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Abstract

White matter hyperintensities (WMH) of presumed vascular origin are frequently

found in MRIs of healthy older adults. WMH are also associated with aging and

cognitive decline. Here, we compared and validated three algorithms for WMH

extraction: FreeSurfer (T1w), UBO Detector (T1w + FLAIR), and FSL's Brain Inten-

sity AbNormality Classification Algorithm (BIANCA; T1w + FLAIR) using a longitu-

dinal dataset comprising MRI data of cognitively healthy older adults (baseline

N = 231, age range 64–87 years). As reference we manually segmented WMH in

T1w, three-dimensional (3D) FLAIR, and two-dimensional (2D) FLAIR images which

were used to assess the segmentation accuracy of the different automated algo-

rithms. Further, we assessed the relationships of WMH volumes provided by the

algorithms with Fazekas scores and age. FreeSurfer underestimated the WMH vol-

umes and scored worst in Dice Similarity Coefficient (DSC = 0.434) but its WMH

volumes strongly correlated with the Fazekas scores (rs = 0.73). BIANCA accom-

plished the highest DSC (0.602) in 3D FLAIR images. However, the relations with

the Fazekas scores were only moderate, especially in the 2D FLAIR images

(rs = 0.41), and many outlier WMH volumes were detected when exploring within-

person trajectories (2D FLAIR: ~30%). UBO Detector performed similarly to

BIANCA in DSC with both modalities and reached the best DSC in 2D FLAIR

(0.531) without requiring a tailored training dataset. In addition, it achieved very

high associations with the Fazekas scores (2D FLAIR: rs = 0.80). In summary, our

results emphasize the importance of carefully contemplating the choice of the

WMH segmentation algorithm and MR-modality.
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1 | INTRODUCTION

According to the STandards for Reporting Vascular changes on nEuro-

imaging (STRIVE), white matter hyperintensities (WMH) of presumed

vascular origin appear as hyperintense signal abnormalities on

T2-weighted (T2w) magnetic resonance images (MRI), can appear as

isointense or hypointense on T1-weighted (T1w) sequences, and vary

in diameter (Wardlaw et al., 2013). The fluid-attenuated inversion

recovery (FLAIR) sequence is generally the most sensitive structural

MRI sequence for detecting WMH (Wardlaw et al., 2013). They are a

common finding in MR images of older adults (Wardlaw, Valdés

Hernández, & Muñoz-Maniega, 2015) and considered as a marker of

cerebral small vessel disease (CSVD), which, in turn, is a major cause

of morbidity and mortality in older age and triggers cognitive decline

(Baker et al., 2012). Even in healthy older adults WMH are associated

with reduced cognitive, perceptual and motor abilities (Di Stadio

et al., 2020; Gunning-Dixon & Raz, 2000; Pinter et al., 2017). More

generally, the presence of WMH increases the risk of global functional

loss (Inzitari et al., 2009), stroke, dementia, and death (Debette &

Markus, 2010). Therefore, precise and reliable WMH quantification

using the most sensitive MR sequences is of key importance.

In the context of clinical diagnostics, the Fazekas scale (Fazekas,

Chawluk, Alavi, Hurtig, & Zimmerman, 1987), the Scheltens scale

(Scheltens et al., 1993), and the age-related white matter changes

scale (ARWMC) (Wahlund et al., 2001) are commonly used to visually

assess the severity and progression of WMH. However, despite the

relatively simply use of visual rating scales they unfortunately do not

provide true quantitative data, are time-consuming to obtain (Mäntylä

et al., 1997), are not sensitive enough to assess longitudinal changes

in WMH (D. M. J. van den Heuvel et al., 2006) because of significant

ceiling and floor effects (Mäntylä et al., 1997). Compared with such

scales, volumetric measurements are more reliable and more sensitive

to detect age-related changes in longitudinal studies of WMH (T. L. A.

van den Heuvel et al., 2016). Especially for investigations of cogni-

tively healthy samples, where the expected WMH volume increases

over time is rather small, we therefore need fast automated methods

that provide the estimated volume rather than a score (Frey

et al., 2019; Prins & Scheltens, 2015).

Segmenting the WMH manually is extremely time-consuming and

can become prohibitively expensive, and is therefore not feasible

when considering the current trend toward big data (i.e., datasets with

a large N and multiple time points of data acquisition). Hence, accu-

rate automated methods for WMH volume quantification are highly

desirable. To date, there are many different methods for WMH quan-

tification which can be roughly divided into: Supervised, when the

underlying algorithm is trained using a manually segmented “gold
standard” as a reference (Ghafoorian et al., 2017; Van Nguyen,

Zhou, & Vemulapalli, 2015), and unsupervised, when the method does

not rely on a gold standard (Bowles et al., 2016; Cardoso, Sudre,

Modat, & Ourselin, 2015; Ye, Zikic, Glocker, Criminisi, &

Konukoglu, 2013). Depending on the amount of human intervention

required, the methods can further be divided into automated versus

semi-automated (Caligiuri et al., 2015). A recent study of Guerrero

et al. (2018) provides a comprehensive review of existing methods. All

of these methods face the challenge of false-positive and false-

negative segmentations as well as different WM lesion loads (usually

lower in MS lesions than in WMH of presumed vascular origin) and

different WM lesion contrasts (MS lesions are typically brighter and

more sharply bordered compared with WMH of presumed vascular

origin [Caligiuri et al., 2015; Griffanti et al., 2016]). Co-occurring

pathologies (e.g., extensive atrophy) further challenge the methods

(Heinen et al., 2019).

Caligiuri et al. (2015) compared different existing algorithms

including supervised/unsupervised and automated/semi-automated

methods. They found that many of these methods are not freely avail-

able, are study and/or protocol specific, and have been validated pri-

marily with small samples. Importantly, there is still no consensus on

which algorithm(s) is (are) of good quality and should be applied to

detect WMH (Dadar et al., 2017; Frey et al., 2019). Consequently, the

methodology of pertinent studies is very heterogeneous and compro-

mises the comparability of such studies. Therefore, the primary goal

of our current work is to assess the performance of three freely avail-

able WMH extraction methods: FreeSurfer (Fischl, 2012), UBO Detec-

tor (Jiang et al., 2018), and Brain Intensity AbNormality Classification

Algorithm (BIANCA) (Griffanti et al., 2016).

The FreeSurfer Image Analysis Suite (Fischl, 2012) is a fully auto-

mated software of tools for analysis of brain structures using informa-

tion of T1w images. Although FreeSurfer was not developed

specifically for WMH segmentation, it may be a useful option, espe-

cially if no FLAIR images were collected in a study. Although single

metrics for performance of WMH segmentation were provided for

FreeSurfer's algorithm (Ajilore et al., 2014; Olsson et al., 2013;

Samaille et al., 2012; Smith et al., 2011), common accuracy metrics are

still lacking. Further, FreeSurfer's WMH output has not yet been vali-

dated with a longitudinal dataset, and existing validations rely on

images with middle to very high or even unreported WMH loads.

UBO Detector (UBO: Unidentified Bright Objects; https://cheba.

unsw.edu.au/research-groups/neuroimaging/pipeline) is a cluster-

based, fully automated pipeline that works without a training dataset

and, like BIANCA, relies on the k-NN algorithm for quantifying WMH

(Jiang et al., 2018). It was validated by the developers themselves,

using two datasets—one cross-sectional and the other longitudinal—

both with two-dimensional (2D) FLAIR images. The datasets included

older participants with medical conditions such as stroke, transient

ischemic attack (TIA), and so on. They showed that UBO Detector is a

reliable tool for WMH extraction and found strong WMH agreement

compared with their manual reference. To date, no further validation

study of UBO Detector has been published, but it was used for

extracting WMH in three additional studies (d'Arbeloff et al., 2019;

Du & Xu, 2019; Taylor et al., 2019).

BIANCA is a semi-automated, multimodal, supervised method for

WMH detection, based on the k-nearest neighbor (k-NN) algorithm

(Griffanti et al., 2016). Besides a global thresholding, BIANCA also

offers the LOCally Adaptive Threshold Estimation (LOCATE), a super-

vised method for identifying optimal local thresholds to apply to the

estimated lesion probability map (Sundaresan et al., 2019). BIANCA
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was validated and optimized cross-sectionally with a “predominantly

neurodegenerative” cohort, and with a “predominantly vascular”
cohort (Griffanti et al., 2016), and was shown to perform better when

compared against the two freely available methods “CASCADE”
(Damangir et al., 2012) and “Lesion Segmentation Tool” (P. Schmidt

et al., 2012). Ling, Jouvent, Cousyn, Chabriat, and De Guio (2018) vali-

dated and optimized BIANCA cross-sectionally based on a cohort of

patients with cerebral autosomal dominant arteriopathy with subcorti-

cal infarcts and leukoencephalopathy (CADASIL) and concluded that

BIANCA is a reliable method to extract extensive WMH loads in these

patients. Sundaresan et al. (2019) validated BIANCA by including

LOCATE (see above) cross-sectionally on different cohorts with a

wide range of WMH loads, and showed that LOCATE contributed to

a better segmentation performance, especially in CADASIL patients.

