-
node data structure, called conditional likelihood vector (CLV,
Flouri, 2015a) first introduced by Felsenstein (1981). A CLV for a
node v stores the per-site likelihoods for the subtree rooted at v. The
libpll library computes the per-node CLVs via a post-order traversal
of the tree using Felsenstein’s pruning algorithm (Felsenstein, 1981).
It computes the CLV of a given node based on the CLVs of its re-
spective children. The libpll library also provides incremental likeli-
hood computations: it only updates (re-computes) those CLVs
affected by a topological rearrangement move or branch length
change and re-uses unaffected CLVs that are still valid.

In NetRAX, we do not store each displayed tree topology separ-
ately, but use a network data structure that implicitly induces each
tree. This allows us to avoid redundant CLV computations: When
two displayed trees share an identical subtree, there is no need to
compute the CLVs for nodes in this subtree more than once (see fur-
ther below).

Finally, we also parallelize per tree lnL computations over the
MSA sites by using the Message Passing Interface (MPI).

Sharing CLVs among displayed trees: Naı̈vely, by explicitly iter-
ating over each displayed tree in a phylogenetic network N with n
nodes and r reticulations, one would require n � 2r CLVs to calculate
the lnL of the network: one CLV per node and displayed tree. To im-
prove efficiency, for each node v in N, we store as many CLVs as
there are different displayed subtree topologies rooted at v. By shar-
ing CLVs among identical subtrees in multiple displayed trees, we
reduce the total number of CLVs required to compute the lnL of this
network. To implement this CLV sharing optimization, we update
the CLVs via a bottom up traversal (using a reversed topological
sort) of the nodes in the phylogenetic network. For each node v we
visit, we update the CLVs for each of the distinct displayed subtree
topologies rooted at v. More information can be found in the
Supplementary Material.

In the following, we describe how we optimize the network top-
ology N and its associated parameter vector # to maximize
ln LðNjA; #Þ.

2.3 Branch length optimization
Our goal is to optimize a branch length b in a network N, with re-
spect to the lnL of the network. Overall, we aim at finding the
branch length assignments b̂1; . . . ; b̂p that maximize lnLðNjA; #Þ.

As in standard ML implementations for tree inference, we opti-
mize b via the Newton-Raphson method. For this, we need the first
and second derivatives of the network lnL with respect to b. We
derive formulas for efficiently computing ðlnLðNjA; #ÞÞ0 and
ðlnLðNjA; #ÞÞ00 from lnLðTjAi; #iÞ; ðlnLðTjAi; #iÞÞ0, and
ðlnLðTjAi; #iÞÞ00 in the Supplementary Material. Note that, when
optimizing a branch length b, we neither need to recompute the per-
block lnL nor its derivatives for displayed trees not containing b.

In the following, we describe the efficient computation of the per-
block lnL and the per-block lnL derivatives for all displayed trees.

Branch-length optimization in phylogenetic trees: In order to avoid
costly CLV updates when optimizing a branch (u, v) in a tree, most
modern ML tree inference tools reroot the tree at node u before opti-
mizing the branch. After rerooting the tree, the edge directions of
those edges that lie on the path from the new to the old root change.
We thus need to recompute the CLVs for the nodes residing on this
path. When evaluating different values for the branch length (u, v) in
the rerooted tree, we can simply reuse the CLVs stored at u and v.
Note that the likelihood is the same regardless of the root placement
under the commonly used time-reversible models of evolution.

Rerooting displayed trees in a phylogenetic network: In
NetRAX, we deploy an analogous strategy for efficient branch
length optimization. Before optimizing a branch (u, v), we need to
reroot all displayed trees containing the branch at the source node u.

Recall that we do not explicitly store each displayed tree top-
ology in order to avoid redundant CLV updates during the network
lnL computation. Instead, we perform an appropriate bottom-up
traversal of the nodes in the phylogenetic network and update all
unique subtree CLVs shared among subsets of displayed trees. This
complicates the rerooting operation for the displayed trees. The dif-
ficulty here is that with the original network root, the edge direc-
tions (and thus, the parent–child relationships needed for computing
CLVs) are identical for all displayed trees. But when rerooting the
displayed trees, the parent–child relationships depend on the specific
displayed tree we are currently considering (see Fig. 3). These differ-
ing edge directions affect the order in which we need to process the
nodes when recomputing the CLVs.

