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Abstract: Prostate cancer (PC) remains a widespread malignancy in men. Since the androgen/androgen
receptor (AR) axis is associated with the pathogenesis of prostate cancer, suppression of AR-dependent
signaling by androgen deprivation therapy (ADT) still represents the primary intervention for this
disease. Despite the initial response, prostate cancer frequently develops resistance to ADT and
progresses. As such, the disease becomes metastatic and few therapeutic options are available at this
stage. Although the majority of studies are focused on the role of AR signaling, compelling evidence
has shown that estrogens and their receptors control prostate cancer initiation and progression
through a still debated mechanism. Epithelial versus mesenchymal transition (EMT) is involved in
metastatic spread as well as drug-resistance of human cancers, and many studies on the role of this
process in prostate cancer progression have been reported. We discuss here the findings on the role of
estrogen/estrogen receptor (ER) axis in epithelial versus mesenchymal transition of prostate cancer
cells. The pending questions concerning this issue are presented, together with the impact of the
available data in clinical management of prostate cancer patients.

Keywords: estrogens; estrogen receptors (ERs); prostate cancer (PC); epithelial mesenchymal
transition (EMT); metastasis

1. Introduction

Despite diagnostic, clinical and therapeutic efforts, prostate cancer (PC) still represents a major
urological disease associated with a significant morbidity. This cancer represents, indeed, the most
common malignancy and the second most common cause of cancer death among men in Western
society [1,2]. Significant advances have been made in diagnostic tools and therapeutic approaches of PC.
They are based on the use of new radiotracers for imaging and patient follow-up [3–5]. Furthermore,
new potent androgen synthesis inhibitors or androgen receptor (AR) antagonists, such as abiraterone
and enzalutamide, have improved the survival rate in PC patients [6,7]. Nevertheless, PC often
develops resistance to these therapeutics and progresses to castration-resistant PC (CRPC) stage, which

Cancers 2019, 11, 1418; doi:10.3390/cancers11101418 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0001-7621-488X
https://orcid.org/0000-0002-2488-917X
https://orcid.org/0000-0001-7207-826X
https://orcid.org/0000-0002-5118-3359
https://orcid.org/0000-0001-8935-0370
https://orcid.org/0000-0002-4197-2055
https://orcid.org/0000-0002-0576-4494
http://dx.doi.org/10.3390/cancers11101418
http://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/11/10/1418?type=check_update&version=2


Cancers 2019, 11, 1418 2 of 17

is characterized by adaptation to castrate condition and invasiveness. Metastatic spread of CRPC
cells still represents the major cause of PC-related death and novel compounds, such as taxanes, poly
(adenosine diphosphate-ribose) polymerase, and programmed cell death 1 (PD-1) inhibitors, have
entered clinical trials [8]. However, a precise understanding of the molecular basis for cell spreading
and drug-resistance patterns in PC still remains a challenge.

Epithelial-mesenchymal transition (EMT) is a highly conserved evolutionary cellular process that
allows immotile epithelial cells to convert into mesenchymal cells, endowed with a migratory phenotype.
The relevance of the EMT process was initially recognized during the critical stages of embryonic
morphogenesis, where EMT plays a crucial role in tissue remodeling and development. Such a process can
be recapitulated in human diseases, including cancer [9–12]. As such, transformed cells switch from an
epithelial to mesenchymal-like phenotype, while responding to intrinsic genetic and molecular alterations,
or extrinsic microenvironment stimuli. This switch leads to invasion into surrounding stroma and then
vasculature to ultimately induce colonization at a distant pre-metastatic niche [9]. Since this mechanism
would enable the invasive properties of cancer cells, its inhibition might offer new promising opportunities
to restrain the metastatic spreading of transformed cells and the related mortality.

While it is largely accepted that EMT is involved in spreading, stemness, and drug-resistance of
PC cells, conflict still remains about the role of steroids and sex steroid receptors (SRs) in this process.
We present here the findings so far obtained on the molecular events underlying the EMT controlled by
the estrogen/estrogen receptors (ERs) axis in different models of prostate tissues and PC. The impact of
these findings in clinical management of PC patients will be also discussed.

2. Epithelial-Mesenchymal Transition (EMT) in Prostate Cancer (PC)

Epithelial cells are normally held together in a single layer through cell-cell interactions mediated by
cadherins, mainly E-cadherin. Reduction in E-cadherin expression levels and other epithelial markers,
such as β-catenin and occludin, together with the gain of mesenchymal markers (e.g., N-cadherin,
Zeb-1/2, vimentin, Snail, and Twist) is a feature of EMT that is observed in more aggressive tumors,
resulting in the decrease of intercellular adhesion, loss of epithelial cell polarity, de-differentiation into
an amorphous cell, and increased motility [13,14].

Reduced E-cadherin expression was detected many years ago in specimens from PC patients with
aggressive disease. However, its association with the profile related to EMT and the patient’s outcome were
not investigated [15,16]. It was subsequently shown that increased N-cadherin and decreased E-cadherin
expression levels positively correlate with poor prognosis and disease progression in PC patients [17].
Findings in cultured cells from aggressive PC confirmed the clinical evidence [18–20]. Despite being
intriguing, these results were almost exclusively obtained from in vitro PC cultured cells or human cancer
specimens. Nonetheless, they opened new frontiers in targeted therapies, as N-cadherin was thought to
be a potential therapeutic target in human cancers [21,22]. Further studies showed that EMT promotes a
castration-resistant PC (CRPC) state in various PC models and monoclonal antibodies targeting N-cadherin
reverses such transition [23]. Moreover, Sun and colleagues reported that androgen deprivation therapy
(ADT), frequently used as the first-line treatment in PC, induces EMT in normal prostate as well as in PC
cells [24]. Both these reports offered valuable insights into the therapeutic approach of PC. The main
players responsible for EMT were then dissected in PC models as well as prostate cancer-associated
fibroblasts (CAFs). Studies in preclinical models of PC showed that activation of both phosphoinositide
3-kinase (PI3-K)/AKT and Ras/mitogen-activated protein kinase (MAPK) pathways allows EMT and
metastatic spreading [25,26]. It is noteworthy that both of these pathways can be rapidly activated by
estradiol stimulation in breast cancer (BC)- and PC-derived cells [27–29]. Thus, PC cells might undergo
EMT because of the hormonal activation of these signaling pathways.

It was also reported that the tumor microenvironment as well as changes in DNA methylation of
CAFs promote acquisition of stemness traits, EMT and metastatic spreading in PC cells [30,31]. We have
consistently observed that prostate CAFs from human specimens promote EMT in a 3D model of PC
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cells (unpublished results). Lastly, the role of EMT in therapy escape was highlighted by clinical evidence
indicating that EMT drives docetaxol-resistance and promotes the risk of relapse in PC patients [32].