So far, BIANCA with global thresholding and BIANCA with the local

threshold method LOCATE have not been validated with a longitudi-

nal dataset. LOCATE has not yet been validated using data with low

WMH load using a manually segmented reference. For an overview of

articles validating FreeSurfer, UBO Detector, and BIANCA, see

Table S1.

In this study, we aim to provide complementary information on

the performance of the three automated WMH extraction algorithms

depending on different MRI input modalities (T1w, 2D FLAIR + T1w,

and three-dimensional [3D] FLAIR + T1w). To estimate the accuracy

of the automated WMH segmentations, we used fully manually seg-

mented WMH as a proxy for true WMH. We refer to these manually

segmented WMH as gold standards.

To our knowledge, this is the first study that evaluates the WMH

segmentation performance of different methods and the influence of

MR image modality using comprehensive longitudinal MRI data of

cognitively healthy older adults collected in a single-center study.

With our study we want to answer the following explicit

questions:

1. Assessment of segmentation accuracy: Which algorithm and MR

image modality provides estimates that are most consistent with

the respective gold standard in terms of:

a. established accuracy metrics and

b. WMH volumes.

2. Validations using the whole dataset: How do the WMH volume esti-

mates provided by the different algorithms relate to

a. the frequently used Fazekas score and

b. chronological age?

2 | METHODS

2.1 | Subjects

Longitudinal MRI data were taken from the Longitudinal Healthy

Aging Brain Database Project (LHAB; Switzerland)—an ongoing pro-

ject conducted at the University of Zurich (Zöllig et al., 2011). We

used data from the first four measurement occasions (baseline,

1-year follow-up, 2-year follow-up, and 4-year follow-up). The base-

line LHAB dataset includes data from 232 participants (mean age at

baseline: M = 70.8, range = 64–87, F:M = 114:118). At each mea-

surement occasion, participants completed an extensive battery of

neuropsychological and psychometric cognitive tests and under-

went brain imaging. Inclusion criteria for study participation at base-

line were age ≥64 years, right-handedness, fluent German language

proficiency, a score of ≥26 points on the Mini Mental State Exami-

nation (Folstein, Folstein, & McHugh, 1975), no self-reported neuro-

logical disease of the central nervous system and no

contraindications to MRI. The study was approved by the ethical

committee of the canton of Zurich. Participation was voluntary and

all participants gave written informed consent in accordance with

the declaration of Helsinki.

For the present analysis, we used participants with structural MRI

data with a sample size at baseline of N = 231 (mean age at baseline:

M = 70.8, range = 64–87, F:M = 113:118). At 4-year follow-up,

71.9% of the baseline sample still comprised structural data (N = 166,

mean age: M = 74.2, range = 68–87; F:M = 76:90). In accordance

with previous studies in this field, we ensured that none of the

included scans showed intracranial hemorrhages, intracranial space

occupying lesions, multiple sclerosis (MS) lesions, large chronic, sub-

acute, or acute infarcts, and extreme visually apparent movement

artifacts.

2.2 | MRI data acquisition

MRI data were acquired at the University Hospital of Zurich on a

Philips Ingenia 3 T scanner (Philips Medical Systems, Best, The

Netherlands) using the dsHead 15-channel head coil. T1w and 2D

FLAIR structural images were part of the standard MRI battery of the

LHAB project, and are therefore available for the most time points

(see Table 1). T1w images were recorded with a 3D T1w turbo field

echo (TFE) sequence, repetition time (TR): 8.18 ms, echo time (TE):

3.799 ms, flip angle (FA): 8�, 160 � 240 � 240 mm3 field of view

(FOV), 160 sagittal slices, in-plain resolution: 256 � 256, voxel size:

1.0 � 0.94 � 0.94 mm3, scan time: �7:30 min. If two T1w images

were available per time point, the images were averaged for further

use. The 2D FLAIR image parameters were: TR: 11,000 ms, TE:

125 ms, inversion time (TI): 2,800 ms, 180 � 240 � 159 mm3 FOV,

32 transverse slices, in-plain resolution: 560 � 560, voxel size:

0.43 � 0.43 � 5.00 mm3, interslice gap: 1 mm, scan time: �5:08 min.

3D FLAIR images were recorded for a subsample only. The 3D FLAIR

image parameters were: TR: 4,800 ms, TE: 281 ms, TI: 1,650 ms,

250 � 250 mm FOV, 256 transverse slices, in-plain resolution:

326 � 256, voxel size: 0.56 � 0.98 � 0.98 mm3, scan time:

�4:33 min.

Table 1 provides an overview of the number of available MRI

scans per data acquisition time point (baseline, 1-year follow-up,

2-year follow-up, and 4-year follow-up) and image modality (T1w, 2D

FLAIR, and 3D FLAIR). Please see Figure S1 for an extended overview

of the data structure and study design.
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2.3 | Subsets of dataset used for the different
algorithms

In this work we used three subsets of the LHAB dataset to validate

the algorithms. The subsets differed with respect to the MR image

modalities and in the number of scans. For FreeSurfer we used T1w

images. UBO Detector and BIANCA extract WMH-related intensity

features mainly from the FLAIR images, since FLAIR images provide

the best WMH contrast. In addition, T1w images are used for both

algorithms. In UBO Detector, T1w images are required (for the seg-

mentation of white matter, gray matter, and cerebrospinal fluid tis-

sues). BIANCA allows for additional T1w image input and it has been

shown that the additional inclusion of T1w images improved segmen-

tation performance (Griffanti et al., 2016). Table 2 provides an over-

view of the subsets used for the different algorithms.

2.4 | Accuracy metrics

We used several metrics for quantifying the segmentation perfor-

mance of the different algorithms. These metrics provide informa-

tion about the degree of overlap, the degree of resemblance, and

the volumetric agreement when comparing (a) gold standards man-

ually segmented by multiple operators and (b) algorithm outputs

with gold standards. The equations of these metrics are listed in

Table 3.

2.4.1 | Spatial overlap metrics

The Dice similarity coefficient (DSC) (Dice, 1945) provides informa-

tion about the overlap agreement between two segmentations and it

is perhaps the most established metric in evaluating the accuracy of

WMH segmentation methods. It is defined as two times the union of

the selected voxels divided by the sum of the selected voxels by each

of the raters or algorithms. However, since the DSC depends on the

lesion load (the higher the lesion load, the higher the DSC), it is diffi-

cult to evaluate operators or automated segmentation methods

against each other if assessed on different sets of scans with different

lesion loads (Wack et al., 2012).

Extending the DSC, the outline error rate (OER) and detection

error rate (DER) are independent of lesion burden (Wack

et al., 2012). In these metrics, the sum of false positive (FP) and false

negative (FN) voxels is split, depending on whether an inter-

section occurred or not. The sum is then divided by the mean total

area (MTA) of the two operators to obtain a ratio with the DER as a

metric of errors without intersection, and with the OER as a metric

of errors with an intersection. OER and DER can also be adopted for

the comparison between gold standards and algorithms (see

Table 3). We calculated and reported the sensitivity or true positive

ratio (TPR). The specificity (also referred to as recall) was not

declared as it is equal to 1—false positive ratio (FPR), which we

reported.

2.4.2 | Spatial distance metric

A different approach to validate an image segmentation is based on

distance. The Hausdorff distance, is a shape comparison method and

can be used to evaluate how far apart subsets of a metric space are

from each other (Beauchemin, Thomson, & Edwards, 1998;

Huttenlocher, Klanderman, & Rucklidge, 1993). It represents the maxi-

mum distance of a point in one set to the nearest point in the other

set (Shonkwiler, 1991). To avoid problems with noisy segmentations

we used the modified Hausdorff distance for the 95th percentile

(H95) (Huttenlocher et al., 1993).

TABLE 1 Number of scans (N) broken down per modality (3D T1w, 2D FLAIR, and 3D FLAIR) and time points (baseline, 1-, 2-, and 4-year
follow-up)

Modality

Time points

Total NBaseline n 1-year follow-up n 2-year follow-up n 4-year follow-up n

3D T1-weighted 231 207 196 166 800

2D FLAIR 228 203 174 157 762

3D FLAIR 4 46 53 63 166

TABLE 2 Name of the dataset subsets (FreeSurfer T1w, UBO 2D, BIANCA 2D, UBO 3D, and BIANCA 3D), applied algorithms, input
modality/modalities for the different algorithms, and the number (N) of scans per subset

Name of the subsets Algorithm(s) Input modality/modalities Total N of scans

FreeSurfer T1w FreeSurfer 3D T1w 800

UBO 2D

BIANCA 2D

UBO Detector and BIANCA 2D FLAIR + 3D T1w 762

UBO 3D

BIANCA 3D

UBO Detector and BIANCA 3D FLAIR + 3D T1w 166
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2.4.3 | Volumetric agreement

We additionally calculated the interclass correlation coefficient (ICC).

