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Measuring multiple evolution 
mechanisms of complex networks
Qian-Ming Zhang1,2,4, Xiao-Ke Xu3, Yu-Xiao Zhu1,4 & Tao Zhou1,4

Numerous concise models such as preferential attachment have been put forward to reveal the 
evolution mechanisms of real-world networks, which show that real-world networks are usually 
jointly driven by a hybrid mechanism of multiplex features instead of a single pure mechanism. To 
get an accurate simulation for real networks, some researchers proposed a few hybrid models by 
mixing multiple evolution mechanisms. Nevertheless, how a hybrid mechanism of multiplex features 
jointly influence the network evolution is not very clear. In this study, we introduce two methods 
(link prediction and likelihood analysis) to measure multiple evolution mechanisms of complex 
networks. Through tremendous experiments on artificial networks, which can be controlled to 
follow multiple mechanisms with different weights, we find the method based on likelihood analysis 
performs much better and gives very accurate estimations. At last, we apply this method to some 
real-world networks which are from different domains (including technology networks and social 
networks) and different countries (e.g., USA and China), to see how popularity and clustering co-
evolve. We find most of them are affected by both popularity and clustering, but with quite different 
weights.

Many social, technological networks evolve over time after they are established. Previous studies have 
revealed that real networks possess many different structural features, like various degree distribution1, 
different levels of clustering2, existent or nonexistent communities3, assortative or disassortative mixing 
pattern4, long or short average shortest distance, and so on, which attract much attention on building 
models to mimic the network evolution5,6. Meanwhile, the latent mechanisms are also fruitful such as the 
rich-get-richer7, the good-get-richer8, the stability constrains9, homophily10, clustering11 etc. However, 
using one pure mechanism is usually insufficient to depict real-world networks precisely because of those 
different aspects of features. Therefore, researchers mixed different mechanisms in order to get better 
simulation, like the mixture of clustering and preferential attachment11,12, popularity and randomness13, 
popularity and similarity14, topology distance and geographical distance15, and so on. In all, networks 
are likely to be driven by multiple mechanisms, and we are inspired to raise a question: is it possible to 
measure the contribution of each mechanism in the network evolution?

The inchoate way to evaluate network model or underlying mechanism is based on the comparison 
between some selected structural features. It supposes a model is better than another one if its generated 
network is more close to the target network in terms of those selected features. But such method cannot 
be well validated since no one has the fair standard to select representative ones from countless struc-
tural features. Without considering any specific structural feature, we had proposed a method based on 
likelihood analysis to fairly evaluate network models16. Therein, we can calculate the appearing likelihood 
for each newly created link according to the model’s mechanism, and then multiply them together to 
get the likelihood of the set of new links. For a group of models, the one giving the highest likelihood is 
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considered to be the most suitable one. This method is inspired by the link prediction approach, which 
aims at estimating the likelihood of the existence of a link based on the observed links17. According to 
this definition, if the principle of a link prediction algorithm is consistent to the mechanism of a given 
network, this algorithm should provide accurate predictions. Therefore, one can also evaluate the latent 
mechanisms according to the prediction results of the corresponding link prediction algorithms18,19. In 
this paper, we take the likelihood analysis and link prediction methods into consideration because they 
are both free of any specific structural features. To our knowledge, the above methods have only been 
applied to judge which mechanism is better given a series of mechanisms, but have never been applied 
to measure the contributions of multiple mechanisms in network evolution.

The core idea of the above methods is to estimate the appearing likelihood of links, which inspires us 
to measure the contributions of multiple mechanisms by calculating the likelihood using all the mech-
anisms simultaneously. Therefore, we design a formula to re-calculate the likelihood for every link by 
assigning each mechanism an tunable weight. The optimal group of weights are the ones maximizing the 
likelihood of all links (likelihood analysis method) or the prediction accuracy (link prediction method). 
To testify the effectiveness, we produce numerous model networks which can be controlled to follow 
multiple mechanisms with different weights, such as popularity, clustering and randomness. Through 
comparing the estimated contributions with the known weights, we find both of the methods are effective 
to judge which mechanism is stronger. In particular the one based on likelihood analysis can give very 
accurate estimations. Further, we discuss the advantage of likelihood analysis method and the disadvan-
tage of the link prediction method which leads to its worse performance. At last, we apply the likelihood 
analysis method to different kinds of real-world networks to see how popularity and clustering co-evolve 
in real complex networks. These networks are collected from different domains, including technology 
networks and social networks, and from different countries, e.g. USA and China. The results show that 
most of these networks evolve with both mechanisms but with quite different weights.