Despite these interesting findings, the direct role for EMT in PC progression, dissemination of
circulating tumor cells (CTCs) and seeding of metastases still remains to be completely elucidated, likely
because of the lack of models recapitulating the complexity of metastatic processes in vivo. By using a model
that allows the dynamic tracking of EMT process in vivo, mesenchymal-like tumor cells that have fully
completed the EMT program, as well as EMT tumor cells, which are in a transitory state between epithelial
and mesenchymal programs, have been isolated and characterized from a mouse PC model. Collected
results have shown that only EMT tumor cells have the capacity to complete the invasion-metastasis cascade,
since they harbor the plasticity to readily transit between epithelial and mesenchymal states [33]. These
findings are of value in the therapeutic approach of PC, since they support the use of drugs targeting PC
cell plasticity, rather than therapeutics specifically targeting the epithelial or mesenchymal state. Targeting
of mesenchymal-like tumor cells and the mesenchymal state could be, indeed, useful in preventing PC
dissemination. However, by promoting the reversion to an epithelial state (mesenchymal versus epithelial
transition, MET), such strategies might paradoxically fuel metastatic growth.

Nowadays, it is largely recognized that EMT is a dynamic process allowing epithelial cancer cells
to acquire stemness as well as invasive properties and evade senescence, apoptosis, and anoikis, which
are needed for tumor dissemination and metastasis [12,34]. Findings obtained in cultured cells as well
as genetically engineered murine PC models and human PC specimens support the conclusion that PC
often exhibits an EMT-like state, characterized by changes in the expression of different markers, such
as E-cadherin, vimentin, and N-cadherin.

Different regulators, such as inducers, controllers and effectors of the EMT program have been
identified in PC. To date, the most widely accepted view proposes that tumor microenvironment
provides local signals that promote EMT program. Among them, growth factors, such as the
epidermal growth factor (EGF), fibroblast growth factor (FGF), insulin-like growth factor 1 (IGF-1),
hepatocyte-derived growth factor (HGF), and platelet-derived growth factor (PDGF) trigger activation of
phosphoinositide 3-kinase (PI3-K) and Ras signaling pathways. They, in turn, activate the downstream
effectors mitogen-activated protein kinase (MAPK), glycogen synthase kinase-3β (GSK3) and nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-kB), which increase the activity of Snail
and Twist, thereby inducing the expression of mesenchymal proteins [reference 35 and references
therein]. Since the ligand-activated steroid receptors (SRs), including estrogen receptors (ERs) and
androgen receptor (AR), rapidly activate Src or PI3-K and their downstream pathways in PC and
BC-derived cells [29], it could be argued that estrogens and androgens promote EMT through activation
of extranuclear signaling pathways in these cancers.

Among growth factors (GF), transforming growth factor β (TGF-β) deserves particular interest,
since it plays a major role in physiological EMT. TGF-β might promote EMT through the SMAD
(small mothers against decapentaplegic homologs)- independent or -dependent signaling. Accordingly,
TGF-β binds to its type II and type III receptors (TGF-βRII and TGF-βRIII), thereby leading to
recruitment and phosphorylation of the type I receptor (TGF-βRI). Activation of PI3-K and Ras
then follows, and expression of EMT-inducing proteins increases (SMAD-independent signaling).
The SMAD-dependent signaling, instead, proposes that phosphorylation of TGF-βRI by the Ser/Thr
kinase activity of TGF-βRII creates a docking site in the Gly/Ser–rich domain of TGF-βRI, which
recruits the transcription factors SMAD2 and SMAD3. SMADs are consequently phosphorylated at
Ser residues in their C-terminal domain, facilitating the formation of a complex with the co-activator
SMAD4. This signal allows their subsequent translocation into the nucleus and activation of zinc finger
E-box-binding homeobox (ZEB), which finally leads to expression of mesenchymal markers [9–14,35].

Other pathways, however, control EMT in PC. Stable overexpression of the secreted Wingless-INT
(Wnt) antagonists secreted frizzled-related proteins (sFRPs) increases the expression of epithelial
markers, reduces invasiveness and simultaneously downregulates Snail Family Transcriptional
Repressor 2 (SNAI2) and Twist-related protein 1 (TWIST1) in PC cells. This is consistent with
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the idea that canonical Wnt is implied in EMT of PC through activation of GSK3β. Stabilization,
nuclear translocation of β-catenin, as well as phosphorylation of SNAI1 then follow. This latter
event promotes SNAI1 nuclear localization and enables its transcriptional activity [35] (and references
therein). Again, the Notch signaling converges with TGF-β and Wnt signaling at the induction of direct
transcriptional repressors of E-cadherin, including Snail/Slug, Twist, and ZEB1/2 [13]. Four different
Notch transmembrane receptors can be activated by membrane-tethered ligands in mammals. Such
activation initiates a proteolytic cleavage of Notch receptors, with the subsequent release of the Notch
intracellular domain (NICD), which then translocates into the nucleus and controls expression of genes
involved in EMT, such as Snail. As discussed later, the Notch pathway is emerging as a candidate for
EMT and metastatic events in PC cells, since estrogens control this pathway through ERα activation in
these cells. Figure 1 depicts the most important pathways involved in EMT of PC.

Figure 1. Pathways controlling the epithelial-mesenchymal transition (EMT) program in prostate
cancer (PC). Growth factors (e.g., transforming growth factor β (TGF-β), fibroblast growth factor (FGF),
hepatocyte-derived growth factor (HGF), epidermal growth factor (EGF) and insulin-like growth factor
1 (IGF-1) released by the tumor microenvironment activate their cognate receptors (GFR, growth factor
receptors; TGFβ-R, TGFβ receptor) thereby triggering downstream pathways. Through phosphoinositide-3
kinase (PI3-K), mitogen activated protein kinase (MAPK), small mother against decapentaplegic (Smad),
glycogen synthase kinase-3 β (GSK3β), and nuclear factor kappa-light-chain enhancer of activated B cells
(NF-κB), growth factors increase the activity of transcriptional repressors of Zinc finger E-box-binding
homeobox 2 (ZEB2), Twist, and Snail families. They, in turn, down-regulate E-cadherin and other epithelial
cell markers, while inducing mesenchymal proteins [9–14,25,26,35]. As the ligand-bound steroid receptors
(SRs) trigger rapid activation of these signaling circuits [27–29], it might be hypothesized that such activation
also contributes to EMT in PC. Canonical wingless-INT (Wnt) is implied in EMT of PC through activation
of GSK3β. Stabilization and nuclear translocation of β-catenin then follow. This latter event leads to
phosphorylation and nuclear translocation of snail family transcriptional repressors 1 (SNAI1). In such a
way, the transcriptional activity of SNAI1 is enhanced [35]. Neurogenic locus notch homolog protein (Notch)
1–4 trans-membrane receptors can be activated by membrane-tethered ligands in mammals. Proteolytic
cleavage of Notch receptors then follows, with the subsequent release of the Notch intracellular domain
(NICD), which then enter nuclei to activate the transcription factors hairy and enhancer of split (HES) 1 and
2 as well as HES 1 related (HEY1). Through NF-kB, they control the expression of genes involved in EMT,
such as Snail [13]. Mutually reinforcing mechanisms promoting the EMT program also occur. HES 1 and 2
as well as HEY1, indeed, positively affect HER2 (Erb-B2) transcription, thereby creating an activator loop of
Erb-B2-dependent signaling. In such a way, PI3-K- and MAPK-dependent signaling is amplified. A role for
the Notch pathway in EMT and spreading of PC has been reported [36].
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Altogether, these findings support the concept that molecules underlying EMT might represent
new PC biomarkers and ‘druggable’ targets for the development of novel therapeutics. The degree to
which the EMT state results from activation of estrogen/ER axis in prostate tissue and PC is, however,
still debated. The subsequent sections in this manuscript aim to address this issue.