The ICC is a measurement that reflects not only the degree of correla-

tion, but also the agreement between two measurements based on

mean squares (Koo & Li, 2016). For comparisons with a gold standard,

we used the “unit” single [ICC(3,1)) and for the comparison without a

gold standard, we used the equation with a pooled average [ICC(3,k)]

(Koo & Li, 2016; McGraw & Wong, 1996; Shrout & Fleiss, 1979).

2.5 | Manual WMH segmentation

From the entire longitudinal dataset, which comprises four time points

of data acquisition, we selected subjects for whom T1w, 2D FLAIR,

and 3D FLAIR scans were available for a given time point. From those,

we randomly selected a subsample of 16 subjects for manual segmen-

tation while ensuring that the images of the selected subjects covered

a mixed range of WMH loads. To do so, we used individual Fazekas

scores. The subsample for manual segmentation had a medium

Fazekas score on average. Although Griffanti et al. (2016) recommend

a training dataset with only high WMH load, in their study, Ling

et al. (2018) achieved better results with a training dataset with a

mixed WMH load than with a training dataset with only a high WMH

load. Therefore, and because a mixed range of WMH loads represents

our dataset more appropriately, we have chosen our sampling strategy

(for data structure and study design see Figure S1).

In total, 48 MR images (16 subjects � 3 image modalities) were

manually segmented for WMH, resulting in 48 binary masks with the

values 0 for no WMH and 1 for WMH. We refer to these WMH

segmentations as gold standards given that they represent strong

proxies for the true WMH load.

2.5.1 | Segmentation of FLAIR images

Three operators (O1, O2, and O3) completely manually segmented the

WMH on 16 3D FLAIR images and on 10 2D FLAIR images in all three

planes (sagittal, coronal, and axial) on a MacBook Pro 13-in. with a Ret-

ina Display with a screen resolution of 2,560 � 1,600 pixels, 227 pixels

per inch with full brightness intensity to obtain comparable data using

FSLeyes (McCarthy, 2018). The segmentations were carried out inde-

pendently resulting in three different masks per segmented image.

Because of the very good preceding segmentation-interoperator reliabil-

ities, only one operator (O2) segmented the remaining six 2D FLAIR

images to achieve the same number (n = 16) of gold standards for all

modalities. To ensure high segmentation quality, these six WMH masks

were peer-reviewed by O1 and O3. Any discrepancies were discussed

between all operators and one of the authors (S.K.), a neuroradiology

professor with over 30 years of experience in diagnosing cerebral MR

images. The three manually segmented WMH masks (of the three oper-

ators) of the same subject were displayed as overlays in FSLeyes in

order to evaluate the mask agreement across these three operators

(voxel value 1.0: all three operators classified the voxel as WMH; voxel

value 0:666: two operators classified the voxel as WMH; 0:333: one

operator classified the voxel as WMH (see Figure 1). Each mask over-

lay was then revised voxel-by-voxel by consensus in the presence of

all operators (O1, O2, and O3), and converted back to a binary mask

to serve as gold standard. The between-operator disagreements

mostly regarded voxels at the WMH borders. The resulting masks

were shown to S.K. and corrected in case of mistakes.

2.5.2 | Segmentation of T1w images

The fully manual segmentation of the 16 T1w MR images was appor-

tioned among two operators (O1 and O2). Since T1w images provide

TABLE 3 The following metrics were used to determine the
agreements between the operators (interoperator) and between the
outcomes of the algorithms and the gold standards (validation)

Metrics

Formulas

(interoperator)

Formulas

(validation)

Hausdorff distance for the

95th percentile (H95)
d A,Bð Þ¼95Kth

aϵ Ad a,Bð Þa

Dice similarity coefficient

(DSC)

2�VA \ B
VAþVB

2�TP
FPþ2�TPþFN

Detection error rate (DER)

(all clusters without

intersection VA\ B divided

by MTAb)

VAþVB
MTA

2� FPþFNð Þ
FPþFNþ2�TP

Outline error rate (OER) (all

clusters with intersection

VA\ B divided by MTA)

VAþVB�2�VA \ B
MTA

2� FPþFNð Þ
FPþFNþ2�TP

Sensitivity = true positive

ratio (TPR)

TP
TPþFN

False positive ratio (FPR) FP
FPþTN

a 95Kth
aϵ A represents the Kth ranked distance such that K=Na ¼ 95%

(Dubuisson & Jain, 1994).
bMTA is the mean total area, area of rater A and area of rater B divided by

2 (Wack et al., 2012).

F IGURE 1 Section of an overlay of three masks—one per
operator—named as “mean mask” in a 3D FLAIR image on an axial
plane with the different values displayed in different colors per
operator (light green: all three operators classified the voxel as WMH
(voxel value 1.0); dark green: two operators classified the voxel as
WMH (voxel value 0:666); orange: one operator classified the voxel
as WMH (voxel value 0:333)
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the lowest WMH contrast, we used the nonsegmented FLAIR images

from the same subject and time point in case of uncertainties, for

example when the contrast for DWMH was very poor or when

lacunes penetrated WMH. Nevertheless, we wanted to be influenced

by the FLAIR images as little as possible, and therefore consulted the

FLAIR images as rarely as possible. In addition, S.K. was consulted in

case of ambiguities and O1 discussed all images voxel-by-voxel with

O3 at the end of the segmentation.

2.5.3 | Validation of the gold standards

The mean DSC between all three operators for the 3D (n = 16) and

2D FLAIR images (n = 10 subjects) was 0.73 and 0.67, respectively. A

mean DSC of 0.7 (Anbeek, Vincken, van Osch, Bisschops, & van der

Grond, 2004; Caligiuri et al., 2015) is considered as a good segmenta-

tion. As expected, due to the lower surface-to-volume ratio, the DSC

was lower for images with a low WMH load than for images with a

high WMH load (Wack et al., 2012). In images with a low WMH load,

a DSC above 0.5 is still considered as a very good agreement (Dadar

et al., 2017). Our average DSC results in both modalities (3D and 2D

FLAIR images) were higher than 0.7 for medium WMH load, and

higher than 0.6 for low WMH load, which can be considered as excel-

lent agreement. The reliability of the volumetric agreement between

the segmentations of the 3D and 2D FLAIR images, as indicated by

the ICC, was excellent (Cicchetti, 1994) (3D FLAIR: mean

ICC = 0.964; 2D FLAIR: mean ICC = 0.822). Detailed results on fur-

ther metrics, and on segmented WMH volume can be found in

Table S2. In preparation for the optimization phase of the UBO

Detector and BIANCA, as well as for the mandatory training dataset

of BIANCA, the previously mentioned six 2D FLAIR images were man-

ually segmented. Figure 2 shows (left side) the mean WMH volumes

resulting from the manual segmentations based on the 16 subjects

per modality (T1w, 3D FLAIR, and 2D FLAIR). No significant mean

WMH volume differences were revealed between the three different

manually segmented gold standards using the Friedman test with a

Dunn Bonferroni post hoc test (Holm correction). The Pearson's

product–moment correlation showed an almost perfect (Dancey &

Reidy, 2017) linear association between all gold standards (mean

r = .97, p < .001; see Figure 5 for the correlations between the gold

standards but also between all three algorithms per input modality).

2.6 | Fazekas scale

The Fazekas scale is a widely used visual rating scale that provides

information about the location [periventricular WMH (PVWMH)

vs. deep WMH (DWMH)] and the severity of WMH lesions. It ranges

from 0 to 3 for both locations, leading to a possible minimum score of

0, and a maximum score of 6 for total WMH.

In a first step, the three operators (O1, O2, and O3) were specially

trained by the neuroradiologist S.K. for several weeks on evaluating

WMH with the Fazekas scale. S.K. was blinded to the demographics

and neuropsychological data of the participants. Eight hundred images

were then visually rated using the Fazekas scale. Before the operators

provided a final rating, they compared whether a given Fazekas score

in the FLAIR images had the same score in the T1w images. We did

not find differences in Fazekas scores between image modalities in

any of the subjects. The ratings were carried out independently by all

three operators, validated for the further procedure with statistical

indicators that are described as follows. The interoperator mean con-

cordances across all four time points were determined with Kendall's

coefficient of concordance (Moslem, Ghorbanzadeh, Blaschke, &

Duleba, 2019) by calculating it for total WMH, DWMH and PVWMH

separately for each time point. Strong agreements according to Mos-

lem et al. (2019) for total WMH (W = 0.864, p < .001), PVWMH

(W = 0.828, p < .001), and DWMH (W = 0.842, p < .001) were found.