The main contributions are two folds. In the theoretical aspect, we clarify that the multiple mecha-
nisms of complex systems can be measured in a quantitative way, and provide a unified, efficient and 
extensible measurement method. In the aspect of specific conclusions, we find some interesting proper-
ties for real-life networks. For example, the clustering mechanism widely exists in any social networks, 
while in the platform mainly designed for social activities (Facebook and Flickr) the clustering effect is 
much stronger than in the platform where the primary demands of users are not social intercourse, such 
as to watch videos in Youtube and to read blogs in ScienceNet. In addition, we showed that the evolving 
mechanisms may remarkably change in time for some real networks (e.g., Internet), so the links asso-
ciated with new nodes are created with different reasons by links between old nodes, which are usually 
ignored in known models, but in accordance with some experimental studies on Internet, such as20,21.

Results
Measurement methods. Given two snapshots of an evolving undirected network at time t1 and t 2 
(t t1 2< ), denoted by G V E( , ) and G V E′( ′, ′) respectively, where V  (V ′) and E (E ′) are the sets of nodes 
and links respectively. The set of new links is = ′−E E Enew . In the following we firstly introduce two 
previous methods of evaluating underlying mechanisms in network evolution, and then present how we 
measure contributions of multiple mechanisms.

One method is based on likelihood analysis16, of which the key idea is to estimate the appearing 
likelihood for each new link by multiply the probabilities of selecting its two endpoints. For example, if 
the links are all randomly created, the likelihood of each link x y( , ) can be calculated by l xy N N

1 1= ⋅  
where N  is the number of nodes of the network. Then, we can get the likelihood for all the new links 
according to lx y E xynew

 = ∏( , )∈ . For a group of models, we can calculate  for each of them, and the one 
with the highest likelihood  is considered to be the most suitable one.

The other method is based on link prediction18,19. The link prediction index would assign a score, 
following some certain principle, to each non-observed links, including new links E new and nonexistent 
links E non ( = − −E U E Enon new, where U  is the universal set containing all V V 1 2( − )/  links). 
Then we can rank these links in descending order. A link prediction index is good if it can assign the 
new links higher rankings compared with the nonexistent links. To measure it in a quantified way, we 
introduce the AUC value (area under the receiver operating characteristic curve17,27) which will be dis-
cussed in detail in Materials and Methods. Then we assume that a mechanism is more suitable to depict 
the network evolution if the corresponding link prediction algorithm results in a higher AUC.

As described above, the key points are both to estimate the likelihoods of links. We are motivated to 
re-estimate the likelihood by considering all the mechanisms with tunable parameters (which must sum 
to 1) indicating their contributions. According to the probability theory, we define the likelihood of link 
x y( , ) as the expectation of the likelihoods for all the mechanisms, written as
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where m is the number of considered mechanisms. Thus, for the method based on likelihood analysis, 
we expect the group of parameters which maximize E lx y xynew∏ ∈( , )  would indicate the contribution of 
each mechanism. Similarly, for the method based on link prediction model, the group of parameters 
which maximize the prediction accuracy (AUC) would indicate the contribution of each mechanism.

Comparisons between the two methods. To examine the effectiveness of the measurement meth-
ods, we apply them to model networks of which the evolution can be controlled. Two well-known mech-
anisms, popularity and clustering, are firstly taken into consideration. Popularity denotes that the nodes 
with higher degree are more attractive, while clustering suggests that the links which can form more 
triangles is more preferred. The model network evolves beginning with a loop consisting of five nodes. 
It grows following two rules at each step:

1. add one new node with one new link which connects this new node to one old node;
2. add 3 links, but self-loops and multi-links are not accepted.

Every new link is created following either popularity mechanism or clustering mechanism, which is 
controlled by a tunable parameter p ranging from 0 to 1. p 0=  means all the links are created following 
popularity mechanism, while p 1=  means all the links are created following clustering mechanism.