For networks, we need to recompute the CLVs (which are shared
among subsets of displayed trees) that lie on any path between the
old root and the new root (both ends included). We devised the fol-
lowing approach for resolving the edge direction problem: we suc-
cessively process the paths between the network root and the new
root. Before processing the next path, we invalidate the shared
CLVs at all nodes on the current path, except for the new root node.
We detect, in advance, at which nodes we need to restore the old

Fig. 2. Two displayed trees in a phylogenetic network. Both displayed trees induce

the same topology after collapsing single-child nodes. They only differ in some

branch lengths. For example, in the left tree, the branch length between the root

node and leaf A is b3 þ b5, and in the right tree it is b1 þ b5. Under the unlinked

branches model, NetRAX would simply return a tree. For phylogenetic tree likeli-

hood computation, simple paths are collapsed and the tree is transformed into an

unrooted tree. Therefore, b2 is not considered in the left displayed tree

Fig. 3. We reroot the displayed trees at node u before optimizing branch (u, v). In

the first rerooted displayed tree, the node y is a parent of node x and we need to

recompute the CLVs on the path (u, w, y, x). In the second rerooted displayed tree,

the node y is a child of node x and we need to recompute the CLVs on the path (u,

w, z, x)
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shared CLVs (to the values they had when using the original root),
save and restore them accordingly.

After we finished optimizing a branch, we recompute the CLVs
with regard to the original network root. We do this because, in net-
works, unlike for phylogenetic trees, the root placement does influ-
ence the lnL value.

2.4 Optimizing non-topology parameters
Apart from optimizing branch lengths, we also need to optimize the
evolutionary model parameters [by default, we use the GTRþC
(Tavaré et al., 1986) model, although NetRAX supports all models
that are supported by RAxML-NG] and reticulation probabilities.
Recall that our goal is to optimize the overall network lnL. This is,
we aim to find optimal parameters for the parameter vector #, to
maximize lnðLðNjA; #Þ.

Likelihood model parameter optimization: We directly reuse
routines from RAxML-NG for optimizing these parameters as they
do not depend on an explicit tree or network topology.

Optimizing reticulation probabilities: For optimizing the first-
parent probability p of a reticulation, we also reuse Brent’s single-
parameter optimization method as implemented in RAxML-NG.
Since the first and second parent probability of a reticulation sum to
1.0, the probability for taking the second parent follows from the
first parent probability.

The Brent optimization method requires recomputing the network
lnL when p changes. Fortunately, per-block lnLs of the displayed trees
do not depend on p. Thus, changing p only affects the probabilities
PðTjNÞ;T 2 T ðNÞ of displaying the trees. We can thus re-use the
existing (already computed) per-block lnLs for displayed trees when
recomputing the network lnL during the optimization of p.

2.5 Supported topology-rearrangement moves
NetRAX implements the following rooted network topology re-
arrangement moves as proposed by Gambette et al. (2017): rNNI
move, rSPR move, arc insertion move, arc removal move.

Note that rNNI and rSPR moves are a generalization of the cor-
responding operations on trees (see Supplementary Material). We
also provide an efficient implementation of the respective reversal
(undo) operations. When undoing a move, we restore the original
topology and branch lengths. Doing or undoing a move also invalid-
ates some CLVs. Evidently, there exists a trade-off between recom-
puting the invalidated CLVs versus storing them. In our current
implementation, we simply recompute the CLVs to reduce code
complexity as well as memory requirements.

Comparing networks of different complexity: NetRAX supports
vertical topology-rearrangement moves that increase (arc insertion
move) or decrease (arc removal move) the number of reticulations in a
network. Because model complexity changes when adding or remov-
ing reticulations from a network, we cannot compare networks of dif-
ferent complexity directly via their respective lnLs. For this, NetRAX
implements AIC, AICc and BIC scoring. By default, NetRAX uses the
BIC score to compare different networks, since Park and Nakhleh
(2012) showed that using BIC performs best in network searches,
even though it is not a perfect solution (Blair and Ané, 2019).

The BIC score of a network N with r reticulations on a parti-
tioned MSA A and parameter vector # is defined as follows:
BICðNjA; #Þ ¼ �2 � lnLðNjA; #Þ þ #free parameters � lnðsample sizeÞ:
The free parameters are the substitution model parameters, the re-
ticulation first-parent probabilities, and the branch lengths. The
sample size is the product of the number of taxa and the number of
MSA sites.