Furthermore, mean interoperator reliabilities were evaluated between

the three operators for total WMH, PVWMH and DWMH across the

four time points by using a weighted Cohen's kappa (Cohen, 1968).

Substantial to near-perfect reliabilities according to Landis and

Koch (1977) were found (see Table S3). The median score was calcu-

lated for each participant for each time point, split into total WMH,

PVWMH and DWMH. The median Fazekas scores for all three

T1w

**

**

**
***

0

2

4

6

8

10

12

2D FLAIR

WMH from gold standards

W
M

H
 v

o
lu

m
e 

cm
  

  
  

  
  

  
  

  
  

  
  

  
  

 
3

WMH from algorithms

3D FLAIR FreeSurfer T1w UBO 2D UBO 3D BIANCA 2D BIANCA 3D

7
.7

8
1
 c

m
3

3
.4

3
6
 c

m
3

8
.3

1
1
 c

m
3

9
.5

1
0
 c

m
3

8
.6

9
5
 c

m
3

9
.0

3
2
 c

m
3

6
.0

0
1
 c

m
3

8
.3

1
7
 c

m
3 F IGURE 2 Mean WMH volume in

cm3 with standard error of the mean
(SEM) of the manually segmented gold
standards on the left side of the figure,
and the corresponding mean WMH
volumes estimated by the automated
algorithms on the right side of the figure.
**p < .01; ***p < .001

1486 HOTZ ET AL.



operators were: total WMH = 3; PVWMH = 2; and DWMH = 1. For

more descriptive details see Table S4.

2.7 | Automated WMH segmentation

In order to obtain the best performance from each algorithm, we

chose the settings that were considered the best by the original

authors of UBO Detector and BIANCA. Thus, we did not intend to

examine comparable settings (e.g., for the PVWMH), but rather to

compare the outcome of the algorithms under optimal conditions.

2.7.1 | FreeSurfer

The FreeSurfer Image Analysis Suite (Fischl, 2012) uses a structural

segmentation to identify regions in which WMH can occur, while

regions in which WMH cannot occur are excluded (cortical and sub-

cortical gray matter structures). The algorithm assigns a label to each

voxel based on probabilistic local and intensity-related information

that is automatically estimated from a built-in training dataset com-

prising 41 manually segmented images (surfer.nmr.mgh.harvard.edu/

fswiki/AtlasSubjects; Fischl et al., 2002). The algorithm differentiates

between hypointensities in the white (WMH) and gray matter (non-

WMH). The T1w images (subset 1; T1w images) were processed with

FreeSurfer v6.0.1 as implemented in the FreeSurfer BIDS-App

(Gorgolewski et al., 2017).

2.7.2 | UBO Detector

UBO Detector was applied to subset 2 (2D FLAIR + T1w) and subset

3 (3D FLAIR + T1w). UBO Detector calculates the probability of

WMH by applying a classification model trained on 10 subjects, man-

ually segmented on 2D FLAIR images (built-in training dataset). A

user-definable probability threshold generates a WMH map by

segmenting the subregions including PVWMH, DWMH, lobar, and

arterial regions. As recommended by Jiang et al. (2018) we used a

12 mm threshold from the ventricular border to define the borders of

PVWMH. The segmentation of the T1w images failed in five images,

whereupon these subjects were excluded from the following proce-

dures. Visual inspection of the data uncovered a segmentation error

(eyeballs were marked as WMH), thus, this time point was excluded

from further analysis leading to a total number of N = 756 subjects.

To determine which settings are best suited for our subsets, we have

evaluated the performance of four different settings proposed by

Jiang et al. (2018), using the leave-one out cross-validation method.

Since we had manually segmented the WMH for both 2D and 3D

FLAIR images, we examined the performance of UBO Detector sepa-

rately for each modality (2D FLAIR + T1w, 3D FLAIR + T1w). To do

so, we calculated the accuracy metrics separately for the different set-

tings, and checked which adjustments achieved the most optimal

values (for further results see Table S5). For 2D FLAIR images, UBO

Detector worked most accurately with a threshold of 0.9 and a NN of

k = 3. For the 3D FLAIR images, the best performance was achieved

with a threshold of 0.7 and a NN of k = 5. For the subsequent calcula-

tions we used these optimized settings.

2.7.3 | Brain intensity abnormality classification
algorithm

BIANCA was applied to subset 2 (2D FLAIR + T1w) and subset

3 (3D FLAIR + T1w). For BIANCA a FLAIR training dataset is manda-

tory. As an output, BIANCA generates a probabilistic map of WMH

for total WMH, PVWMH and DWMH. The 16 manually segmented

gold standards derived once from 3D and once from 2D FLAIR images

were used for the training datasets combined with the T1w images.

As a first step, we compared the two thresholding options of

BIANCA—best global threshold (0.99) versus LOCATE to investigate

which option provides the better segmentation quality for our sub-

sets. To do so we used the leave-one out cross-validation method

with the 16 gold standards per modality. We compared the outputted

WMH with the DSC, DER, OER, H95, FP, TP, FPR, Sensitivity, and

ICC but also with the WMH volumes in cm3 by using the Wilcoxon

rank-sum test. Because LOCATE did not perform better than the best

global thresholding with 0.99 we used the latter for further analyses.

For more information, and the detailed comparison analysis, see Sup-

plementary Analysis: Comparison of the threshold methods: BIANCA

and LOCATE.

To verify whether 16 gold standards for the training dataset were

sufficient, we used the BIANCA evaluation script. BIANCA showed

good results for both modalities (see Table S7). For defining the

PVWMH we adopted the 10 mm distance rule from the ventricles

(DeCarli et al., 2005), which was also suggested by Griffanti

et al. (2016). To reduce false positive voxels in the gray matter, and at

the same time only localize WMH in the white matter, we applied a

WM mask. For the BIANCA options we chose the ones that Griffanti

et al. (2016) indicated as the best in terms of DSC and cluster-level

false-positive ratio: MRI modality = FLAIR + T1w, spatial

weighting = “1,” patch = “no patch,” location of training

points = “noborder,” number of training points = number of training

points for WMH = 2,000 and for non-WMH = 10,000. For more

details on the descriptions and the options, see Griffanti et al. (2016).

The preprocessing steps, applied before the BIANCA segmenta-

tion procedure, were performed with a nipype pipeline (v1.4.2;

Gorgolewski et al., 2011) as follows: Based on a subject-specific tem-

plate created by the anatomical workflow of fMRIprep (v1.0.5;

Esteban et al., 2019), which used the T1w images of all available ses-

sions (i.e., measurement time points), a WM mask and a ventricle mask

(FSL's make_bianca_mask command) were created. The ventricle mask

then served as the basis for a distancemap (distancemap command),

which informed about the distance of a given voxel from the ventri-

cles. The distancemap was thresholded to create a periventricular and

a deep WM mask (cut-off = 10 mm). For each session, the two T1w

images of a given time point were bias-corrected (ANTs v2.1.0;
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Tustison et al., 2010), brought to the template space, and averaged.

FLAIR images, which were defined as base image (reference space for

BIANCA input and output images), were bias-corrected and the

template-space images (T1w images and masks) were brought into

base image space using FLIRT (Jenkinson & Smith, 2001). We

implemented the template approach with averaged T1w images to

ensure robustness of processing and to take the longitudinal structure

of our data into account. It has been shown before that BIANCA,

compared with UBO Detector, achieved significantly lower DSC

values when images contained artifacts (Vanderbecq et al. (2020). Fur-

ther, extracting the masks once per individual (in template space)

increases the validity of the masks by reducing the impact of random

artifacts that may affect single timepoints. Although structural

changes are known to happen, their small scale in healthy aging brains

should not significantly bias mask creation (Reuter, Schmansky,

Rosas, & Fischl, 2012; Tustison et al., 2017). The default, purely cross-

sectional preprocessing pipeline used by the original authors of

BIANCA were not pursued due to poorer results (see Supplementary

Analysis: Accuracy of BIANCA with the default, cross-sectional

preprocessing).

To select the best threshold for the probabilistic output of

BIANCA we first used the leave-one out cross-validation method to

calculate the different validation metrics separately for the 2D and 3D

FLAIR gold standard images (+T1w images). The global threshold

values 0.90, 0.95, and 0.99 were applied, with the threshold of 0.99

for both FLAIR sequences proving to be the best fitting. For a more

detailed overview see Table S6.

2.8 | Statistical analysis

According to the study questions outlined at the end of the intro-

duction, we subdivided our analyses in two parts. In the first part,

we assessed the accuracy of the estimated WMH by comparing the

WMH volume estimates provided by the different algorithms with

the corresponding gold standard. Further we compared the WMH

volumes between and within those of the algorithms and those of

the gold standards. In the second part, we examined correlations

between the estimated WMH volumes and the Fazekas score, and

associations between the estimated WMH volumes and

chronological age.