To implement popularity mechanism, we choose preferential attachment which was depicted by 
Barabási and Albert in7. They defined the probability of selecting node x for new links as k

k
x

z V z∑ ∈

. Similarly, 
for clustering mechanism we use the number of common neighbors to measure the likelihood of creating 
a link between x and y. In detail, we firstly select a node x for the new link, and then select the other 
node preferentially according to the probability x y

x zz x

∩
∩

Γ( ) Γ( )

∑ Γ( ) Γ( )≠

, where xΓ( ) is the set of neighbors of x

. Node x is selected randomly to differ from popularity mechanism. Notice that, the new link which is 
added with the new node at each step, cannot be created if following the current clustering mechanism. 
So we randomly select an old node to form this new link to differ from preferential attachment. By tun-
ing p from 0 to 1 with step-length 0.1, we respectively produce 100 model networks for every p. Then 
the question can be simplified to estimate the value p for each model network through equation (1).

Link prediction method. Corresponding to the implementation of popularity mechanism, there has 
been proposed a link prediction index named Preferential Attachment (PA) index which is defined as 
the product of the degrees of two nodes, written as s k kxy x y

PA = × 7,17,22. There also has been proposed 
Common Neighbor (CN) index22 which is accordant with the clustering mechanism, written as 
s x yxy

CN ∩= Γ( ) Γ( ) . Notice that, many node pairs have the same number of common neighbors, or 
no common neighbor, which leads to the indistinguishable sxy

CN and the degeneracy of states23. To tackle 
such problems but keeping the predictive power of CN index invariant, we add a small random number 

0 0 01ε ∈ ( , . ) to every sxy
CN, rewritten as s x yxy

CN ∩ ε= Γ( ) Γ( ) + . Because s k kxy x y
PA = ×  is much 

larger than ε≤ ( , ) +s k kminxy x y
CN , we must normalize the sxy

PA and sxy
CN when we combine them. 

Otherwise sxy
CN will not function unless it is strengthened. Thus we define the hybrid index as

s s s1 2xy xy xy
PA CNλ λ= ( − ) + , ( )
 

where sxy
PA and sxy

CN are the normalized values by the mean sxy
PA and sxy

CN respectively. In detail, 
s s sxy xy xy

PA PA PA= / , and s s sxy xy xy
CN CN CN= / , where •  is the mean value of •. By tuning λ ranging from 

0 to 1, we can easily find the optimal λ which maximizes the prediction accuracy (AUC). Need to notice 
that, CN index can not work if any endpoint of a new link appears after t1. So we remove all the new 
links with such nodes when to implement the link prediction method. To keep unanimous, such new 
links are also ignored when applying the likelihood analysis method.

Likelihood analysis method. This method16 defines the likelihood of a link x y( , ) as the multiplica-
tion of the likelihoods of selecting node x and y. Thus, lxy

popu can be easily defined as k
k
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. Then the likelihood of x y( , ) has the 

format

l l l1 3xy xy xy
popu clusλ λ= ( − ) + . ( )

This model aims to maximize the likelihood of all the new links, written as
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l
4x y E

xy
new

 ∏=
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Thus, we can also obtain the optimal λ which maximizes . Notice that if x y 0∩Γ( ) Γ( ) = , lxy
CN 

will be meaningless. Please see the solution in Materials and Methods, where we also define l xy if we 
consider new links without the limitation of new nodes.

In Fig. 1, we present the trends of AUC values (subfigure (a) and (b)) and  (subfigure (c)-(h)) with 
the increasing λ. The contributions of popularity mechanism and clustering mechanism can be estimated 
through the peak values. We can see that the optimal λ resulted from both the two methods increase 
when p grows bigger. For intuitive observation, we figure out the correlation between p and the optimal 
λ in Fig. 2(a). The likelihood analysis method gives very accurate estimation while the link prediction 
method fails when p is large. The reasons of such failure are three folds: (i) CN mechanism embodies 
the principle of preferential attachment to some extent; (ii) the link prediction method provides too 
rough descriptions for the links; (iii) the link prediction model is not appropriate to measure the mech-
anisms’ contributions.