2.6 Network search
NetRAX uses a greedy hill climbing approach to search for network
topologies. It deploys an outer search loop to iterate over different
move types (see Section 2.5) and an inner search loop to search for
the best-scoring network using a specific move type. We provide an
overview in Figure 4.

In the outer search loop, we search in waves by repeatedly iterat-
ing over move types in the following order: arc removal, rSPR,

rNNI, arc insertion. For each move type, we invoke an inner search
loop. The outer search loop terminates when no move type improves
the BIC score.

Start networks: NetRAX can initiate a network search from a
given set of start networks provided in Extended Newick format.
For example, it can be launched on a user-specified number of
strictly bifurcating random and maximum parsimony trees or a best-
known ML tree that can be generated, for instance, with RAxML-
NG (Kozlov et al., 2019) in a separate step.

Inner search loop: As already mentioned, the inner search loop
searches for the best-scoring network using a single move type only.

Assembling the set of move candidates: We can reach multiple
alternative network topologies by applying a single move of a
given type to the current network. We call such a move a move
candidate.

We build the set of move candidates for a specific move type by
iterating over all nodes in the network. For each node, we add the
move candidates induced by applying the move to the current node
to the set. When assessing possible move candidates for rSPR or arc
insertion moves, NetRAX uses a default search radius of 5. This is,
for each node in the network, we only consider and evaluate move
candidates within a radius of 5 nodes around the current node. Due
to their smaller neighborhood size, we do not restrict the search ra-
dius of rNNI and arc removal moves.

Filtering move candidates: In order to determine the most prom-
ising move candidate(s) and accelerate move candidate evaluation,
we apply a three-stage pre-filtering process: we filter the move can-
didates using the PREFILTER, RANK and CHOOSE stages. These
stages differ in the number of costly branch length optimizations we
conduct, before scoring each candidate:

• PREFILTER—do not optimize branch lengths. (Exception: for

arc insertion moves, we do need to optimize the length of the

newly introduced branch.)
• RANK—optimize branches directly affected by the move.
• CHOOSE—optimize all branches in the network.

We use the Elbow Method (see Supplementary Material) to de-
termine the number of promising move candidates to keep after
each filtering stage. The most promising move candidate is the one
with the lowest (¼best) BIC score after the CHOOSE stage.

Accepting a move and updating the set of move candidates: If
the most promising move candidate obtained by the CHOOSE stage
yields a better-scoring network, we accept the move and apply it to
the current network.

When accepting a move, we optimize all branch lengths, reticula-
tion probabilities and remaining model parameters in this new best
network.

If the inner search loop executes arc insertion moves, it terminates
after accepting a move and immediately returns to the outer search
loop. This is done in order to reduce the time spent optimizing a net-
work with an excessively high reticulation count. For all other move
types, after accepting a move, we continue searching for score-
improving moves of the same move type until we cannot find a better-
scoring network by considering other promising candidate moves from
the PREFILTER phase. First, we remove previous promising moves
that have become inapplicable after accepting the current move, and
add new move candidates to the set, that are seeded at nodes directly
affected by the accepted move. When we do not find a better-scoring
network by searching this modified set of candidate moves, we again
consider the complete set of move candidates. If these do also not yield
a better-scoring network, the inner search loop terminates.

3 Simulation study

3.1 Topology-based evaluation
For comparing network topologies, we implement normalized ver-
sions of several distances (Huson et al., 2010). Due to space con-
straints, we only discuss and report unrooted softwired cluster
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distances (SCDs) here, and discuss the other measures in the
Supplementary Material. Since the SCD is based on the topologies
of displayed trees, it alleviates effects caused by network identifiabil-
ity issues, where different networks can induce the same set of
displayed trees (Pardi and Scornavacca, 2015). Furthermore, it
resembles the Robinson–Foulds distance (Robinson and Foulds,
1981) on trees and is easy to interpret. We choose the unrooted ver-
sion, as networks inferred by NetRAX should be interpreted as
semi-rooted.

Every edge in a tree induces a bipartition, since its removal splits
the set of taxa into two subsets. Bipartitions induced by edges lead-
ing to leaf nodes are trivial, as they are present in any tree on the
given set of taxa.