3. Estrogen Receptors (ERs) in Prostate Cancer (PC)

Normal human prostate expresses both the ER isoforms, α and β, which mediate the estrogen
effects in these cells. ERα is predominantly localized in prostatic stroma. As such, its effect on
epithelial cells can be considered to be indirect [37]. In contrast, ERβ, which was identified and cloned
later [38–40], is expressed in the epithelial compartment of the gland, where it regulates epithelial
proliferation and differentiation [41].

It is largely accepted that ERα mediates the adverse effects (i.e., survival, proliferation, and
inflammation) induced by estrogens, while ERβ mediates the protective and anti-apoptotic estrogen
effects in PC [41,42]. Thus, ERα may be regarded as an oncogene, while ERβ may elicit anti-tumor
activity in PC. As such, it might be considered an onco-suppressor gene. Many findings, including
ours, have questioned this latter concept. ERβ drives S-phase entry and proliferation in LNCaP
cells challenged with estrogens or androgens [27] or epidermal growth factor (EGF) [43]. Activation
of β-catenin mediated by ERβ increases cyclin D1 expression and proliferation in PC3 cells [44].
Again, ERβ but not ERα promotes survival and migration in the CPEC cell line established from PC
patients, as shown by using the specific ER agonists, 2,3-bis(4-Hydroxyphenyl)-propionitrile (DPN)
and 4,4′,4”-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) [45]. Further, the two splice variants of
ERβ, 2 and 5, are associated with poor PC prognosis and promote migration and invasiveness in PC
cells [46]. Altogether, these findings support an oncogenic role for ERβ.

Given these results, it might be argued that experimental pitfalls due to the type of ERβ antibodies
used are responsible for the conflicting findings so far reported in the literature. Validation of
commonly used and commercially available ERβ antibodies has demonstrated that some of them either
detect ERβ in specific experimental conditions or lack any specificity for ERβ in multiple assays [47].
By using different affinity-based applications and controls, it has been subsequently demonstrated that
only one of 13 antibodies tested is sufficiently specific in immunohistochemistry analysis (IHC) [48].
However, although several efforts have been made to validate the anti ERβ antibodies, a discrepancy
between detectable mRNA and protein levels still remains. These controversies have been recently
highlighted [49], and a brief summary of pitfalls related to ERβ antibodies is reported below. Firstly,
most of the used antibodies do not show specificity. Again, IHC analysis of steroid receptors (SRs),
and hence ERβ depends on the cell permeabilization (i.e., Triton X-100 or Nonidet P40), which might
allow the nuclear or cytoplasmic staining of the receptors. Further, the antibodies produced against
the N-terminal domain of ERβ expressed in E. coli work fine in recognizing the ERβ in E. coli, but they
do not recognize the receptor in IHC analysis of tissues, because of post-transcriptional modifications
in the N-terminal domain of endogenous ERβ. Finally, the antibodies raised against the C-terminal
domain of ERβ do not enable the identification of ERβ modifications at the C-terminal domain. As such,
the inability to specifically detect ERβ variants has obviously hindered the study of their functional role
in PC. To overcome these challenges, the chicken polyclonal ERβ 503 antibodies have been proposed
as the more appropriate tool, as they seem very specific for ERβ, do not cross-react with ERα, and
specifically work in a wide range of fixed or frozen mouse, rat, monkey as well as human tissues.
These antibodies detect ERβ expressed in prostate, breast, gastrointestinal tract, lung, immune cells,
and some cells of the nervous system [49].

In addition to these problems, ERβ splice variants, such as ER2cx, do not bind estrogens or
other available agonists [49]. As such, the majority of studies are focused on ERβ1 variant, while the
functions of ERβ 2, 3, 4, and 5 variants are undervalued. Further, cellular responses activated by ERα
or β might depend on a plethora of factors, including the expression of orphan nuclear receptors [50],
AR [27,45], or epidermal growth factor-receptor (EGF-R). Additionally, the cross-talk between the ERα
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and β [51–53] and the intersection between ERβ [27,43] or ERα [27,54,55] with AR might control the
outcome of PC- or breast (BC)- derived cells. Lastly, the ligand concentration, the ratio between the
two ER isoforms and their intracellular distribution, the presence of endogenous inhibitors and the
availability of transcriptional co-regulators might differentially activate ERα- or β and their mediated
responses in target cells [42,56]. From these and other findings [41,57–59], it appears that additional
studies are needed to depict a clear picture of the role of ERα or β in PC progression and EMT.

4. Estrogen Receptor (ER) α in Epithelial Mesenchymal Transition (EMT) of Benign Prostatic
Hyperplasia (BPH)

Some years ago, it was reported that estradiol levels increase within BPH tissue [60] and that
ERα mediates stromal proliferation in BPH [61]. Subsequent findings showed that BPH is driven by
activation of an EMT program, accompanied by both the loss of E-cadherin and the increase of vimentin
in epithelial cells from BPH specimens. Such a process, however, was correlated to abnormalities in ER
and transforming growth factor (TGF)-β signaling, while ERα was almost undetectable in the stroma
and epithelium of BPH tissues [62].

In contrast with these latter findings, it was subsequently reported that estrogen activation of
ERα induces epithelial de-differentiation and an EMT program in BPH specimens, as well as in a rat
model of BPH [63]. To corroborate these findings, it was also demonstrated by the same group that
the ERα-specific agonist, PPT promotes the expression of EMT markers in benign epithelial BPH-1
and RWPE-1 cell lines, cultured in both 2D and 3D models. The ERβ-specific agonist, DPN inhibited
the expression of EMT markers, and the anti-estrogen, ICI182, 780 blocks EMT and cell phenotypic
switching induced by estradiol [64]. In summary, these findings pointed to the role of ERα in EMT and
BPH pathogenesis.

The discrepancies reported in the literature might be related to the different experimental
conditions used (a murine model of BPH, in vitro 2D and 3D models, and BPH human specimens).
As discussed above, the different antibodies used in these studies might also account for the observed
controversial results.

5. Estrogen Receptor (ER) α in Epithelial Mesenchymal Transition (EMT) of Prostate Cancer (PC)

An increasing body of evidence has linked activation of ER to an EMT program and metastatic
spreading of PC. Some of these findings are reminiscent of results reported in breast cancer (BC), where
ER down-regulates E-cadherin levels and fosters EMT process [65,66]. It is noteworthy that recent
studies also reported a role for the nuclear orphan estrogen-related receptor alpha (ERR) in EMT and
progression of lung [67] as well as endometrial [68] cancer cells.