Firstly, CN mechanism embodies the principle of preferential attachment because two nodes with 
large degrees have higher chance to have common neighbors. However, PA never considers the number 
of common neighbors shared by any node pair. When p is small, few new links are restricted to form 
triangles. It’s easy to distinguish CN mechanism from PA mechanism because most new links shares few, 
even no common neighbors. When p becomes larger, although the formation of triangles become pop-
ular, the new links with many common neighbors also tend to have high-degree endpoints. There also 
exist many new links with few common neighbors but high-degree endpoints. These links lead to the 
failure of the link prediction method. We will explain it in detail through an example along with the third 
reason. However, this problem caused by the network model restricts the link prediction method but 
does not influence the likelihood analysis method. That should be due to the advantages of the likelihood 
analysis method, which are discussed as below.

The second reason is the loser’s rough descriptions of the links compared with the winner. For exam-
ple, suppose there are two pairs of unconnected nodes x y( , ) and u v( , ), which both have two common 
neighbors, but the degrees of x and y are much higher than those of u and v. The probabilities that these 
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Figure 1. Measuring popularity and clustering based on link prediction method and likelihood analysis 
method respectively. The contributions are estimated through the peak values. Subfigure (a) and (b) present 
the average values of AUC resulted by link prediction method, which are obtained by averaging 100 
implementations through 100 model networks. The others present the values of  resulted from likelihood 
analysis method. Therein, each curve corresponds to one model network. λ corresponds to the coefficient in 
equation (1). p denotes the contribution of clustering mechanism in the model networks. Because the 
likelihoods for the networks are not in the same order of magnitude, we use 12xxx instead of the exact 
values. 12xxx means an uncertain value above 11999 and below 13000.
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links appear is obviously quite different, but the CN index assigns them the same values, i.e., s sxy uv
CN CN= . 

In contrast, the likelihood analysis method can strongly distinguish them by applying probabilistic meth-
ods. Following the definition, we can get the likelihoods,

l
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and luv in the similar form, which are proved in Materials and Methods. Obviously, l xy is far different 
from luv,  because xΓ( )  and yΓ( )  are much larger than both uΓ( )  and vΓ( ) .

At last, in link prediction method, each new link needs to be compared with all the (sampled) non-
existent links. So that we can find the best link prediction index which assigns the new links with higher 
rankings compared with those nonexistent links. But when we try to improve the new links’ rankings by 
tuning λ, there always exist some links whose rankings fall because of the improved rankings of some 
nonexistent links. That is to say, the nonexistent links, which are indispensable in the link prediction 
model, become the barriers to measuring the mechanisms’ contributions. By comparison, the likelihood 
analysis method aims to optimize the overall likelihood of the new links as a whole. Until now, many 
researches discussed that some properties only emerge at the global level but vanish at the individual 
level, such as the function of the organs, the power-law distribution of displacement on the group level 
but not on the individual level24, and so on. In our case, although the new links are created following CN 
mechanism when p 1= , some of them might seem to be following PA mechanism as they have 
high-degree endpoints. Unless we consider the overall likelihood of these links, we cannot obtain the 
accurate estimation. Moreover, the likelihood analysis method shakes off the effect of the nonexistent 
links. In fact, many pairs of nonexistent nodes are deemed to be linked with high probability. These pairs 
of nodes would lead us astray if they are treated as the reference standard in the link prediction method. 
For clarity, we generate a small network following CN mechanism to explain such failure. As shown in 
Fig. 3, new links are marked by red dash lines and Newi. We also select six nonexistent links marked by 
Noni to make comparisons. Clearly we can see that the node pair with high sCN usually has high sPA, 
which is caused by the embodied preferential attachment principle. Such effect makes the estimation 
difficult. At first, we rank the links according to sCN, Non1 and Non2 are only behind New1. Then we 
introduce sPA, the rankings of New2 and New3 are improved due to their larger sPA, while Non2 with 
lower sPA gets a lower ranking. Notice that, the prediction accuracy can benefit from such changes. 
However, we also need to notice the change happened on Non1, which will lower the accuracy. Non1 
has both high sCN and sPA but belongs to nonexistent links. This is the ungovernable effect what we 
referred before. Adopting such link as the reference standard, it is difficult to obtain the accurate estima-
tion.