(Normalized) unrooted softwired cluster distance: For a given
network N, let T ðNÞ be the displayed trees of N and let B(N) be the
set of all nontrivial bipartitions of the unrooted trees in T ðNÞ. The
unrooted SCD between two networks N1 and N2 is:

jBðN1Þ�BðN2Þj
jBðN1Þ [ BðN2Þj

:

3.2 Simulation of phylogenetic networks and sequences
Our simulator is included in the NetRAX GitHub repository. We
simulate networks under the birth-reticulation process of Zhang
et al. (2018) with the following parameter set k � U(0,20) þ 5,
�¼ k* 0.003, s0 �exp(20) þ 0.1, where k is the speciation rate, �
the reticulation rate, and s0 is the overall time the process is run.
The parameters have been chosen to obtain a reasonable amount of
reticulations with respect to the taxon number range we assess.
Unless stated otherwise, we set the reticulation probabilities to 0.5
for all reticulations in the network.

We repeat our simulations until we obtain a network with the
desired number of taxa and number of reticulations. Because our

simulator generates ultrametric networks, we have to discard net-
works that contain unrecoverable reticulations, that is, networks for

which at least two of its displayed trees have the same topology.
Note that branch lengths are linked in our simulations.

Subsequently, we simulate sequences for each displayed tree of
the simulated network, and concatenate them into a partitioned
MSA (using one block per displayed tree), which is the input of

NetRAX. We simulate the sequences using Seq-Gen-1.3.4 (Rambaut
and Grass, 1997) with the following parameters: -mHKY -t3.0
-f0.3,0.2,0.2,0.3. Although NetRAX supports the GTR
model, we simulated under HKY85 as some of the competing tools
only support HKY85.

The block length for each displayed tree is proportional to the
probability of displaying the tree. By default, we simulate 2r � 1000

MSA sites in total, where r is the number of reticulations in the net-
work. We do not draw the number of MSA sites from some distribu-
tion to keep the datasets more comparable and the results easier to

interpret.

3.3 Experimental setup
We conducted extensive experiments on simulated data. For each
experiment, we report (i) the number of reticulations in the inferred

network, (ii) the relative BIC-score difference between the true and
the inferred network, (iii) the unrooted SCD between the true and

inferred network and (iv) the total inference time. In the
Supplementary Material, we provide additional plots and tables for
relative AIC/cAIC/lnL differences, as well as further topology-based

evaluation distances.
We evaluated NetRAX with LhModel.AVERAGE and

LhModel.BEST, under the linked branch lengths model on phylo-
genetic networks and MSAs simulated as described in Section 3.2,

under different settings:

Fig. 4. Overview of the NetRAX network search algorithm for a single start network. The table on the bottom left shows what move type is tried next when a wave for the cur-

rent move type did not yield a better network. We loop through arc removal -> rNNI -> rSPR -> arc insertion move waves and repeat this as long as we find a better network.

We terminate the search if the waves for arc removal, rNNI, rSPR, arc insertion do all not find a network with improved BIC score
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A1: Multiple starting trees: We simulated 50 networks each for
(i) 10 taxa and 1 reticulation, (ii) 20 taxa and 2 reticulations and
(iii) 30 taxa and 3 reticulations.

A2: 40 Taxa: We simulated 50 networks each for (i) 40 taxa and
1 reticulation, (ii) 40 taxa and 2 reticulations, (iii) 40 taxa and 3
reticulations and (iv) 40 taxa and 4 reticulations.

B: Unpartitioned data: We simulated 50 datasets with 20 taxa
and 1 reticulation. In addition to normal inference, we started a se-
cond inference where we merged all simulated blocks into a single
block before running the inference.

C: Scrambled blocks: We simulated a single dataset with 30 taxa
and 3 reticulations. Before executing NetRAX with a RAxML-NG
ML starting tree, we randomly scrambled the blocks such that p 2
f0%;10%; 20%;30%;40%; 50%; 60%;70%; 80%; 90%;100%g of the
sites from each block were randomly reassigned to other blocks.
Our model assumes that all sites belonging to a block evolved to-
gether. Hence, we are violating this assumption to assess the stabil-
ity of NetRAX under model violations.