2.8.1 | Part 1 analyses

1. First, we calculated the accuracies of the automatically extracted

WMH segmentations by comparing them to the corresponding

gold standard segmentations separately for the different algo-

rithms using the above-mentioned accuracy metrics: DSC, DER,

OER, H95, FPR, Sensitivity, and ICC (for results see Table 4). These

accuracy metrics—except for the ICC—were compared using a

Friedman test with a Dunn–Bonferroni post hoc test (Holm correc-

tion). The ICC comparisons were interpreted as reliability measures

according to Cicchetti (1994). For significant post hoc results,

Cohen's d (Cohen, 1988) effect sizes were calculated.

2. Secondly, we compared the automatically estimated WMH vol-

umes and those of the manually segmented gold standards with

each other and also between each other. The results are summa-

rized in Figure 2. For the statistical comparisons we used a Fried-

man test, because of a non-normal distribution, with a Dunn–

Bonferroni post hoc test (Holm correction) (Friedman, 1937).

2.8.2 | Part 2 analyses

1. In order to examine how strongly the subjective Fazekas scores

and the estimated WMH volumes correspond, we calculated the

Spearman's rho between these measures (Table 5). We examined

these correlations across all time points but also separately for

each time point since the sample sizes substantially decreased

from time point to time point. For UBO Detector and BIANCA we

analyzed PVWMH and DWMH volumes in addition to the total

WMH volumes. The Spearman's rho was used since the Fazekas

scores are ordinally scaled.

2. To estimate the influence of age on total WMH volumes, we

applied linear mixed models (LMMs) with multiple measurements

nested within individuals to satisfy the longitudinal nature of the

used dataset. Total WMH volumes represented the dependent

variables and entry age was entered as independent variable (see

Table 6). We used the estimated total WMH volumes provided by

the different segmentation methods, and calculated five LMMs.

The WMH volumes and age were log-transformed and z-standard-

ized. Relative effect sizes were calculated following Brysbaert and

Stevens (2018) and according to Westfall, Kenny, and Judd (2014).

The analyses were carried out in R (R Core Team, 2020) using the

lme4 package (Bates, Mächler, Bolker, & Walker, 2015). Since we

were interested in the linear associations, we reported the fixed

effects (bβ¼ standardized beta) of age at baseline for the different

algorithms. Furthermore, the LMMs allows a comparison of the

error variance. This measurement depends on the deviations from

the individually estimated trajectories, of which—at least a part—

can be considered as measurement errors of the algorithms.

Finally, we ran post hoc calculations based on our observations of

strong discrepancies between WMH volumes of consecutive time

points in the BIANCA output, which we refer to as “outlier intervals”
in the following. To further investigate the within-subject variability of

WMH volumes, we determined the percentage and number of “out-
lier intervals between two measurement points” and also of “subjects
with outlier in longitudinal data” based on the mean percentages of

WMH volume increases (mean + 1SD) and decreases (mean � 1SD),

separately for possible time intervals (1-, 2-, 3-, and 4-year intervals)

to calculate a “range of tolerance” and exclude outlier data points.

The outlier data points were further classified for low, medium, and

high WMH load (based on the Fazekas scale) in order to identify a
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specific pattern. If the number of “outlier intervals between two mea-

surement points” exceeded the number of “subjects with outlier in

longitudinal data,” this indicated peaks or even several outlier data

points within a single person—and would be an indication of a zigzag

pattern over time. For a more detailed description see Section 3.1.

For all statistical analyses appropriate R packages were applied.

Where possible, differences were also expressed as Cohen's

d (Cohen, 2013). A d of 0.2 is considered as small, a d of 0.5 as medium,

and a d of 0.8 as strong effect size (Cohen, 2013). Spearman's rho are

classified according to Dancey and Reidy (2017) (rs > 0.1–0.3 as weak,

rs > 0.3–0.6 as moderate, rs > 0.6–0.9 as strong, and rs > 1 as perfect).

For post hoc tests in the context of the Friedman tests we performed

adjusted Bonferroni paired t-tests. The reliability estimates on the basis

of the ICCs were classified according to Cicchetti (1994) (ICC = fair:

>0.4–0.6, good: >0.6–0.75, excellent >0.75).

2.9 | Computer equipment

All WMH extractions were undertaken on a Supermicro X8QB6 work-

station with 4� Intel Xeon E57-4860 CPU (4 � 10 cores, 2.27 GHz)

and 256 GB RAM. The computing host was a KVM virtualized guest

instance with Ubuntu 18.04.4 LTS with 32� Intel Xeon E7-4860 CPU

(2.27 GHz) and 92 GB RAM.

3 | RESULTS

1. Accuracies of the WMH segmentation methods: Table 4 summarizes

the accuracies of the WMH segmentation algorithms based on the

comparison between the algorithm outputs and the corresponding

gold standards.

Generally, the accuracies are at least fairly good. Comparing the

accuracy measures—using the Friedman test—revealed that

FreeSurfer underperforms in important accuracy measures like DSC,

sensitivity, and OER compared with the other algorithms. Regarding

the ICC (range: 0.45–0.93) the reliability according to Cicchetti (1994)

revealed a fair reliability for FreeSurfer, a good reliability for BIANCA

3D, and excellent reliabilities for UBO Detector 2D and 3D FLAIR,

and BIANCA 2D FLAIR. In summary, FreeSurfer showed the weakest

performance in terms of segmentation accuracy, and BIANCA 3D

FLAIR was the most accurate. Differences between UBO Detector

and BIANCA were generally very small and rarely reached signifi-

cance, especially when applying the algorithms to 2D FLAIR images.

The DSC between gold standard and the respective algorithm's out-

put divided into low, middle, and high WMH load is shown in

Table S9.

TABLE 5 Fazekas scores versus WMH volumes (Spearman's rho

between the Fazekas scores and the different WMH volume
measures)

Comparison All (rs) Median (rs)

Fazekas vs. FreeSurfer total 0.72 0.73 (0.68–0.73)

Fazekas vs. UBO 2D total 0.80 0.80 (0.78–0.82)

Fazekas vs. UBO 3D Total 0.80 0.81 (0.79–0.95)

Fazekas vs. BIANCA 2D total 0.41 0.41 (0.38–0.42)

Fazekas vs. BIANCA 3D total 0.58 0.51 (0.32–0.72)

Fazekas PVWMH vs. UBO 2D PVWMH 0.73 0.74 (0.68–0.78)

Fazekas PVWMH vs. UBO 3D PVWMH 0.77 0.75 (0.45–0.78)

Fazekas PVWMH vs. BIANCA 2D

PVWMH

0.36 0.37 (0.33–0.40)

Fazekas PVWMH vs. BIANCA 3D

PVWMH

0.56 0.50 (0.43–0.69)

Fazekas DWMH vs. UBO 2D DWMH 0.61 0.60 (0.59–0.65)

Fazekas DWMH vs. UBO 3D DWMH 0.61 0.63 (0.51–0.95)

Fazekas DWMH vs. BIANCA 2D

DWMH

0.34 0.33 (0.30–0.41)

Fazekas DWMH vs. BIANCA 3D

DWMH

0.41 0.51 (0.23–0.95)

Note: Shown are the correlations (rs) across the entire sample (All) and the

median (Median) correlation across all four time points (minimum and

maximum correlations are shown in brackets). Correlations rs > 0.6 are

highlighted by gray shading. Spearman's rho (rs) = weak: 0.1–0.3,
moderate: >0.3–0.6, strong: >0.6–0.9, perfect: >0.9 (Dancey &

Reidy, 2017).

Abbreviations: DWMH, deep WMH; PVWMH, periventricular WMH.

TABLE 6 Summary of the main effect of age on WMH volumes

FreeSurfer
T1w, N = 800

UBO
2D, N = 756

UBO
3D, N = 166

BIANCA
2D, N = 762

BIANCA
3D, N = 166

Main effect

WMH ~ age

Age entrya bβ¼ 0:455*** bβ¼0:408*** bβ¼0:306*** bβ¼0:293*** bβ¼ 0:339***

CI 0.347–0.564 0.295–0.520 0.127–0.485 0.183–0.403 0.173–0.506

Cohen's

db
0.594 0.482 0.294 0.326 0.368

Residuals Estimates

CI

0.116

[0.109–0.123]
0.161

[0.152–0.172]
0.132

[0.109–0.163]
0.434

[0.409–0.462]
0.417

[0.344–0.520]

Note: ***p < .001.