Estrogens down-regulate E-cadherin and up-regulate Snail and vimentin, thereby promoting
EMT, cell migration, and anchorage-independent growth in human PC-derived PacMetUT1 cells.
Silencing experiments together with administration of the antagonist ICI 182,780 abrogate these effects,
thereby further corroborating a role for ER in EMT and invasiveness. Noticeably, ERα knockdown or
its inhibition by ICI 182,780 impairs osteoblastic lesions and lung metastasis formation in a preclinical
model of PC, indicating that ERα activation is required for bone and lung metastases [69]. Additionally,
ERα activation by estradiol increases the invasiveness, and likely EMT, in the PC-derived VCAP cell
line. Such a mechanism has been attributed to ERα-mediated transcriptional regulation of the nuclear
enriched abundant transcript 1 (NEAT1), the most significantly over-expressed long non-coding RNA
(lncRNA) associated with PC progression [70].

The role of ERα has been further corroborated by recent findings showing that estrogen activation
of ERα drives the expression of neurogenic locus notch homolog protein 1 (NOTCH1), thereby
enhancing stemness and the EMT phenotype in a PC mouse model. These effects ultimately lead to
metastatic spreading, which in-turn is inhibited by tamoxifen treatment [71]. Altogether, these findings
highlight the diagnostic, predictive, and therapeutic value of ERα in PC.
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Clinical evidence indicates, indeed, that higher-Gleason’s stage carcinomas had increased ERα
expression and decreased ERβ expression [72]. Again, expression of ERα has been detected in biopsies
from patients with a high PC Gleason’s score [73]. Finally, low expression of ERα in PC biopsies has
been correlated with a better prognosis in patients older than 50 years old [74]. Altogether, the results
discussed so far coincide with ERα oncogenic functions and indicate that ERα plays an important
role in PC progression, beyond AR. Thus, ERα represents a ‘druggable’ target in patients with PC.
Its targeting has been exploited in various trials with different results, as follows. Administration of
high-dose tamoxifen or toremifene did not exert significant effects in patients with advanced PC [75,76]
or in men with a high-grade prostatic intraepithelial neoplasia [77]. Anti-estrogens, however, also
entered clinical trials to verify their efficacy in PC prevention [78,79]. A multicenter trial showed
that tamoxifen reduces gynecomastia and breast pain in PC patients receiving androgen deprivation
therapy (ADT) [80]. Thereafter, a phase III clinical trial with the selective estrogen receptor modulator
(SERM), toremifene, in combination with ADT has shown a relative beneficial effect and a significant
reduction of new vertebral fractures in patients with advanced PC [81–83].

Nowadays, SERMs have entered many clinical trials and they have been used alone, or in
combination with ADT in various prostatic diseases with rather disappointing results [84]. Advances
in molecular and genetic screenings, together with analysis of circulating tumor cells (CTCs) in liquid
biopsies, would improve our understanding of PC molecular signatures and predict the efficacy of
anti-estrogen treatments in patients with advanced disease.

6. Estrogen Receptor (ER) β in Epithelial Mesenchymal Transition (EMT) of Prostate Cancer (PC)

Five splice variants of ERβ (ERβ1, ERβ2, ERβ3, ERβ4, and ERβ5) have been identified in humans.
Expression of ERβ3 is limited to the testis, whereas ERβ4 can be detected at highest levels in testis, and
at lower levels in spleen, thymus, ovary, mammary gland, and uterus. ERβ1, ERβ2, and ERβ5 can be
found in normal prostate tissue, PC-derived cells as well as other human cancer cell lines. Neither
ERβ3, nor ERβ4 are expressed in human-derived cancer cells, including PC cells [40,85]. Additionally,
ERβ1 and ERβ2 isoforms are differentially expressed during the prostate cell cycle [86]. Notably, ERβ1
appears the only fully functional isoform of the ERβ family, since it forms homo-dimers and recruits
co-regulators [87]. ERβ1, however, might also dimerize with androgen receptor (AR), thus regulating
the transcription of AR-related genes. The most accepted view proposes that ERβ1 is a ‘gatekeeper’
of the epithelial phenotype and represents a repressor of invasion and metastasis [73]. In contrast,
other ERβ variants neither form homo-dimers, nor recruit co-regulators. They, instead, represent the
variable dimer partners of ERβ1 and modulate its activity [87]. Thus, the intracellular activity of ERβ
may depend on ERβ1 expression and the ERβ variants ratio.

The majority of findings concerning the function of the ERβ splice variants derive from studies on
ERβ1, and much evidence has reported an inverse relationship between the ERβ1 expression levels
and the progression to highly aggressive and poorly differentiated PC [85,88–90]. Again, a significant
loss of ERβ1, likely related to the decreased levels of available androgens after androgen deprivation
therapy (ADT), has been observed in castration-resistant prostate cancer (CRPC) [91]. Further, ERβ1
activation by its specific ligand, 5α-androstane-3β (17β-diol), maintains the epithelial phenotype
by inducing the expression of E-cadherin and inhibits migration of the androgen-independent and
ERα-negative DU145 cells [92]. PC tissue staining revealed that ERβ1 expression inversely correlates
with the PC progression to a high Gleason’s grade and that E-cadherin expression directly correlates
with ERβ1 expression [93]. Additionally, experiments with PC3 cells xenografted in nude mice have
shown that 3β-diol reduces the growth of established tumors and counteracts metastasis formation [94].
Raloxifene and tamoxifen promote the adhesion of DU145 and PC3 on laminin or fibronectin, and
inhibit migration of these cells. The anti-estrogen ICI 182,780 reverses these effects, suggesting that
they are specifically mediated by ERβ1, the only ER isoform expressed in DU145 and PC3 cell lines [95].
In the same cells, ormeloxifene, a clinically approved selective estrogen receptor modulator (SERM)
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inhibits EMT by repressing N-cadherin, Slug, Snail, vimentin and metalloproteases expression. As such,
ormeloxifene reduces migration and invasiveness of PC3 and DU145 PC cells [96].

Taken together, these results support the concept that ERβ1 represents a favorable prognostic
factor in PC and that its loss correlates with disease progression.

ERβ1 loss is likely due to a “hypoxic” phenotype of PC cells from patients with poor prognosis,
which might enable the selection of more aggressive cancer cells [97]. Mak and Colleagues have
proposed a complex relationship between ERβ1, vascular endothelial growth factor (VEGF), hypoxia,
and EMT [93]. Firstly, hypoxia-induced factor 1 (HIF-1α) and its target gene, the VEGF-A, two key
factors of EMT, are frequently over-expressed in PC exhibiting poor prognosis. Then, a reduction
in ERβ1 expression level is observed during PC progression, and hypoxia is partially responsible
for this decrease [93]. In this experimental setting, the loss of ERβ1 correlates with metastatic
spreading. ERβ1, indeed, represses transcription of the HIF-1α gene and promotes its degradation
by proteasome. In such a way, ERβ1 would hinder EMT. Further evidence has shown that ERβ1
up-regulates propyl hydroxylase domain 2 (PHD2/EGLN1), thereby promoting hydroxylation and
degradation of HIF-1α [98]. In summary, hypoxia emerges as one mechanism that facilitates the
acquisition of mesenchymal features in PC cells by suppressing ERβ1 and stimulating the expression
of VEGF-A mediated by HIF-1α.

