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Dynamic simulation of articulated soft robots
Weicheng Huang1,3, Xiaonan Huang2,3, Carmel Majidi 2✉ & M. Khalid Jawed 1✉

Soft robots are primarily composed of soft materials that can allow for mechanically robust

maneuvers that are not typically possible with conventional rigid robotic systems. However,

owing to the current limitations in simulation, design and control of soft robots often involve a

painstaking trial. With the ultimate goal of a computational framework for soft robotic

engineering, here we introduce a numerical simulation tool for limbed soft robots that draws

inspiration from discrete differential geometry based simulation of slender structures. The

simulation incorporates an implicit treatment of the elasticity of the limbs, inelastic collision

between a soft body and rigid surface, and unilateral contact and Coulombic friction with an

uneven surface. The computational efficiency of the numerical method enables it to run faster

than real-time on a desktop processor. Our experiments and simulations show quantitative

agreement and indicate the potential role of predictive simulations for soft robot design.
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Robots composed of soft and elastically deformable materials
can be engineered to squeeze through confined spaces1,
sustain large impacts2, execute rapid and dramatic shape

change3, and exhibit other robust mechanical properties that are
often difficult to achieve with more conventional, piece-wise rigid
robots4–10. These platforms not only exhibit unique and versatile
mobility for applications in biologically inspired field robotics,
but can also serve as a testbed for understanding the locomotion
of soft biological organisms. However, owing to the current
limitations with simulating the dynamics of soft material systems,
design and control of soft robots often involve a painstaking trial
and error process, and it can be difficult to relate qualitative
observations to underlying principles of kinematics, mechanics,
and tribology. Progress, therefore, depends on a computational
framework for deterministic soft robot modeling that can aid in
design, control, and experimental analysis.

Previous efforts to simulate soft robots have focused on Finite
Element Method11–16, voxel-based discretization17,18, and mod-
eling of slender soft robot appendages using Cosserat rod the-
ory19–21. Drawing inspiration from simulation techniques based
on discrete differential geometry (DDG) that are widely used in
the computer graphics community22, we introduce a DDG-based
numerical simulation tool for examining the locomotion of lim-
bed soft robots. The DDG approach starts with discretization of
the smooth system into a mass-spring-type system, while pre-
serving the key geometric properties of actual physical objects;
this type of simulation tool is naturally suited to account for
contact and collision23. In particular, we treat the robot as being
composed of multiple slender actuators that can be modeled
using elastic rod theories24–28. In order to achieve rapid simula-
tion runtimes, we adapt fast and efficient physically based com-
putational techniques that have gained traction within the
computer graphics community to model slender structures, e.g.,
rods29–31, ribbons32, plates33, shells34, viscous threads30,35, and
viscous sheets36. Despite the visual realism in these simulation
methods, these prior works do not comprehensively capture all
the physical ingredients for a physically accurate simulation of
fast moving articulated soft robots. Our numerical method inte-
grates these ingredients—frictional contact, material damping,
and inertial effects—into a discrete simulation framework to
achieve quantitative agreement with experiments. Recently, a
DDG-based formulation was used to model a caterpillar-inspired
soft robot in which the individual segments of the robot were
treated as curved elastic rod elements37. Although promising, this
formulation could not accurately capture inertial effects—a key
feature of fast moving robots—and did not incorporate the
necessary contact and friction laws required to achieve quanti-
tative agreement with experimental measurements.

Here, we employ a discrete representation of a soft robot and
incorporate Coulomb frictional contact, inelastic collision with
ground, and inertial effects in a physically accurate manner. The
mechanical deformation of the robot is associated with local elastic
(stretching and bending) energies at each discrete node. We for-
mulate these discrete elastic energies and, subsequently, the dis-
crete equations of motion representing the balance of forces using
principles from classical elastic rod theories29,38. Coulomb fric-
tional contact with uneven surface is integrated into the for-
mulation using the modified mass method33, such that a group of
constrained equations of motion can be implicitly updated
through a second order, symplectic Newmark-beta time integra-
tion scheme. As this integration scheme is momentum preserving,
it does not suffer from artificial energy loss—a well-known attri-
bute of first order Euler integration used in prior works with
discrete rod simulations29—and can capture the essential inertial
effects during the dynamic simulation of soft robots. The elastic/
inelastic collision between the soft robot and rigid ground can be

captured by the rate-dependent viscoelastic behavior of the soft
material, i.e., the damping coefficient in Rayleigh’s damping
matrix is used to precisely control the recovery factor during
collision and rebound39. Finally, the experimentally measured data
of a single actuator during one actuating–cooling cycle is fed into
our numerical framework for the investigation of soft robotic
dynamics. The result is a robust simulation tool that can run faster
than real-time on a single thread of a desktop processor. The
reliability of this simulation tool for making quantitative predic-
tions is systematically examined using three test cases. First, we
demonstrate that three empirically observed motion patterns of a
deformable rolling ribbon40 on a declined surface can be captured
by our simulator. Next, we build two types of soft robots made of
SMA-based limb: a star-shaped rolling robot composed of seven
radially oriented limbs and a jumper robot with a single limb. The
SMA-based robots were selected because of the ability to achieve
rapid dynamic motions in which both material deformation and
inertia have a governing role41,42. In order to examine the influ-
ence of friction and ground topology, locomotion experiments
were performed on flat, inclined/declined, and wavy/undulating
surfaces. In all cases, we found reasonable quantitative agreement
between experiments and simulations.