Abbreviation: 95% CI, 95% confidence interval.
a
bβ is the (standardized beta) fixed effect (slope). The WMH volumes are log-transformed and z-standardized. Chronological age is z-standardized.
bCohen's d: small effect size: ≥0.2–, medium effect size: 0.5, large effect size: 0.8 (Cohen, 2013).
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2. Relationship between the gold standard WMH volumes and automati-

cally estimated WMH volumes: Figure 2 depicts the WMH volumes

of the different gold standards and the automatically estimated

WMH volumes of the same brains. These WMH volumes were

subjected to a Friedman test, which revealed a significant result

[χ2(7) = 56.375, p < .001, n = 16]. The pairwise comparisons rev-

ealed no significant differences between the gold standards. Com-

paring the automatically estimated WMH volumes with their

corresponding gold standard WMH volumes revealed a substantial

difference between those from the gold standard T1w and those

estimated by FreeSurfer (p < .001). The comparisons among the

algorithm outputs showed a significantly lower WMH volume esti-

mate of FreeSurfer compared with the estimates provided by

BIANCA 2D and 3D (p = .01) as well as UBO 2D (p = .01). All fur-

ther pairwise comparisons (e.g., 2D FLAIR gold standard vs. UBO

2D, 2D FLAIR gold standard vs. BIANCA 2D, etc.) showed no sig-

nificant differences.

3. Relationship between the subjective Fazekas scores and the estimated

WMH volumes: Table 5 summarizes the relationship between the

estimated WMH volumes and the Fazekas scores in terms of Spe-

arman's rho (rs). Seven correlations out of 13 for the entire sample

are strong (>0.6). The remaining correlations for this sample are

moderately strong. Considering the median correlations across the

four time points revealed very similar results. Table 5 also demon-

strates the range of the correlations among the time points. The

spaghetti plots for total WMH volume and Fazekas scores are

depicted in Figure 3a.

4. Relationship between the estimated WMH volumes with age and the

longitudinal time course: Table 6 summarizes the results of the

LMM regression analysis with the WMH volumes as dependent

variables and chronological age as independent variable. As one

can see in this table, chronological age is moderately associated

with all total WMH volume measures. The corresponding effect

sizes for this association range between bβ¼0:293 (BIANCA 2D)

and bβ¼0:455 (FreeSurfer). The spaghetti plots for total WMH vol-

umes and chronological age are shown in Figure 3b.

3.1 | Post hoc outlier analysis

The results described above indicate that BIANCA demonstrates

increased variability. A close inspection of this variability revealed that

the WMH segmentations masks contained erroneous voxels, particu-

larly in the following areas: semi-oval center, orbitofrontal cortex

(orbital gyrus, gyrus rectus, above the putamen), and occipital lobe

below the ventricles. Although recent studies indicate some WMH

variability (Shi & Wardlaw, 2016), we assumed that these massive

peaks are driven by outliers. Since our knowledge of WMH volume

changes in healthy older adults is insufficient (Shi & Wardlaw, 2016)

and has inconsistent findings (Ramirez, McNeely, Berezuk, Gao, &

Black, 2016), we identified outliers in WMH volume increases and

decreases, based on average WMH volume changes in our sample.

Please find a detailed description of our approach in the Supplement:

“Detailed description of post hoc outlier analysis.”
BIANCA 2D and 3D clearly showed more outlier intervals than

the other algorithms (BIANCA 2D: n = 161 outlier intervals, 30.32%;

BIANCA 3D: n = 8, 16.67%), see Table 7. Furthermore, BIANCA 2D

and 3D was the only algorithm with more outliers than persons which

is reflective of the zigzag patterns within the subject's trajectories.

Please see Table S10 for more results on WMH volume changes in

percent. There was no clear association between the number of out-

liers and lesion load; see Table S11.

4 | DISCUSSION

In this study we assessed the performance of three freely available

and automated algorithms for WMH segmentation: FreeSurfer, UBO

Detector, and BIANCA. To do so, we applied the algorithms to a large

longitudinal dataset comprising T1w, 2D FLAIR, and 3D FLAIR images

from cognitively healthy, older adults with a low WMH load. We dis-

covered that all algorithms have certain strengths and limitations.

FreeSurfer showed deficiencies particularly with respect to segmenta-

tion accuracy (i.e., DSC) and clearly underestimated the WMH vol-

umes. We therefore argue that it cannot be considered as a valid

substitution for manually segmented WMH. BIANCA and UBO Detec-

tor showed a higher segmentation accuracy compared with

FreeSurfer. When using 3D FLAIR + T1w images as input, BIANCA

performed significantly better than UBO Detector regarding the accu-

racy metrics DER and H95. However, for BIANCA we identified a sig-

nificant number of outliers in the individual trajectories of the WMH

volume estimates. UBO Detector—as a fully automated algorithm that

works without a training dataset—showed the best cost/benefit ratio

in terms of processing time and segmentation performance in our

study. Although there is room for optimization regarding segmenta-

tion accuracy, it distinguished itself through its excellent volumetric

agreement with the manually segmented WMH in both FLAIR modali-

ties (as reflected by the ICCs) and its high correlations with the

Fazekas scores. In addition, it proved to be a robust estimator of

WMH volumes over time.

4.1 | Evaluation of the algorithms

4.1.1 | FreeSurfer

The total WMH volumes provided by FreeSurfer showed a strong cor-

relation with the Fazekas scores and a moderate association with age.

FreeSurfer showed no within-person outlier WMH volume estima-

tions. The biggest constraint is the fundamental underestimation of

WMH volume compared with the corresponding T1w gold standard,

which compromises the validity of its output. The underestimation

can be attributed to the fact that WMH often appear isointense in

T1w sequences and are therefore not detected (Wardlaw

et al., 2013). Furthermore, the lower contrast of the DWMH

HOTZ ET AL. 1491



compared with the PVWMH, which is due to the lower water content

in the DWMH as a result of the longer distance to the ventricles,

might contribute to the WMH volume underestimation. FreeSurfer

often omitted DWMH, a finding also reported by Olsson et al. (2013).

In addition, our analyses showed that FreeSurfers' underestimation of

the WMH volume was even more pronounced in high WMH load

images (see Bland–Altmann Plot in Figure 4, panel c). The same bias

was shown by Olsson et al. (2013) when comparing the WMH vol-

umes of the semimanually segmented WMH (2D FLAIR) and the

FreeSurfer (T1w) output. One reason for the underestimation in sub-

jects with high WMH loads might be the fact that FreeSurfer seg-

ments the WMH as gray matter (e.g., for the bilateral caudate; Dadar,

Potvin, Camicioli, & Duchesne, 2021) which could also explain

FreeSurfer's low false positive ratio. The spatial overlap performance

of FreeSurfer in our study is comparable to the findings in the valida-

tion study reported by Samaille et al. (2012) with a cohort of mild cog-

nitive impairment and CADASIL patients. Although other studies

reported higher volumetric agreement between FreeSurfer's output

3.0

3.5

4.0

4.5

0 1 2 3 4 5 6

Fazekas score

T
o

ta
l 
W

M
H

 v
o

lu
m

e
 a

lg
o

ri
th

m
 (

lo
g

)

0

1
0

,0
0

0
2

0
,0

0
0

3
0

,0
0

0
4

0
,0

0
0

70 80

Chronological age

T
o
ta

l 
W

M
H

 v
o
lu

m
e
 a

lg
o
ri
th

m

3.0

3.5

4.0

4.5

5.0

Fazekas score
0 1 2 3 4 5 6

T
o
ta

l 
W

M
H

 v
o
lu

m
e
 a

lg
o
ri
th

m
 (

lo
g
)

3
0
,0

0
0

6
0
,0

0
0

9
0
,0

0
0

1
2
0
,0

0
0

T
o

ta
l 
W

M
H

 v
o

lu
m

e
 a

lg
o

ri
th

m
 

0

Chronological age

70 80

2
5

 ,
0

0
0

5
0

,0
0

0
7

5
,0

0
0

0

70 80

Chronological age

T
o
ta

l 
W

M
H

 v
o
lu

m
e
 A

lg
o
ri
th

m
 

2.5

3.0

3.5

4.0

4.5

5.0

T
o

ta
l 
W

M
H

 v
o

lu
m

e
 a

lg
o

ri
th

m
 (

lo
g

)

Fazekas score

0 1 2 3 4 5 6

F
re

eS
ur

fe
r 

T
1w

n 
= 

80
0

U
B

O
 2

D
 

n 
= 

75
6

B
IA

N
C

A
 2

D
 

n 
= 

76
2

Fazekas score(a) (b) Chronological age

F IGURE 3 Validation of the three algorithms with the subsets FreeSurfer T1w, UBO 2D, and BIANCA 2D. Scatter plot of total WMH volume
(log-transformed) according to the Fazekas score (a), and spaghetti plot of total WMH volume (cm3) and chronological age (years) (b)

1492 HOTZ ET AL.



and manual segmentation (Ajilore et al., 2014; Smith et al., 2011), the

WMH volume difference between T1w and both FLAIR modalities is

in line with the STRIVE, stating that FLAIR images tend to be more

sensitive to WMH and therefore are considered more suitable for

WMH detection than T1w images (Dadar et al., 2018; Wardlaw

et al., 2013). However, to our knowledge, most previous studies do

TABLE 7 Display per subsets and algorithm (BIANCA 2D, BIANCA 3D, UBO 2D, UBO 3D, and FreeSurfer T1w) with the outputted number
(N) of segmented scans, number (n) of subjects with longitudinal data (at least two time points), number and percentage (in brackets) of subjects
with outlier in longitudinal data, number of intervals between two measurement points, and number and percentage (in brackets) of outlier
intervals between two measurement points