Despite these findings, however, high ERβ1 protein levels have been observed in metastatic
lesions in patients with recurrent PC [85,99,100] and high ERβ1 expression levels are associated with
EMT in PC cells [101]. Activation of ERβ leads to EMT and migration in cells established from patients
with aggressive PC [45]. Again, ERβ1 and AR might form a complex that is able to control gene
expression upon estradiol treatment. Consistent with these findings, it has been shown that this
complex up-regulates the expression of sex determining region Y-box (SOX4) in several PC-derived
cells challenged with estradiol. Its silencing attenuates the estradiol effect on migration, invasion,
and EMT [102]. Noticeably, SOX4 is a transcription factor that controls the EMT of PC cells [103]
and is significantly expressed in CPRC specimens [102]. Again, a functional cooperation between
hypoxia, ERβ1, and eNOS has been reported. In addition to the hypoxic phenotype, specimens from
PC patients with poor prognosis exhibit an increase in NO production. In cultured cells derived from
these PC specimens, challenging with estrogens and hypoxia stimuli leads to formation of ERβ1/eNOS,
ERβ1/HIF-1α, or ERβ1/HIF-2α complexes. Such complexes allow chromatin remodeling and induce
TERT, an early marker of PC development. Tissue microarray analysis also revealed that expression of
endothelial nitric oxide synthase (eNOS) and ERβ1 or nuclear eNOS and HIF-2α represent the most
relevant indicators of poor clinical outcome in PC patients [101]. Thus, in contrast with the findings
previously discussed in this section, ERβ1 expression can be linked to a poor PC prognosis, further
corroborating the concept that the functions of ER in PC still remain controversial. Conflicting data
so far collected on the functions of ER in PC might result from the differential expression profiles
of AR, ERα, and ERβ shown by PC cell lines used for in vitro studies. Additional factors (genetic
and phenotypic instability, absence of cell line authentication, and the number of cell line passages in
culture) might significantly influence the experimental results. Again, because of the absence of tumor
stroma and/or extracellular matrix, experimental models often used to study PC progression cannot
fully reproduce the dynamic events occurring in vivo during EMT and metastatic spreading.

As before discussed, the two splice variants, ERβ2 (also known as ERβcx) and ERβ5 are relevant
in PC as well as other human cancers [39,49,85]. They have truncated C-terminal regions, resulting in
the loss of activation function 2 (AF-2) domain, and exhibit differences in the ligand binding domain
(LBD) [46,104]. ERβ2 and ERβ5 variants cannot homo-dimerize, but they form heterodimers with
ERβ1 upon estrogens stimulation [87]. Both ERβ2 and ERβ5 exhibit oncogenic properties and might
up-regulate effectors of the metastatic process [46,87]. They are, indeed, expressed in the late stage
of metastatic PC, pointing to their role in PC progression and likely EMT. Additionally, ERβ2 and
ERβ5 have prognostic value in PC progression and are related to poor clinical outcomes [46]. In a
Kaplan-Meier analysis, the combined expression of both nuclear ERβ2 (ERβ2 is commonly localized in
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the cytoplasm) and cytoplasmic ERβ5 identifies a group of patients with the shortest post-operative
metastasis-free and overall survival. Again, stable ectopic expression of ERβ2 or ERβ5 enhances PC-3
cell invasiveness, while only ERβ5 is able to induce cell migration. These findings suggest that ERβ2
and ERβ5 engage different pathways to control motility or invasiveness of PC cells [46]. Whatever the
mechanism, it is evident from these findings that ERβ2 and ERβ5 exert an oncogenic effect. That way,
they might counteract the action of ERβ1. ERβ2 and ERβ5 interact with and stabilize HIF-1α, allowing
the expression of hypoxic genes in PC [103]. Additionally, ERβ2 increases the expression of Twist1 and
Slug. Such an effect correlates with a high Gleason’s score, invasiveness, and poor PC prognosis [105].
Other evidence supports the concept that ERβ1 and ERβ2 play opposite roles in PC invasiveness and
EMT. PC cells often metastasize to bone and evidence suggests that ERβ1 and ERβ2 suppresses and
induces the expression of the bone metastasis regulator Runt-related transcription factor 2 (RUNX2),
respectively [106].

To date, many findings regarding the role of ER in EMT and PC progression have been reported
in cultured cells. As such, their suitability in PC diagnosis is still limited, likely because of the
relative homogeneity of PC cell lines, as compared with the heterogeneity of PC cells and tumor
microenvironment. EMT does not seem to be a homogeneous program in cancer, but rather a spectrum
of intermediate states [12]. Thus, new models reflecting the complexity of EMT program in vivo should
be exploited to shed light into pending questions.

7. Conclusions

In recent years, significant advances in diagnosis, follow-up, and therapy of prostate cancer (PC)
patients have been reached. Despite these efforts, PC often progresses towards the castration-resitant
prostate cancer (CRPC) stage. Few therapeutic options are available to improve clinical outcome of
patients with advanced disease and the challenge remains of how to apply targeted therapies, either in
combination or in sequence approaches to achieve clinically meaningful outcome in PC patients with
advanced disease.

Although it is largely accepted that the estrogen receptors (ERs) directly or indirectly control
epithelial-mesenchymal transition (EMT) and PC progression, the molecular events underlying the
role of estrogens and their cognate receptors in PC progression still remain a challenge. Emerging
findings render the picture more complex, and often generate more questions than they answer. When,
for instance, ERα and ERβ are co-expressed in a tissue or tumor, as often occurs in PC, the formation of
a heterodimer will likely yield a different transcriptional profile from that obtained if homodimers are
generated in the presence of ligands. In this way, many components of the neurogenic locus notch
homolog protein (Notch) signaling pathway can be differentially spliced by ERβ in breast cancer (BC)
cells, through ERα/ERβ heterodimers [107]. Given the role of Notch pathway in EMT of PC [36],
a similar mechanism might occur in PC to foster EMT and spreading. Additionally, the previously
described cross talk between ER (α or β) and growth factor receptors (GFR) [43,108] might promote an
activator loop of GFR-dependent signaling that amplifies the PI3-K and MAPK-dependent pathways
and fosters EMT in PC cells.

Figure 2 depicts the currently accepted mechanism(s) leading to EMT through activation of ERα or
ERβ variants in PC cells. Studies of PC therapeutic targeting led to very promising therapies, including
second-generation anti-androgens, cabazitaxel, and Radium-223 [109]. Despite these efforts, resistance
to these drugs continues to develop. Further mechanistic insights into the role of estrogen/ERs axis in
EMT would enhance our understanding of PC progression and allow the identification of new targets
for therapeutic manipulation of this disease.
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Figure 2. Estrogen receptor (ER) α or β control the epithelial mesenchymal transition (EMT)
program in prostate cancer (PC). Left panel: the ligand activated ERα might induce EMT through
transcriptional up-regulation of Neurogenic locus notch homolog protein 1 (NOTCH1) [71] or nuclear
enriched abundant transcript 1 (NEAT-1) [70]. Phosphoinositide 3-kinase (PI3-K)/AKT and Ras/Mitogen
activated protein kinase (MAPK) pathways both induce EMT of PC [25,26]. As the ligand-bound
ERα triggers activation of both these pathways in target cells [27–29], it might be argued that such
activation leads to EMT in PC. Right panel: the ligand activated ERβ1 hinders EMT by repressing the
transcription of hypoxia-induced factor 1α (HIF-1α) and promoting its degradation by proteasome [93].
By stabilizing HIF-1α, ERβ2 and 5 promote EMT [46]. Under certain conditions, ERβ1 could dimerize
with androgen receptor (AR) upon being challenged with estrogens. Sex determining region Y box 4
(SOX4) up-regulation follows and this event leads to EMT in PC [102].