As above, the likelihood analysis method wins due to its two advantages: the exact description of indi-
vidual link, and the global perspective of description of all the new links. These two points are both indis-
pensable. By comparison, the link prediction method is limited by its rough description of individual link, 
and the ungovernable effect of nonexistent links. To be more stringent, we redefine the CN index to get 
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Figure 2. Correlation between the optimal λ and p. p is the known proportion of clustering mechanism 
compared to popularity mechanism. λ is the estimated value by the measurement method in this paper. 
Subfigure (a) represents the comparison between link prediction method and likelihood analysis method, 
where no new links with new nodes are considered. Subfigure (b) only shows the results of likelihood 
analysis method without the limitation of new nodes.
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more accurate description of individual link by sxy
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which has the same form to the equation of the likelihood analysis method. But it still failed, as shown in 
Figure S1 in the Supporting Information. The result implies the effect of the nonexistent links is the main 
reason.

In Fig. 2(b), we show another advantage of the likelihood analysis method. Due to the drawback of 
link prediction model, we do not consider the new links with new nodes in Fig. 2(a), but such new links 
do not limit the effectiveness of likelihood analysis method. Actually, they can improve the accuracy of 
the estimation a little bit.

Verification through model networks with more mechanisms. Without loss of generality, we 
examine the winner through model networks driven by more mechanisms. Thus we introduce random-
ness mechanism, which means that the endpoints of new links are all randomly selected. Similarly, the 
model networks start evolving from a loop consisting of five nodes. At each step, one new node with one 
new link and three other links are added. Every link is created following Randomness mechanism with 
probability prand, clustering mechanism with probability pclus or popularity mechanism with probability 
ppopu

, where p p p 0 1rand clus popu, , ∈ 

, 
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Figure 3. Example network driven by clustering mechanism only, and comparisons between the new links 
and some selected nonexistent links. Red dash links represent new links which are created following the 
clustering mechanism. Newi represents the IDs of new links, while Noni represents the IDs of nonexistent 
links. The two end nodes of the link are labeled as n1 and n2. sCN is the number of common neighbors 
between n1 and n2, corresponding to Common Neighbor Index. sPA is calculated through Preferential 
Attachment Index. The numbers in “rankCN” column are the rankings based on sCN (corresponding to 
λ =  1), while those in “rankHyb” column are the rankings based on s s0 8 0 2CN PA. + . (corresponding to 

0 8λ = . ).
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Red spots denote the estimated values resulted from likelihood analysis method. Green rectangles mean the 
theoretical values.
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By calculating the  through equation (4), we can plot every group of estimated values p{ rand, pclus, 

}ppopu
, in a three-dimensional space. As shown in Fig. 4, red spots denote the estimated values, while 

green rectangles show the locations of the theoretical values. The tight fitting again reflects the accurate 
estimation resulted by likelihood analysis method.

Measuring popularity and clustering for real networks. Inspired by the effectiveness of the meas-
urement method, we try to understand how popularity and clustering mechanism affect real-world net-
works. We collected nine networks including internet, social networks, communication networks and 
collaboration networks. Each of them is divided into two parts based on time stamps — observed links 
and new links (see details in Materials and Methods and Table 1).

By calculating the likelihood of new links with equation (4), we can also easily find the optimal λ for 
every real network, indicated by the peaks of blue dash curves in Fig. 5. Obviously, the clustering mech-
anism widely exists in any social networks, but takes on different roles. The clustering effect is much 
stronger in the platform Facebook and Flickr, which are mainly designed for social activities where 
people tend to form clusters. Differently, in the platform of Youtube, ScienceNet and Epinions, the clus-
tering effect loses to the popularity effect, because the primary demands of their users are not social 
intercourse but to watch videos (in Youtube), read blogs (in ScienceNet) and rate products (in Epinions). 
It does make sense because people who have better resources (e.g., excellent videos, great blogs) also hold 
greater appeal. In the collaboration network (Coauther), clustering and popularity also co-exist. The 
existence of Clustering mechanism is natural, because many scientists have their own groups where 
advisors and students usually collaborate with each other. Popularity mechanism is also plausible, because 
famous groups are more competitive to attract researchers. In the next experiment, we can see that clus-
tering effect would be a little stronger after they created the first link.