Subsets

N of segmented

scans

n of

subjects

n (and %) of subjects with

outlier in longitudinal data

n of intervals between two

measurement pointsa
n (and %) of outlier intervals

between two measurement points

BIANCA

2D

762 209 109 (52.15%) 531 161 (30.32%)

BIANCA

3D

166 39 7 (17.95%) 48 8 (16.67%)

UBO 2D 757b 209 7 (3.35%) 523 7 (1.34%)

UBO 3D 166 39 2 (5.13%) 48 2 (4.17%)

FreeSurfer

T1w

800 213 0 (0%) 569 0 (0%)

aExplanation “intervals between two measurement points”: If a subject had three time points (Baseline, 1-year follow-up, and 4-year follow-up) this would

result in two existing intervals.
bThe data point with the segmentation error (segmented eyeballs) is included.
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not indicate whether they used a fully manually segmented gold stan-

dard or a gold standard generated by a semiautomated method. Fur-

ther, the study samples have been small, there is very little

information on commonly used accuracy metrics like DSC, DER, OER,

and so on, and FreeSurfer's WMH algorithm has not been applied to

longitudinal data. Moreover, previous studies have not compared

FreeSurfer's WMH volumes with manual segmentations on T1w

structural images or with visual rating scales such as the Fazekas scale.

In our study, FreeSurfer's WMH volumes strongly correlated with the

Fazekas scores and showed reliable WMH volume estimations across

time points. However, FreeSurfer cannot be considered as a valid sub-

stitute for manual WMH segmentation on this dataset due to the

weak outcomes in the accuracy metrics (DSC, OER, and ICC), and

especially due to its massive WMH volume underestimation. Never-

theless, because of the valid and reliable outcomes with the Fazekas

scale, FreeSurfer is suitable for use in clinical practice, as long as its

values are not interpreted as absolute values.

4.1.2 | UBO Detector

The total WMH volumes estimated by UBO Detector with the 2D

FLAIR + T1w and 3D FLAIR + T1w inputs were strongly correlated

with the Fazekas scores and showed significant relations with age.

PVWMH and DWMH volumes with both FLAIR input modalities

showed strong, and moderate correlation with Fazekas scores, respec-

tively. This is consistent with the article by the developers of UBO

Detector (Jiang et al., 2018), which reported significant relations

between UBO Detector-derived PVWMH and DWMH volumes and

the Fazekas scores. The results of their volumetric agreements—

calculated with ICCs—were similar to ours, especially for UBO 2D, but

we were not able to replicate the high values they obtained in sensi-

tivity and overlap measurements (DSC, DER, and OER). Our DSC and

ICC values were similar to those of the very recent cross-sectional

study of Vanderbecq et al. (2020). The discrepancies between the

results of the developers' study and ours could be due to the fact that

the built-in training dataset of UBO Detector is based on 2D FLAIR

images, which may cause differences in WMH segmentation perfor-

mance depending on the image input modality (2D vs. 3D FLAIR). To

our knowledge, our study is the first study, to validate UBO Detector

with 3D FLAIR images cross-sectionally and longitudinally. Indeed,

our analysis indicated that the WMH volumes estimated by UBO

Detector depend on the modality of the FLAIR input. Volumes

extracted with UBO 2D tended to be more similar to the WMH vol-

ume of the gold standard with the same modality, while volumes

extracted with UBO 3D tended to underestimate the WMH volumes

of the respective gold standard (see Figure 2, and Bland–Altmann Plot

in Figure 4, panel a and b). For several reasons UBO Detector's longi-

tudinal pipeline was not used in our study. First, UBO Detector

requires an equal number of sessions for all subjects, which would

have resulted in a marked reduction of our sample size. Secondly, it

registers all sessions to the first time point, an approach that has been

shown to lead to biased registration (Reuter et al., 2012). Lastly, com-

paring the two pipelines, Jiang et al. (2018) did not find significant
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differences regarding the extracted WMH volumes. To date, we have

not found any other study that validated UBO Detector or compared

it with other WMH extraction methods using a longitudinal dataset

with different MR modalities.

4.1.3 | BIANCA

To enable a direct comparison with the accuracy metrics used in the

original BIANCA study (Griffanti et al., 2016) we additionally ran

BIANCA's evaluation script (Table S7). Our overall results for the dif-

ferent accuracy metrics corresponded more to those of their vascular

cohort than to those of their neurodegenerative cohort. We received

quite similar results for BIANCA 2D with respect to the correlations

between the estimated WMH volumes and our manually segmented

WMH volumes. However, we were not able to replicate the high ICCs

or the high associations they obtained between the WMH volumes

and the Fazekas scores in both cohorts, either for BIANCA 2D or for

BIANCA 3D. BIANCA 2D showed only a moderate correlation with

the Fazekas scale—although we used a customized training dataset.

With respect to age and WMH volumes, the small associations we

obtained were similar to those reported by Griffanti et al. (2016) for

their neurodegenerative cohort. We suspect that this might be due to

the outlier segmentations in our BIANCA outputs. While the effect of

outlier WMH segmentations was not detected in the smaller cross-

sectional analyses, it was uncovered because of massive WMH vol-

ume fluctuations in the within-subject trajectories. When the devel-

opers of UBO Detector compared their algorithm with BIANCA, they

noticed that BIANCA tended to overestimate the WMH in “milky”
regions, whereas the sensitivity for WMH detection was higher in

BIANCA than in UBO Detector, which is in line with our findings.

BIANCA features LOCATE as a method to determine spatially

adaptive thresholds in different regions in the lesion probability map.

Sundaresan et al. (2019) showed that LOCATE is beneficial when the

BIANCA algorithm is trained with dataset-specific images or when the

training dataset was acquired with the same sequence and the same

scanner. For the group of healthy controls, they achieved similar visual

outputs with LOCATE as compared with those with global

thresholding. However, since no manually segmented gold standard

was available for the healthy controls in their study, a quantitative

comparison between manually segmented WMH and LOCATE's

WMH is lacking. In our analysis, LOCATE, as compared with

BIANCA's global thresholding, did perform significantly worse at

processing images with a low WMH load (see Supplementary Analy-

sis). LOCATE undoubtedly had more true positives, resulting in signifi-

cantly higher sensitivity, but this came at the cost of a three-fold

higher false positive rate (see Table S12). Hence, all other metrics

(DSC, OER, DER, H95, and FPR) showed worse outcomes for

LOCATE compared with BIANCA's global thresholding in our dataset.

In addition, the WMH volumes LOCATE provided deviated signifi-

cantly from the WMH volumes of the gold standards due to the high

number of false positives in LOCATE. Ling et al. (2018) validated

BIANCA with different input modalities (single FLAIR or FLAIR +

T1w), in a cohort of patients with CADASIL using a semimanually gen-

erated gold standard of 10 subjects per modality. In their dataset,

which contained an extremely high WMH load, they received higher

DSC metrics for 2D and 3D images compared with our results, while

the volumetric agreement was very similar to ours with the global

threshold method. In the study by Vanderbecq et al. (2020), the ICC

determined with their “clinical routine data set” (patients who were

referred for assessment of cognitive impairment) with a 3D FLAIR +

T1w image input was comparable to ours with the 2D FLAIR + T1w

input, whereas the ICC determined with their “research data set”
(ADNI dataset; comprising mainly Alzheimer's and amnestic mild cog-

nitive impairment patients) with a merged dataset of 2D and 3D

FLAIR + T1w images as input, was lower compared with ours. Ling

et al. (2018) found that BIANCA tended to overestimate the WMH

volumes in subjects with a low WMH load and underestimate it in

subjects with a high WMH load. According to them, in a group of

healthy elderly people with a low WMH exposure, such a bias would

be unlikely to be identified. In both BIANCA 2D and 3D we did not

detect systematic biases but revealed one clear underestimation in

the subject with the highest WMH load in the 2D FLAIR images, and

one pronounced overestimation in a subject with medium WMH load

in the 3D FLAIR images (see Bland–Altman Plot Figure 4, panel a and

b). With a similar approach, using the absolute mean WMH volume

differences to the gold standards, we were able to show that the

mean WMH volume differences of the WMH volumes of BIANCA are

the results of random averaging over inaccurately estimated WMH

volumes (see Table S8). Given that the focus of our study was to com-

pare different algorithms in terms of costs and benefits, we did not

test other settings for BIANCA but adhered to the default settings

suggested in the original BIANCA validation. To our knowledge,

BIANCA and LOCATE have not yet been validated with a longitudinal

dataset.