D: Different alignment size: We simulated a single network with
30 taxa and 3 reticulations. For this network we then simulated f50,
100, 500, 1000, 5000, 10 000, 50 000, 100 000g sites per block.

E: Comparison with other tools: We simulated a partitioned 10-
taxa 1 reticulation dataset with reticulation probability 0.5 and
2000 MSA sites. We inferred an ML tree, as well as two block trees
(one for each block) with RAxML-NG. We also generated a set of
14 unique tree topologies out of 10 random and 10 maximum parsi-
mony RAxML-NG trees, which we used for invoking NetRAX with
a set of multiple starting trees.

For each simulated dataset, we initiated the NetRAX inference
from a RAxML-NG ML tree. In addition, for the datasets in A1, we
also started another NetRAX inference using three random and
three maximum parsimony starting trees. We inferred networks
using NetRAX, PhyLiNC, PhyloDAG, SNaQ, PlyloNET MPL
(maximum pseudo-likelihood), PhyloNET MP (maximum parsi-
mony) and PhyloNet ML. We ran PhyLiNC, SNaQ, and PhyloNET
using both 1 and 2 as the maximum number of reticulations. In add-
ition, we also compared the number of inferred reticulations with
NetRAX, PhyloNET MP and PhyloDAG (as these were the fastest
tools and performed well on the smaller dataset) on a 20 taxon 2
reticulations dataset with reticulation probabilities 0.5, and 4000
MSA sites. We also attempted an inference with NEPAL. However,
the tool segfaulted and its authors unfortunately have lost its source
code (NEPAL, 2006). Note that PhyLiNC is available on GitHub
but not ready for use yet (Ané, 2021).

PhyLiNC, and PhyloDAG operate on unpartitioned data, where-
as NetRAX requires a partitioned MSA. SNaQ operates on a set of
quartets that can be inferred from gene trees, and a given starting
topology (we used the best RAxML-NG ML tree). Both PhyloNet
MPL and PhyloNet ML operate on a set of gene trees. We inferred
the respective gene trees via RAxML-NG, one gene tree per MSA
block. Note that SNaQ and PhyloNET account for ILS, while the
remaining tools ignore ILS.

Details on the hardware used for the experiments and results on
the parallel scalability of NetRAX are given in the Supplementary
Material. The data underlying this article are available at https://
cme.h-its.org/exelixis/material/netrax_data.zip.

3.4 Results and discussion
We only discuss representative results here, and refer to the
Supplementary Material for comprehensive results (including per-
centiles and standard deviation) for all experiments. Here, we report
the unrooted SCD to assess topological distances to the true simu-
lated network. To quantify the NetRAX search algorithm quality,
we compare the BIC scores of the true and the inferred networks. As
we optimize for BIC, a worse inferred BIC indicates that the search
algorithm got stuck in a local optimum. A better inferred BIC can be
encountered because of the finite number of simulated MSA sites as
ML is consistent on MSAs with infinite sites.

Multiple starting trees, 30 taxa, 3 reticulations: In Table 1 and
Figure 5, we observe that running NetRAX inferences from multiple
starting trees yields more accurate networks than running NetRAX

from a single ML tree. This is because a single NetRAX inference
can become stuck in local optima. However, initiating multiple inde-
pendent NetRAX searches evidently results in a higher accumulated
runtime.

LhModel.BEST performs slightly better than
LhModel.AVERAGE, but the difference is not statistically significant.

Start from ML tree, 40 taxa, 4 reticulations: In Table 2, we see
that NetRAX achieves slightly better inference results with
LhModel.AVERAGE than LhModel.BEST. However, these differ-
ences are small, as we can see in Figure 6.

Unpartitioned data: In all NetRAX inference runs with an
unpartitioned MSA, NetRAX inferred a bifurcating tree, under both
LhModel.AVERAGE and LhModel.BEST. Thus, NetRAX is not
able to infer reticulations on unpartitioned data.

Scrambled blocks: In Table 3, we observe that NetRAX is still
able to infer a ‘good’ network if at most 20% of all MSA sites are
perturbed among blocks. We observe no substantial difference in re-
sult quality between LhModel.BEST and LhModel.AVERAGE. The
more we scramble (i.e. assign sites to the wrong partitions), the
more similar the trees best explaining the MSA partitions become.
This reduces the overall signal supporting different trees and induces
a decrease in inferred reticulations.