We further study the mechanisms for the new links among old nodes only, to observe the effect of 
new users. As shown by the red curves in Fig. 5, the optimal λ tends to fall on different positions com-
pared with the blue dash curves. The differences are not obvious in the online social platforms, but is 
significant in technology networks and collaboration networks. Such differences show that the evolving 
mechanisms may remarkably change in time, and the links associated with new nodes are created with 
different reasons by links between old nodes. This result on Internet is accordance with some previous 
experimental results20,21. Similarly, in the collaboration network, after a researcher joins a new group, he 
will develop more cooperations with other members.

Discussion
Analyzing network evolution is not only a fundamental problem, but also a long-standing challenge in 
the network science domain. Previous studies focused on uncovering new mechanisms or improving 
some known mechanisms. In this paper, we started a new question that is to quantitatively measure the 
contributions of multiple mechanisms which affect the evolution of complex networks simultaneously. 
Motivated by previous studies, we compared two measurement methods which are based on link pre-
diction and likelihood analysis respectively. Although the core ideas are both to estimate the likelihood 
for newly created links, the link prediction method fails in some cases. By analyzing their differences, 
we found the likelihood analysis method successfully captures the characteristics of new links on the 
individual level, and the overall property of new links on the group level as well. In fact, many researches 

Networks V E C r k H Vnew Enew Enew ′

AS 22960 49545 0.354 − 0.196 4.32 62.34 2143 9723 6346

Internet 23670 47079 0.334 − 0.202 3.98 64.63 1856 5333 2824

SN 39748 249685 0.271 − 0.163 12.56 33.44 692 8213 6541

Epinions 117719 640152 0.251 − 0.07 10.88 21.21 13861 71058 29548

Youtube 1022090 2690294 0.177 − 0.033 5.26 90.03 116409 300149 122287

Flickr 1486725 11786888 0.379 − 0.02 15.86 50.59 4060 64734 57882

FB 59699 735380 0.25 0.181 24.64 3.47 4032 81710 70850

FBC 43590 165070 0.130 0.22 7.57 3.15 2223 18342 15249

Coauthor 10093 15432 0.704 − 0.017 3.06 4.66 838 1716 459

Table 1.  The basic information of the real networks. V  is the number of nodes and E  is the number of 
links before t1. C and r are clustering coefficient25 and assortative coefficient4, respectively. k  is the average 
degree of network. H denotes the degree heterogeneity defined as H k

k

2

2= . V V Vnew = ′ −  and 

E E Enew = ′ −  are the numbers of new nodes and links during t t1 2( , ). Enew ′  denotes the number of new 
links among old nodes only.
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have discussed that some features or functions emerge on the group level but vanish on the individual 
level, such as the function of the organs, the collective behaviors of the ant colonies, the power-law distri-
bution of displacement on the group level but not on the individual level24, etc. As a result the likelihood 
analysis method has the ability of producing very accurate estimations.

The likelihood analysis method is promising because it is highly extensible. The likelihood of new 
links can be easily estimated by counting the probabilities of choosing the two endpoints when given 
a mechanism. Moreover, this method is very efficient. Most of the computing time is consumed by the 
process of maximizing the likelihood, but this is a mature question in engineering. Therefore, it is pos-
sible to trace the evolution of complex systems in real time.

From the results of the real-world networks, we can clearly observe the combined action of popularity 
and clustering. The results here match our intuitive knowledge, but are more significant. For example, a 
network with high clustering coefficient25 is not necessarily driven by clustering mechanism, but prob-
ably the byproduct of another mechanism such as the spatially preferential attachment mechanism26. 
Moreover, the value of clustering coefficient is usually dependent on the scale of networks, i.e., large 
scale networks usually have small clustering coefficient compared with small scale networks. None of the 
above cases can limit the likelihood analysis method, because the measurement of the links is directly 
based on the probability of selecting the endpoints following the given mechanism. In addition, we also 
showed that the evolving mechanisms may remarkably change in time for some real networks. Due to 
the efficiency of the likelihood analysis method, it is possible to trace the evolution of the networks and 
even the mechanisms. Our results suggests that the multiple mechanisms of complex networks can be 
measured in a quantitatively unified and efficient way. In future, we expect that the framework in this 
study can be used to provide some insights in understanding complex systems.