In this era of personalized medicine, a number of drugs targeting EMT regulatory components have
been used in clinical trials [110]. These compounds might be tested in combination with new ligands or
antagonists of ERs to target advanced PC or make the disease more susceptible to treatment regimes.
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Abbreviations

ADT androgen deprivation therapy
AF-2 activation function 2
AR androgen receptor
BC breast cancer
BPH benign prostatic hyperplasia
CAFs cancer-associated fibroblasts
CRPC castration-resistant prostate cancer
CTCs circulating tumor cells
17β-diol 5α-androstane-3β
DPN 2,3-bis(4-Hydroxyphenyl)-propionitrile
EGF epidermal growth factor
EGF-R epidermal growth factor recpetor
EMT epithelial-mesenchymal transition
ER estrogen receptor
ERR estrogen related receptor
FGF fibroblast growth factor
GFR Growth factor receptors
GSK3β Glycogen synthase kinase- 3β
HES hairy and enhancer of split
HEY HES 1 related
HGF hepatocyte-derived growth factor
HIF hypoxia-induced factor
IGF-1 insulin-like growth factor 1
IGF-1R insulin-like growth factor 1 receptor
IHC immunohistochemistry
LBD ligand binding domain
Lnc RNA long non-coding RNA
MAPK mitogen-activated protein kinase
MET mesenchymal-epithelial transition
NEAT1 nuclear enriched abundant transcript 1
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
NICD notch intracellular domain
eNOS endothelial nitric oxide synthase
NOTCH1 Neurogenic locus notch homolog protein 1
PDGF platelet-derived growth factor
PD-1 programmed cell death 1
PC prostate cancer
PHD2 propyl hydroxylase domain 2
PI-3K Phosphoinositide 3- kinase
PPT 4,4′,4”-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol
RUNX2 regulator Runt-related transcription factor 2
SERM selective estrogen receptor modulator
sFRP secreted frizzled-related proteins
SMAD small mother against decapentaplegic
SNAI Snail Family Transcriptional Repressor 2
SOX4 sex determining region Y-box
SRs steroid receptors
TERT telomerase Reverse Transcriptase
TGF-β transforming growth factor β
TGF-βR transforming growth factor β receptor
TWIST1 Twist-related protein 1
VEGF-A vascular endothelial growth factor A
Wnt Wingless-INT
ZEB Zinc finger E-box-binding homeobox
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74. Jędroszka, D.; Orzechowska, M.; Hamouz, R.; Górniak, K.; Bednarek, A.K. Markers of epithelial-to-Mesenchymal
transition reflect tumor biology according to patient age and Gleason score in prostate cancer. PLoS ONE 2017,
12, e0188842. [CrossRef] [PubMed]

75. Bergan, R.C.; Reed, E.; Myers, C.E.; Headlee, D.; Brawley, O.; Cho, H.K.; Figg, W.D.; Tompkins, A.;
Linehan, W.M.; Kohler, D.; et al. A Phase II study of high-dose tamoxifen in patients with hormone-Refractory
prostate cancer. Clin. Cancer Res. 1999, 5, 2366–2373. [PubMed]

76. Stein, S.; Zoltick, B.; Peacock, T.; Holroyde, C.; Haller, D.; Armstead, B.; Malkowicz, S.B.; Vaughn, D.J. Phase
II trial of toremifene in androgen-Independent prostate cancer: A Penn cancer clinical trials group trial.
Am. J. Clin. Oncol. 2001, 24, 283–285. [CrossRef] [PubMed]

77. Price, D.; Stein, B.; Sieber, P.; Tutrone, R.; Bailen, J.; Goluboff, E.; Burzon, D.; Bostwick, D.; Steiner, M.
Toremifene for the prevention of prostate cancer in men with high grade prostatic intraepithelial neoplasia:
Results of a double-Blind, placebo controlled, phase IIB clinical trial. J. Urol. 2006, 176, 965–970. [CrossRef]

http://dx.doi.org/10.18632/oncotarget.6220
http://dx.doi.org/10.1002/pros.2990030503
http://dx.doi.org/10.1002/pros.2990160408
http://dx.doi.org/10.1073/pnas.0812666106
http://dx.doi.org/10.1002/pros.22814
http://www.ncbi.nlm.nih.gov/pubmed/24752964
http://dx.doi.org/10.1002/pros.23404
http://dx.doi.org/10.1210/me.2007-0293
http://www.ncbi.nlm.nih.gov/pubmed/17761946
http://dx.doi.org/10.1038/ncb1559
http://dx.doi.org/10.1007/s11596-014-1367-0
http://dx.doi.org/10.1038/s41598-019-43261-z
http://dx.doi.org/10.18632/oncotarget.6317
http://dx.doi.org/10.1038/ncomms6383
http://dx.doi.org/10.1186/s12964-019-0367-x
http://www.ncbi.nlm.nih.gov/pubmed/31122254
http://www.ncbi.nlm.nih.gov/pubmed/25374919
http://dx.doi.org/10.2119/molmed.2014.00105
http://www.ncbi.nlm.nih.gov/pubmed/25032955
http://dx.doi.org/10.1371/journal.pone.0188842
http://www.ncbi.nlm.nih.gov/pubmed/29206234
http://www.ncbi.nlm.nih.gov/pubmed/10499606
http://dx.doi.org/10.1097/00000421-200106000-00015
http://www.ncbi.nlm.nih.gov/pubmed/11404501
http://dx.doi.org/10.1016/j.juro.2006.04.011


Cancers 2019, 11, 1418 16 of 17

78. Steiner, M.S.; Raghow, S. Antiestrogens and selective estrogen receptor modulators reduce prostate cancer
risk. World J. Urol. 2003, 21, 31–36.