4.2 | Comparison of the algorithms with each
other

The quality assessment of the algorithms is critically based on fully

manually segmented WMH (gold standards). In order to prove con-

struct validity, 16 gold standards per modality (T1w, 2D FLAIR, and

3D FLAIR) were correlated among each other and with the respective

WMH volume outcomes of the algorithms (see Figure 5).

The strong correlations (mean r = .97, p < .05) we identified

between the WMH volumes of the gold standards indicate a very high

validity for our gold standards. When evaluating association of the

volumes provided by the different methods and the volumes of their

respective gold standard, the highest correlations were found for

UBO Detector 3D, followed by UBO Detector 2D, FreeSurfer T1w,

BIANCA 2D, and BIANCA 3D. This correlation pattern is interesting

and partly unexpected, especially when considering that BIANCA was

the only algorithm that was fed with a customized training dataset for

every modality (based on 2D and 3D FLAIR images). In line with this,

very high associations were found between the WMH volumes
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estimates of UBO Detector 2D and 3D FLAIR, while the

corresponding correlation was clearly smaller for BIANCA. Our results

are consistent with the recent study of Vanderbecq et al. (2020), who

also reported superior WMH segmentation accuracy of UBO Detector

compared with BIANCA.

Notably, the WMH volumes of FreeSurfer correlated very highly

with both UBO Detector outputs but less strongly with volumes esti-

mates provided by BIANCA, which may be due to the outlier WMH

segmentations BIANCA produced. On the other hand, the WMH vol-

umes extracted by FreeSurfer were generally smaller than the outputs

of UBO Detector and BIANCA. We would like to emphasize that

FreeSurfer is the only algorithm that even underestimated its “own”
gold standard. This WMH volume underestimation also affected the

accuracy metrics (DSC, Sensitivity, OER, and ICC), which were signifi-

cantly worse for FreeSurfer compared with the other algorithms.

Regarding H95 and DER, BIANCA 3D FLAIR performed best. On the

flip side, BIANCA showed the weakest correlation with the Fazekas

scores, and the larges residual variances in the LMMs. In line with the

latter, BIANCA 2D and 3D FLAIR had the highest number of outliers

WMH volumes compared with the other algorithms, which can be

clearly detected in the within-subject trajectories. Some studies report

annual percentage increases in WMH volumes in the range between

12.5 and 14.4% in subjects with early confluent lesions, and 17.3 and

25.0% in subjects with confluent abnormalities (Duering et al., 2013;

Ramirez et al., 2016; Sachdev, Wen, Chen, & Brodaty, 2007;

R. Schmidt et al., 2003; van Dijk et al., 2008). Ramirez et al. (2016)

summarized the progression rates of WMH volumes in serial MRI

studies in their Table 2, showing a wide variability of ranges. In our

study, the annual WMH volume increases based on BIANCA's estima-

tions [e.g., 31.85 ± 76.5% (M ± 1SD) for BIANCA 2D] were clearly

higher than the changes reported in the literature and they were also

higher than the changes detected with UBO Detector and FreeSurfer

in this study (see Table S10), which is likely also related to the outlier

segmentations that influenced segmentation's reliability. Having a

closer look on the segmentation variability of the algorithms by means

of the Bland–Altman plots, which illustrate data of the subsample

(N = 16) used for the manual segmentation (see Figure 4, panel a and

b), we observed that the limits of agreement are wider in BIANCA

than in UBO Detector. Moreover, the 2D and 3D FLAIR image plots

show strong outliers (under- and overestimations). Interestingly, in

this subsample the single deviations in BIANCA's output seem to can-

cel each other out and result in a mean WMH volume that is very sim-

ilar to the gold standard's WMH volume (see Table S8).

From analyzing the validation of the algorithms, we can conclude

that with our subsets UBO 2D/3D and FreeSurfer T1w, as compared

with BIANCA 2D/3D, performed more robust and also more consis-

tently across time. Future research needs to evaluate if the segmenta-

tion errors BIANCA produced with our longitudinal dataset also occur

in the context of other datasets.

One general problem in the context of automated WMH lesion

segmentation using FLAIR images is the incorrect inclusion of the sep-

tum pellucidum, the area separating the two lateral ventricles, in the

output masks. This area appears hyperintense on FLAIR sequences,

and therefore, looks very similar to WMH. When erroneously

detected as WMH, the septum pellucidum enters the output volumes

as a false positive region, which leads to an overestimation of the

WMH volume. The UBO Detector developers also segmented the

septum pellucidum in their gold standard (see their Figure S1b). Since

they already fed their algorithm with this false positive information, it

was to be expected that UBO Detector would also segment the sep-

tum pellucidum in our data, which may have caused the worse DER

compared with FreeSurfer and BIANCA.

4.3 | Strength and limitations

The main strengths of this study are the validation and comparison of

three freely available algorithms using a large longitudinal dataset of

cognitively healthy adults. Importantly, we used fully manually seg-

mented gold standards in all three planes (sagittal, coronal, and axial)

and for three different MR modalities (T1w, 2D FLAIR, and 3D FLAIR)

by multiple operators, who reached excellent interoperator agree-

ments. Besides the manual segmentations, our study features Fazekas

scores for the whole dataset, which were used to cross-validate the

WMH volumes provided by the segmentation algorithms.

One limitation of this study is that we applied the algorithms to

only one sample and that this sample was homogeneous with respect

to its low lesion load. Future studies should determine how well these

results generalize to other studies, scanners, sequences, and heteroge-

neous datasets including clinical populations.

4.4 | Usability of the algorithms

Given that the algorithms for WMH extraction are usually not

implemented by trained programmers, usability is an important issue

to mention in the context of this work.

FreeSurfer has not been specifically programmed for WMH

detection, but is a tool for extensive analysis of brain imaging data.

Because of all the other parameters FreeSurfer outputs besides WMH

volume, the processing time is very long (many hours per session).

The FreeSurfer output comprises the total WMH volume and the total

non-WMH volumes (gray matter).

UBO Detector has been specifically programmed for WMH

detection, and has been trained with a “built-in” training dataset.

Theoretically, it is possible to train the algorithm using a previ-

ously manually segmented gold standard. However, this proce-

dure only works within the Graphic User Interface (GUI) in

DARTEL space, and is very time-consuming. The output from

UBO Detector is well-structured and contains among others the

WMH volume and the number of clusters for total WMH,

PVWMH, DWMH as well as WMH volumes per cerebral lobe. For

subset 2, the whole WMH extraction process (incl. Pre- and post-

processing) took ~14 min per brain with the computing environ-

ment specified in the methods section. For subset 3, the WMH

extraction took ~32 min per brain.

1496 HOTZ ET AL.



BIANCA is a tool integrated in FMRIB's Automated Segmentation

Tool (FSL; Zhang, Brady, & Smith, 2001) with no need of any other

program. It is very flexible in terms of MRI input modalities that can

be used and offers many different options for optimization. The out-

put of BIANCA comprises the total WMH. If required, a distance from

the ventricles can be selected to PVWMH and DWMH. In a longitudi-

nal study with many subjects and time points, or also in a study with a

big sample size, the aggregation of the algorithm output files seemed

to be very time-consuming because of the many output files. Our

preprocessing steps for BIANCA took about 2:40 hr per subject for

the preparation of the templates and about 1:10 hr per session for the

preparation of the T1w, 2D, and 3D FLAIR images. After

preprocessing, BIANCA required about 1:20 hr per session for setting

the threshold for both FLAIR images, and the WMH segmentation

took about 4 and 8 min per session for the 2D FLAIR and 3D FLAIR

images, respectively.

5 | CONCLUSIONS

The main aim of the current study has been the comparison and valida-

tion of three freely available algorithms for automated WMH segmen-

tation using a large longitudinal dataset of cognitively healthy adults

with a relatively low WMH load. Our results indicate that FreeSurfer

underestimates the total WMH volumes significantly and misses some

DWMH completely. Therefore, this algorithm seems not suitable for

research specifically focusing on WMH and its associated pathologies.

However, given the high associations with the Fazekas scores and its

longitudinal robustness, FreeSurfer's suitability for clinical practice

could be further explored in future studies. BIANCA performs largely

well with respect to the accuracy metrics. However, many outlier seg-

mentations were identified when the algorithm was applied to the lon-

gitudinal dataset, which likely contributed to the lower correlations of

BIANCAs WMH volume estimations with the volume estimations of

the other algorithms as well as with the Fazekas scores and age. UBO

Detector, as a completely automated algorithm, scores best regarding

the costs and benefits due to its fully generalizable performance.

Although UBO Detector performs very well in this study, improve-

ments in accuracy metrics, such as DER and H95, would be desirable

for it to be considered as a true replacement for manual segmentation

of WMH. In general, this study confirms the importance of validating

the algorithms based on longitudinal datasets—especially in the studies

with large samples, where it is not feasible to visually check and verify

every single image and its WMH segmentation.
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