Materials and Methods
Link Prediction Method. Given G V E( , ), a link prediction index can assign every non-observed link 
(including Enew and Enon) a score, according which we can rank these links in descending order. An 
index is regarded as better if it can order the links in Enew with higher rankings than another index does. 
This is how we seek optimal λ in this paper.
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Figure 5. The optimal λ of likelihood analysis method for real networks. Blue dash curves represent the 
likelihood calculated through new links without the limitation of new nodes, while red curves represent the 
likelihood calculated through new links without new nodes.



www.nature.com/scientificreports/

9Scientific RepoRts | 5:10350 | DOi: 10.1038/srep10350

To compare the indices in a quantified way, we introduce AUC (area under the receiver operating 
characteristic curve27) to measure the accuracy of prediction based on the rankings. It can be interpreted 
as the probability that a randomly chosen new link (a link in E new) is given a higher score than a ran-
domly chosen nonexistent link. In the implementation, among n times of independent comparisons, if 
there are n′ times the new link having higher score and n″ times the new link and the nonexistent link 
having the same score, we define the AUC value as17:

n n
n

AUC 0 5
6=

′ + . ′′
. ( )

If all the scores are generated from an independent and identical distribution, the AUC value should 
be about 0.5. Therefore, the degree to which the AUC value exceeds 0.5 indicates how much better the 
algorithm performs than pure chance. Need to notice that, the calculation of AUC is based on statistical 
theory, so the result of equation (5) will be more approximate to the real value if we assign n a larger 
number. We have discussed the proper value of n in the book named Link Prediction28. That is, if we 
expect to get the AUC value with error less than 0.001 at the 90% confidence level, n should be no less 
than 672400. So in our experiments, we set n 673000= . The derivation process is presented in 
Supplementary Information.

Likelihood Analysis Method. In this method, we need to consider three cases for a chosen link 
x y( , ): (i) either x or y is a new node, which appears after t1; (ii) both x and y are new nodes; (iii) both 

of them are old nodes.
For popularity mechanism, if one of them is new node, supposed as x, then l 1xy

k

k
popu y

z
= ×

∑
, where 

z V∈ . If both of them are new nodes, l 1xy
popu = . And if both of them are old nodes, lxy

k
k

k

k
popu x

z

y

z
= × .
∑ ∑

For clustering mechanism, once x or/and y are new nodes, no common neighbor they would share. 
Then we define, according to the implementation of clustering mechanism, l 1xy N

clus 1= ×  if one of them 
is new node, and l 1xy

clus =  if both of them are new nodes. If both of x and y are old nodes, 

lxy N
x y

x z N
y x

y z
clus 1

2
1 1

z x z y( )= × + ×∩
∩

∩
∩

Γ( ) Γ( )

∑ Γ( ) Γ( )

Γ( ) Γ( )

∑ Γ( ) Γ( )≠ ≠
. Denote that, if x and y do not share any com-

mon neighbors, lxy
clus here needs be modified to keep  away from 0. In such case, we re-define 

lxy k N
clus 1 1

z
= ×
∑

 due to two reasons: (i) lxy
clus can not be 0, or else the product will be 0 too; (ii) lxy

clus must 
be small and may be variant for different networks. So we adopt the certain value which is not more than 
the probability of select one node following popularity mechanism.

For randomness mechanism, if one of x and y is new node, l 1xy N
rand 1= × . If both of them are new 

nodes, l 1xy
clus = . And if both of them are old nodes, lxy N N

clus 1 1= × .

Proof of Equation (5). 