79. Ho, S.M. Estrogens and anti-Estrogens: Key mediators of prostatecarcinogenesis and new therapeutic
candidates. J. Cell. Biochem. 2004, 91, 491–503. [CrossRef]

80. Saltzstein, D.; Sieber, P.; Morris, T.; Gallo, J. Prevention and management of bicalutamide-Induced
gynecomastia and breast pain: Randomized endocrinologic and clinical studies with tamoxifen and
anastrozole. Prostate Cancer Prostatic Dis. 2005, 8, 75–83. [CrossRef]

81. Kunath, F.; Keck, B.; Antes, G.; Wullich, B.; Meerpohl, J.J. Tamoxifen for the management of breast events
induced by non-Steroidal antiandrogens in patients with prostate cancer: A systematic review. BMC Med.
2012, 10, 96. [CrossRef] [PubMed]

82. Smith, M.R.; Morton, R.A.; Barnette, K.G.; Sieber, P.R.; Malkowicz, S.B.; Rodriguez, D.; Hancock, M.L.;
Steiner, M.S. Toremifene to reduce fracture risk in men receiving androgen deprivation therapy for prostate
cancer. J. Urol. 2013, 189, 45–50. [CrossRef] [PubMed]

83. Fujimura, T.; Takahashi, S.; Kume, H.; Urano, T.; Takayama, K.; Yamada, Y.; Suzuki, M.; Fukuhara, H.;
Nakagawa, T.; Inoue, S.; et al. Toremifene, a selective estrogen receptor modulator, significantly improved
biochemical recurrence in bone metastatic prostate cancer: A randomized controlled phase II a trial.
BMC Cancer 2015, 15, 836. [CrossRef] [PubMed]

84. Fujimura, T.; Takayama, K.; Takahashi, S.; Inoue, S. Estrogen and Androgen Blockade for Advanced Prostate
Cancer in the Era of Precision Medicine. Cancers 2018, 10, 29. [CrossRef] [PubMed]

85. Leav, I.; Lau, K.M.; Adams, J.Y.; McNeal, J.E.; Taplin, M.E.; Wang, J.; Singh, H.; Ho, S.M. Comparative
studies of the estrogen receptors beta and alpha and the androgen receptor in normal human prostate glands,
dysplasia, and in primary and metastatic carcinoma. Am. J. Pathol. 2001, 159, 79–92. [CrossRef]

86. Hurtado, A.; Pinós, T.; Barbosa-Desongles, A.; López-Avilés, S.; Barquinero, J.; Petriz, J.; Santamaria-Martínez, A.;
Morote, J.; De Torres, I.; Bellmunt, J.; et al. Estrogen receptor beta displays cell cycle-Dependent expression and
regulates the G1 phase through a non-Genomic mechanism in prostate carcinoma cells. Anal. Cell. Pathol. 2008,
30, 349–365.

87. Leung, Y.K.; Mak, P.; Hassan, S.; Ho, S.M. Estrogen receptor (ER)-Beta isoforms: A key to understanding
ER-beta signaling. Proc. Natl. Acad. Sci. USA 2006, 103, 13162–13167. [CrossRef] [PubMed]

88. Latil, A.; Bièche, I.; Vidaud, D.; Lidereau, R.; Berthon, P.; Cussenot, O.; Vidaud, M. Evaluation of androgen,
estrogen (ER alpha and ER beta), and progesterone receptor expression in human prostate cancer by
real-Time quantitative reverse transcription-Polymerase chain reaction assays. Cancer Res. 2001, 61,
1919–1926. [PubMed]

89. Zhu, X.; Leav, I.; Leung, Y.K.; Wu, M.; Liu, Q.; Gao, Y.; McNeal, J.E.; Ho, S.M. Dynamic regulation of
estrogen receptor-Beta expression by DNA methylation during prostate cancer development and metastasis.
Am. J. Pathol. 2004, 164, 2003–2012. [CrossRef]

90. Slusarz, A.; Jackson, G.A.; Day, J.K.; Shenouda, N.S.; Bogener, J.L.; Browning, J.D.; Fritsche, K.L.;
MacDonald, R.S.; Besch-Williford, C.L.; Lubahn, D.B. Aggressive prostate cancer is prevented in ERαKO
mice and stimulated in ERβKO TRAMP mice. Endocrinology 2012, 153, 4160–4170. [CrossRef]

91. Fixemer, T.; Remberger, K.; Bonkhoff, H. Differential expression of the estrogen receptor beta (ERbeta)
in human prostate tissue, premalignant changes, and in primary, metastatic, and recurrent prostatic
adenocarcinoma. Prostate 2003, 54, 79–87. [CrossRef] [PubMed]

92. Guerini, V.; Sau, D.; Scaccianoce, E.; Rusmini, P.; Ciana, P.; Maggi, A.; Martini, P.G.; Katzenellenbogen, B.S.;
Martini, L.; Motta, M.; et al. The androgen derivative 5alpha-Androstane-3beta,17beta-diol inhibits prostate
cancer cell migration through activation of the estrogen receptor beta subtype. Cancer Res. 2005, 65, 5445–5453.
[CrossRef] [PubMed]

93. Mak, P.; Leav, I.; Pursell, B.; Bae, D.; Yang, X.; Taglienti, C.A.; Gouvin, L.M.; Sharma, V.M.; Mercurio, A.M.
ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail
nuclear localization: Implications for Gleason grading. Cancer Cell 2010, 17, 319–332. [CrossRef] [PubMed]

94. Dondi, D.; Piccolella, M.; Biserni, A.; Della Torre, S.; Ramachandran, B.; Locatelli, A.; Rusmini, P.; Sau, D.;
Caruso, D.; Maggi, A.; et al. Estrogen receptor beta and the progression of prostate cancer: Role of
5alpha-androstane-3beta,17beta-Diol. Endocr.-Relat. Cancer. 2010, 17, 731–742. [CrossRef] [PubMed]

95. Piccolella, M.; Crippa, V.; Messi, E.; Tetel, M.J.; Poletti, A. Modulators of estrogen receptor inhibit proliferation
and migration of prostate cancer cells. Pharmacol. Res. 2014, 79, 13–20. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/jcb.10759
http://dx.doi.org/10.1038/sj.pcan.4500782
http://dx.doi.org/10.1186/1741-7015-10-96
http://www.ncbi.nlm.nih.gov/pubmed/22925442
http://dx.doi.org/10.1016/j.juro.2012.11.016
http://www.ncbi.nlm.nih.gov/pubmed/23234631
http://dx.doi.org/10.1186/s12885-015-1871-z
http://www.ncbi.nlm.nih.gov/pubmed/26526623
http://dx.doi.org/10.3390/cancers10020029
http://www.ncbi.nlm.nih.gov/pubmed/29360794
http://dx.doi.org/10.1016/S0002-9440(10)61676-8
http://dx.doi.org/10.1073/pnas.0605676103
http://www.ncbi.nlm.nih.gov/pubmed/16938840
http://www.ncbi.nlm.nih.gov/pubmed/11280747
http://dx.doi.org/10.1016/S0002-9440(10)63760-1
http://dx.doi.org/10.1210/en.2012-1030
http://dx.doi.org/10.1002/pros.10171
http://www.ncbi.nlm.nih.gov/pubmed/12497580
http://dx.doi.org/10.1158/0008-5472.CAN-04-1941
http://www.ncbi.nlm.nih.gov/pubmed/15958594
http://dx.doi.org/10.1016/j.ccr.2010.02.030
http://www.ncbi.nlm.nih.gov/pubmed/20385358
http://dx.doi.org/10.1677/ERC-10-0032
http://www.ncbi.nlm.nih.gov/pubmed/20562232
http://dx.doi.org/10.1016/j.phrs.2013.10.002
http://www.ncbi.nlm.nih.gov/pubmed/24184124


Cancers 2019, 11, 1418 17 of 17

96. Hafeez, B.B.; Ganju, A.; Sikander, M.; Kashyap, V.K.; Hafeez, Z.B.; Chauhan, N.; Malik, S.; Massey, A.E.;
Tripathi, M.K.; Halaweish, F.T.; et al. Ormeloxifene Suppresses Prostate Tumor Growth and Metastatic
Phenotypes via Inhibition of Oncogenic β-Catenin Signaling and EMT Progression. Mol. Cancer Ther. 2017,
16, 2267–2280. [CrossRef]

97. Brown, J.M. The hypoxic cell: A target for selective cancer therapy—Eighteenth Bruce F. Cain Memorial
Award lecture. Cancer Res. 1999, 59, 5863–5870.