Varying alignment size: In Table 4, we observe that for small
MSAs, NetRAX under LhModel.BEST is faster than under
LhModel.AVERAGE. But for larger MSAs, inferences under
LhModel.AVERAGE are faste. The quality of the inferred network
is similar among both likelihood types. Based on our empirical
observations this surprising speed difference is because (i) a single
network lnL computation under LhModel.BEST is faster than
under LhModel.AVERAGE. (ii) for larger MSAs, we infer the best
network with less overall moves, when using LhModel.AVERAGE.
Note that we used datasets with very few, equally-sized blocks here
and only one block per displayed tree. Note that with fewer MSA
sites the signal present in the MSA also decreases, yielding it harder
to obtain sufficient support in the data for introducing reticulations.

Comparison with other tools: For the simulated 10 taxa 1 reticu-
lation dataset with 2000 MSA sites, we report the total runtime as
well as unrooted SCD for all tools in Table 5.

NetRAX starting from the RAxML-NG ML tree, SNaQ, and
PhyloNET MP with the maximum number of reticulations set to 1
showed perfect inference accuracy, with the unrooted SCD being
zero. Only PhyloNET MP was faster than NetRAX, but the tool
does not optimize branch lengths. PhyloNET MP with the max-
imum number of reticulations set to 2 inferred 2 reticulations.

On the simulated 20 taxa 2 reticulations dataset, PhyloDAG
inferred a network with 14 reticulations. PhyloNET MP with the

Table 1. Summary statistics 30 taxa and 3 reticulations

A_30_3_random3_parsimony3 LhModel.AVERAGE LhModel.BEST

Inferred BIC better or equal 6 (13.04%) 5 (10.87%)

Inferred BIC worse 40 (86.96%) 41 (89.13%)

Inferred n_reticulations less 6 (13.04%) 5 (10.87%)

Inferred n_reticulations equal 39 (84.78%) 40 (86.96%)

Inferred n_reticulations more 1 (2.17%) 1 (2.17%)

Unrooted SCD zero 17 (36.96%) 18 (39.13%)

A_30_3_ml1 LhModel.AVERAGE LhModel.BEST

Inferred BIC better or equal 2 (4.35%) 3 (6.52%)

Inferred BIC worse 44 (95.65%) 43 (93.48%)

Inferred n_reticulations less 9 (19.57%) 9 (19.57%)

Inferred n_reticulations equal 34 (73.91%) 37 (80.43%)

Inferred n_reticulations more 3 (6.52%) 0 (0.00%)

Unrooted SCD zero 14 (30.43%) 17 (36.96%)

Note: Top: Starting from three maximum parsimony and three random

trees. Bottom: Starting from the RAxML-NG ML tree. Networks that contain

unrecoverable reticulations have been discarded, resulting in 46 networks.
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maximum number of reticulations set to 2 only inferred a single re-
ticulation (with unrooted SCD 0.28). NetRAX correctly inferred 2
reticulations under all settings returning a better BIC than that
of the true network and an unrooted SCD ranging between 0.19
and 0.22.

4 Empirical data

We executed a NetRAX inference on an empirical snake genomes
dataset (Burbrink and Gehara, 2018; Chen et al., 2017). We down-
loaded the individual gene alignments from https://datadryad.
org/stash/dataset/doi:10.5061/dryad.4qs50 and merged
them into a partitioned MSA, treating each per gene MSA as one
block. The merged dataset comprises 23 species, with one individual
per species. There are 6737 distinct MSA site patterns in the merged
MSA, and 304 blocks.

We inferred an ML tree for the complete dataset with RAxML-NG
using its default GTRþGAMMA substitution model. We then used the
ML tree inferred by RAxML-NG as starting network for NetRAX
under the LhModel.BEST and LhModel.AVERAGE model, with
linked branch lengths. We started additional NetRAX inferences using
the 14 unique tree topologies contained in a set of 10 parsimony and
10 random starting trees.

We compared our NetRAX results with the 1-reticulation net-
work inferred by SNaQ from the Burbrink and Gebara paper (see
Supplementary Text for the detailed results). In all cases, NetRAX
inferred a better BIC score than the published network (which can
be expected, since the reported BIC is based on the network likeli-
hood definition used by NetRAX) and in most cases recovered a
1-reticulation network highly similar to the one inferred by SNaQ.
Nonetheless, the 2-reticulation network recovered by one NetRAX
run also appears to be biologically plausible.