The proof of 

=


 × + × ) = ( +



∩ ∩∑ Γ( ) Γ( ) ∑ Γ( ) Γ( ) ∑ ( − ) ∑ ( − )≠ ≠ ∈Γ( ) ∈Γ( )

l xy N x z N y z N k k
1
2

1 2 1 2 1 1
1

1
1z x z x z x z z y z

 can be 

reduced to proving x z k 1z x z x z∩∑ Γ( ) Γ( ) = ∑ ( − )≠ ∈Γ( ) . The number of common neighbors 
between x and z  is equal to the number of the 2-steps paths, denoted as x u zu∑ ( , , ), where 

x u z 1( , , ) =  if the path x u z( , , ) exists, namely u is the common neighbor of x and z; otherwise 
x u z 0( , , ) = . Then x x x u z x u zz x z x u u z x ∩∑ Γ( ) Γ( ) = ∑ ∑ ( , , ) = ∑ ∑ ( , , )≠ ≠ ≠ . Given the 

nodes x and u, x u zz x∑ ( , , )≠  can be considered as the amount of the 2-steps paths (x u z, , ). 
That is to say, both x and z  must be the neighbors of u. Therefore, the amount of the 2-steps 
paths is equal to u xΓ( ) −  because z x≠ , namely x u z k 1z x u∑ ( , , ) = −≠ . Moreover, 

x u z 0( , , ) =  if u is not connected to x directly, we can eventually prove that 
∩∑ Γ( ) Γ( ) = ∑ ∑ ( , , ) = ∑ ( − ) = ∑ ( − )≠ ∈Γ( ) ≠ ∈Γ( ) ∈Γ( )x z x u z k k1 1z x u x z x u x u z x z .

Data Description. We collect nine networks and divide every one of them into two parts --- observed 
links and future links (corresponding to E and Enew respectively defined in the previous section), basing 
on the time-stamps. The basic features are listed in Table 1.

(1) AS — Autonomous system (AS) within Internet is a collection of connected Internet Protocol net-
works and routers under the control of one entity. Route-views Project collected the Internet at the 
AS level at many different times, and here we use the data of June 2006 to compose the Observed 
Links and that of December 2006 to compose the Future Links21,29.

(2) Internet — The Internet can be viewed as a collection of autonomous systems (AS) whose snapshots 
was created weekly by CAIDA (Center for Applied Internet Data Analysis). Mislove downloaded the 
entire history of their measurements which covered the period from January 5th, 2004 until July 9th, 
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200730. In this paper, we choose the date November 20th, 2006 as the watershed of Observed Links 
and Future Links so the size of future links can be approximated to 10% of observed links.

(3) SN — ScienceNet (www.sciencenet.cn) is a virtual community for Chinese-speaking scientists. This 
data consisting of two snapshots — July 22nd 2013 and August 12th 2013, is newly crawled from the 
web site by Xing Yu.

(4) Epinion — Epinions (www.epinions.com) is an online product rating site where users are connected 
by trust or distrust relationships. In the simplest case, we neglect the types of connections. The ear-
liest link in the initial data31 was collected on September 1st, 2001, while the latest was on August 
11th, 2003.

(5) Youtube — YouTube (www.youtube.com) is a popular video-sharing site that also involves a social 
network. The initial data, consisting of links created before Jan. 15th 2007, was collected by Mislove30.

(6) Flickr — Flickr (www.flickr.com) is a photo-sharing site based on a social network. This data is col-
lected by Mislove et al.32 and consisting of 2570535 users and 33140018 links in total. Here we only 
use a small sample by choosing out the links with time stamps 2006-11-02 and 2006-11-03. The links 
created at 2006-11-03 are considered as future links and the rest of links compose the observed net-
work.

(7) FB — Facebook (www.facebook.com) is a social networking service and has over one billion users. 
The initial data in33 are crawled between January 20th, 2009 and January 22nd, 2009. The time of 
link establishment is signed by a UNIX time-stamp unless it can not be determined. We set all the 
undetermined time-stamps as 1.

(8) FBC — This data is from www.facebook.com but different from the friendships in FB. In this data, if 
a user u post to another user v's wall on Facebook, the directed link will be created from u to v. Since 
users may write multiple posts on a wall or their own wall, the network collected in33 allowed mul-
tiple edges and loops. In this paper, we remove the loops and redundant edges (multiple edges which 
have appeared before).

(9) Coauthor — This is a collaboration network from the e-print arXiv, which covers scientific collabo-
rations between authors whose papers are submitted to High Energy Physics - Theory category. The 
data covers papers in the period from January 1993 to April 200334. Notice that two authors may 
collaborate multi-times, which is simply represented by an unweighted link in this paper. The time-
stamps are determined by their first collaboration.
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