98. Mak, P.; Chang, C.; Pursell, B.; Mercurio, A.M. Estrogen receptor β sustains epithelial differentiation by
regulating prolyl hydroxylase 2 transcription. Proc. Natl. Acad. Sci. USA 2013, 110, 4708–4713. [CrossRef]

99. Horvath, L.G.; Henshall, S.M.; Lee, C.S.; Head, D.R.; Quinn, D.I.; Makela, S.; Delprado, W.; Golovsky, D.;
Brenner, P.C.; O’Neill, G.; et al. Frequent loss of estrogen receptor-Beta expression in prostate cancer.
Cancer Res. 2001, 61, 5331–5335.

100. Zellweger, T.; Stürm, S.; Rey, S.; Zlobec, I.; Gsponer, J.R.; Rentsch, C.A.; Terracciano, L.M.; Bachmann, A.;
Bubendorf, L.; Ruiz, C. Estrogen receptor β expression and androgen receptor phosphorylation correlate
with a poor clinical outcome in hormone-Naive prostate cancer and are elevated in castration-Resistant
disease. Endocr.-Relat. Cancer 2013, 20, 403–413. [CrossRef]

101. .Nanni, S.; Benvenuti, V.; Grasselli, A.; Priolo, C.; Aiello, A.; Mattiussi, S.; Colussi, C.; Lirangi, V.; Illi, B.;
D’Eletto, M.; et al. Endothelial NOS, estrogen receptor beta, and HIFs cooperate in the activation of a
prognostic transcriptional pattern in aggressive human prostate cancer. J. Clin. Investig. 2009, 119, 1093–1108.
[CrossRef] [PubMed]

102. Yang, M.; Wang, J.; Wang, L.; Shen, C.; Su, B.; Qi, M.; Hu, J.; Gao, W.; Tan, W.; Han, B. Estrogen induces
androgen-Repressed SOX4 expression to promote progression of prostate cancer cells. Prostate 2015, 75,
1363–1375. [CrossRef] [PubMed]

103. Wang, L.; Zhang, J.; Yang, X.; Chang, Y.W.; Qi, M.; Zhou, Z.; Zhang, J.; Han, B. SOX4 is associated with
poor prognosis in prostate cancer and promotes epithelial-Mesenchymal transition in vitro. Prostate Cancer
Prostatic Dis. 2013, 16, 301–307. [CrossRef] [PubMed]

104. Peng, B.; Lu, B.; Leygue, E.; Murphy, L.C. Putative functional characteristics of human estrogen receptor-beta
isoforms. J. Mol. Endocrinol. 2003, 30, 13–29. [CrossRef] [PubMed]

105. Dey, P.; Velazquez-Villegas, L.A.; Faria, M.; Turner, A.; Jonsson, P.; Webb, P.; Williams, C.; Gustafsson, J.Å.;
Ström, A.M. Estrogen Receptor β2 Induces Hypoxia Signature of Gene Expression by Stabilizing HIF-1α in
Prostate Cancer. PLoS ONE 2015, 10, e0128239. [CrossRef]

106. Dey, P.; Jonsson, P.; Hartman, J.; Williams, C.; Ström, A.; Gustafsson, J.Å. Estrogen receptors β1 and β2 have
opposing roles in regulating proliferation and bone metastasis genes in the prostate cancer cell line PC3.
Mol. Endocrinol. 2012, 26, 1991–2003. [CrossRef] [PubMed]

107. Dago, D.N.; Scafoglio, C.; Rinaldi, A.; Memoli, D.; Giurato, G.; Nassa, G.; Ravo, M.; Rizzo, F.; Tarallo, R.;
Weisz, A. Estrogen receptor beta impacts hormone-Induced alternative mRNA splicing in breast cancer cells.
BMC Genom. 2015, 16, 367. [CrossRef]

108. Genua, M.; Pandini, G.; Sisci, D.; Castoria, G.; Maggiolini, M.; Vigneri, R.; Belfiore, A. Role of cyclic AMP
response element-Binding protein in insulin-Like growth factor-I receptor up-Regulation by sex steroids in
prostate cancer cells. Cancer Res. 2009, 69, 7270–7277. [CrossRef]

109. Mottet, N.; De Santis, M.; Briers, E.; Bourke, L.; Gillessen, S.; Grummet, J.P.; Lam, T.B.; van der Poel, H.G.;
Rouvière, O.; van den Bergh, R.C.; et al. Updated Guidelines for Metastatic Hormone-Sensitive Prostate
Cancer: Abiraterone Acetate Combined with Castration Is Another Standard. Eur. Urol. 2017, 73, 316–321.
[CrossRef]

110. Voon, D.C.; Huang, R.Y.; Jackson, R.A.; Thiery, J.P. The EMT spectrum and therapeutic opportunities.
Mol. Oncol. 2017, 11, 878–891. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1158/1535-7163.MCT-17-0157
http://dx.doi.org/10.1073/pnas.1221654110
http://dx.doi.org/10.1530/ERC-12-0402
http://dx.doi.org/10.1172/JCI35079
http://www.ncbi.nlm.nih.gov/pubmed/19363294
http://dx.doi.org/10.1002/pros.23017
http://www.ncbi.nlm.nih.gov/pubmed/26015225
http://dx.doi.org/10.1038/pcan.2013.25
http://www.ncbi.nlm.nih.gov/pubmed/23917306
http://dx.doi.org/10.1677/jme.0.0300013
http://www.ncbi.nlm.nih.gov/pubmed/12580758
http://dx.doi.org/10.1371/journal.pone.0128239
http://dx.doi.org/10.1210/me.2012.1227
http://www.ncbi.nlm.nih.gov/pubmed/23028063
http://dx.doi.org/10.1186/s12864-015-1541-1
http://dx.doi.org/10.1158/0008-5472.CAN-09-0088
http://dx.doi.org/10.1016/j.eururo.2017.09.029
http://dx.doi.org/10.1002/1878-0261.12082
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Epithelial-Mesenchymal Transition (EMT) in Prostate Cancer (PC) 
	Estrogen Receptors (ERs) in Prostate Cancer (PC) 
	Estrogen Receptor (ER)  in Epithelial Mesenchymal Transition (EMT) of Benign Prostatic Hyperplasia (BPH) 
	Estrogen Receptor (ER)  in Epithelial Mesenchymal Transition (EMT) of Prostate Cancer (PC) 
	Estrogen Receptor (ER)  in Epithelial Mesenchymal Transition (EMT) of Prostate Cancer (PC) 
	Conclusions 
	References