Another NetRAX inference has been running for several weeks
(at the time of submission) on an empirical wheat-genomes dataset
(Glémin et al., 2019) with 47 individuals from 17 species, and 1387,
815 MSA patterns subdivided into 8738 blocks. The analysis has
recovered between 5 and 6 reticulations thus far (see Supplementary
Material for details). This analysis showcases that NetRAX can ana-
lyze such large empirical datasets, but also that additional work is
required to further improve its runtime.

The main limiting factor is the number of reticulations, as there
exist up to 2r displayed trees for r reticulations.

5 Conclusion and future work

We have presented NetRAX, which, to the best of our knowledge, is
the only efficient and scalable ILS-unaware ML tool for phylogenet-
ic network inference. We also show that NetRAX recovers accurate
networks.

Fig. 5. Number of inferred reticulations, unrooted SCD and relative BIC difference for 50 datasets with 30 taxa and 3 reticulations each. Top: starting from 3 random and 3

maximum parsimony trees. Bottom: starting from a RAxML-NG ML tree

Table 2. Summary statistics for 40 taxa, 4 reticulations, starting

from the RAxML-NG ML tree

A_nonrandom_40_4_nonrandom LhModel.AVERAGE LhModel.BEST

Inferred BIC better or equal 0 (0.00%) 0 (0.00%)

Inferred BIC worse 49 (100.00%) 49 (100.00%)

Inferred n_reticulations less 5 (10.20%) 10 (20.41%)

Inferred n_reticulations equal 43 (87.76%) 38 (77.55%)

Inferred n_reticulations more 1 (2.04%) 1 (2.04%)

Unrooted SCD zero 23 (46.94%) 19 (38.78%)

Note: Networks that contain unrecoverable reticulations have been dis-

carded, resulting in 49 networks.
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More specifically, we demonstrated that NetRAX can infer ML
networks with up to 40 taxa and up to 4 reticulations on datasets
with thousands of MSA sites in less than a day. Our experimental
results on simulated datasets also show that NetRAX infers high-
quality ML networks with very low unrooted SCDs and very low
relative BIC differences compared to the true, simulated network.
Further, the MPI-based parallelization of NetRAX exhibits ‘good’
parallel efficiency (see Supplementary Material). We also show that
NetRAX yields biologically plausible results on a well-studied em-
pirical dataset of snakes and that it can analyze huge empirical data-
sets, though with currently still prohibitive runtimes.

Starting the network inference from multiple starting trees tends to
yield more accurate results. For large datasets, we nonetheless recom-
mend using NetRAX with a single ML starting tree to keep inference
times within acceptable limits. Our experiments show that NetRAX can
infer highly accurate ML networks, even on a single ML starting tree.

Future work will mainly focus on implementing bootstrapping,
improving the scalability of NetRAX and refining its model.
NetRAX already supports starting the search from a network. We
thus intend to evaluate the performance NetRAX starting from a
network, once computationally efficient methods for obtaining a
reasonable starting network become available.

Fig. 6. Number of inferred reticulations, unrooted SCD and relative BIC difference for 50 simulated datasets with 40 taxa and 4 reticulations each, starting from the RAxML-

NG ML tree

Table 3. Results for 30 taxa, 3 reticulations, with scrambled blocks, starting from the RAxML-NG ML tree

scrambling factor 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Inferred BIC � � � þ þ þ þ þ þ þ þ
Inferred n_reticulations 3 3 5 3 3 3 3 1 0 0 1

Unrooted SCD 0 0 0.09 0.17 0.21 0.21 0.21 0.35 0.38 0.38 0.36

Runtime RAxML (seconds) 120 125 123 123 127 124 125 133 125 128 126

Runtime NetRAX (seconds) 380 314 2274 313 230 314 448 72 10 8 55

Inferred BIC � � � þ þ þ þ þ þ þ þ
Inferred n_reticulations 3 3 5 3 3 3 2 1 0 0 1

Unrooted SCD 0 0 0.09 0.17 0.21 0.23 0.21 0.36 0.38 0.38 0.37

Runtime RAxML (seconds) 120 125 123 123 127 124 125 133 125 128 126

Runtime NetRAX (seconds) 277 219 2062 216 165 156 134 48 6 5 21

Note: Top: LhModel.AVERAGE, Bottom: LhModel.BEST. We use þ for better-or-equal BIC, and � for worse BIC.

Table 4. Results for 30 taxa, 3 reticulations, different MSA size, starting from the RAxML-NG ML tree

msa patterns 397 794 3882 7634 36 264 69 919 316 379 597 921

Inferred BIC þ � � � � � � �
Inferred n_reticulations 2 1 3 3 3 3 3 3

Unrooted SCD 0.08 0.19 0.03 0 0 0 0.03 0.03

Runtime RAxML (seconds) 5 9 25 34 139 340 2081 4340

Runtime NetRAX (seconds) 101 37 304 379 643 880 4544 10 452

Inferred BIC � � � � � � � �
Inferred n_reticulations 1 1 3 3 3 3 3 3

Unrooted SCD 0.21 0.21 0.03 0 0 0 0.03 0.03

Runtime RAxML (seconds) 5 9 25 34 139 340 2081 4340

Runtime NetRAX (seconds) 14 10 86 151 444 1165 5083 11 650

Note: Top: LhModel.AVERAGE, Bottom: LhModel.BEST. We use þ for better-or-equal BIC, and � for worse BIC. A MSA pattern is a unique column in the

MSA that may occur multiple times in the MSA.
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Table 5. Runtime (in seconds) and unrooted SCD to the true network for inferences using NetRAX, PhyLiNC, PhyloDAG, SNaQ, PhyloNET

MPL and PhyloNet ML

Tool Inference runtime avg runtime per run Inferred reticulations Unrooted SCD

NetRAX single LhModel.AVERAGE 3 3 1 0

NetRAX multi LhModel.AVERAGE 40 4 1 0.1

NetRAX single LhModel.BEST 2 2 1 0

NetRAX multi LhModel.BEST 28 3 1 0.1

PhyLiNC max_reticulations 1 45 919 4592 1 0.36

PhyLiNC max_reticulations 2a 38 365 3837 2 0.56

PhyloDAGb 145 145 1 0.58

SNaQ max_reticulations 1 4899 490 1 0

SNaQ max_reticulations 2c 7489 749 1 0

PhyloNET MPL max_reticulations 1 158 16 1 0.3

PhyloNET MPL max_reticulations 2 223 22 2 0.1

PhyloNET MP max_reticulations 1 8 2 1 0

PhyloNET MP max_reticulations 2 8 2 2 0.25

PhyloNET ML max_reticulations 1 387 78 1 0.27

PhyloNET ML max_reticulations 2 19 799 3960 2 0.18

Note: The term single refers to starting NetRAX from the best RAxML-NG ML tree. The term multi refers to starting NetRAX from the 11 unique tree topolo-

gies contained in a set of 10 random and 10 RAxML-NG maximum parsimony trees. The true network has 10 taxa and 1 reticulation. Under all configurations, the

network inferred by NetRAX had a better BIC than the true network. All methods inferred a network with a displayed tree distance of 1. aThe tool printed error mes-

sages, but nonetheless returned a network. bPhyloDAG only returned the network as a picture. We had to manually write the Extended Newick for it. cThe inferred

network has 2 reticulations, but one reticulation has 0/1 probability. We had to manually prune the network to remove this trivial reticulation.

NetRAX: accurate and fast maximum likelihood phylogenetic network inference 3733

https://groups.google.com/g/phylonetworks-users/c/KCu45cDRy_Q/m/RLpaZJajBAAJ
https://groups.google.com/g/phylonetworks-users/c/KCu45cDRy_Q/m/RLpaZJajBAAJ
https://github.com/ddarriba/pll-modules
https://github.com/xflouris/libpll/wiki/Computing-the-likelihood-of-a-tree
https://github.com/xflouris/libpll/wiki/Computing-the-likelihood-of-a-tree
https://github.com/xflouris/libpll-2.git
http://www.holoborodko.com/pavel/mpfr/
http://www.holoborodko.com/pavel/mpfr/
http://old-bioinfo.cs.rice.edu/nepal/

	tblfn1
	tblfn2
	tblfn3
	tblfn4
	tblfn5