Results
Numerical simulation. In this section, we review the numerical
framework that incorporates elasticity, contact with uneven sur-
face, friction, and inelastic collision for a comprehensive soft
robot simulator. As the motion of the robot remains in 2D, we do
not include a twisting energy of the rod, although this can be
readily integrated into our framework29. Starting from the dis-
crete representation of elastic energies, we formulate equations of
motion at each node and update the configuration of the struc-
ture (i.e., position of the nodes) in time. The rod segment between
two consecutive nodes is an edge that can stretch as the robot
deforms—analogous to a linear spring. The turning angle ϕi (see
Fig. 1b) at node xi between two consecutive edges can change—
similar to a torsional spring. The elastic energy from the strains in
the robot can be represented by the linear sum of two compo-
nents: stretching energy of each edge and bending energy asso-
ciated with variation in the turning angle at the nodes. The
discrete stretching energy at the edge connecting xi and xi+1
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Fig. 1 Discrete kinematic representation of a soft robot. a Geometric
discretization of soft rolling robot. b The bending curvature at ith node is
κi= 1/Ri= 2tan(ϕi/2)/Δl30. c Coulomb law for frictional contact45.
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is Es
i ¼ 1

2 EAϵ
2, where EA is the stretching stiffness (calculated as

the product of the material elastic modulus E and actuator cross-
sectional area A) and εi= |xi+1 − xi|/Δl − 1 is the axial stretch.
Associated with each turning angle ϕi is the discrete bending
energy Eb

i ¼ 1
2 EI κi � �κið Þ2Δl, where EI is the bending stiffness,

κi = 2 tan(ϕi/2)/Δl is the curvature [Fig. 1b], and �κi is the natural
curvature (i.e., curvature evaluated in undeformed configuration).
In the special case of a joint node where three edges meet, the
bending energy is comprised of two components: one corre-
sponding to the turning angle between the first and second edges
and the second one arises from the turning angle between the
second and third edges. The total stretching energy of the robot
can be obtained simply by summing over all the edges, i.e.,
Es ¼PiE

s
i , and, similarly, the total bending energy is Eb ¼PiE

b
i .

In both experiments and simulations, we observe that the struc-
ture is nearly inextensible and the prominent mode of deforma-
tion is bending. We evaluated the bending stiffness by quantifying
the shape of an actuator under vertical load, as shown in Sup-
plementary Fig. 1 and Supplementary Methods.

The elastic stretching (and bending) forces acting on a node xi

can be obtained from the gradient of the energies, i.e.,� ∂Es

∂xi
; ∂E

s

∂yi

h iT

(and � ∂Eb

∂xi
; ∂E

b

∂yi

h iT
). An implicit treatment of the elastic forces

requires calculation of the 2N × 2N Hessian matrix of the elastic
energies. Other than the seven joint nodes that are connected
with three other nodes, a node xi is only coupled with the
adjacent nodes xi−1 and xi+1 in the discrete energy formulation.
This results in a banded Hessian matrix with 6 × 6 blocks of non-
zero entries along the diagonal. The only off-diagonal non-zero
entries correspond to the seven joint nodes. The analytical
expressions for the gradient and Hessian of the elastic energies
can be found in refs. 29,30.

Besides the internal elastic forces, Fs and Fb, the structure
would also experience internal damping forces during deforma-
tion. We use the Rayleigh damping matrix to formulate the
viscoelastic behavior of soft robots, such that the damping force
vector is given by39

Fd ¼ � αMþ βKð Þv; ð1Þ
where α; β 2 Rþ are damping coefficients, K ¼ � ∂

∂q Fs þ Fb
� �

is
the tangent stiffness matrix, and v is the velocity vector (time
derivative of DOF (degree of freedom)). Also, the external gravity
forces are denoted by Fg, as well as the external contact forces, Fr.
The gradients of these force vectors can be analytically formulated
in a manner similar to those of the elastic forces. The sparse
nature of the Jacobian matrix is critical for computational
efficiency during the solution of the equations of motion,
described next.

The DOF vector can be updated from current time step (tk) to
the next (tk+1= tk+ h), qk+1= qk+ Δqk+1, by a second order,
implicit Newmark-beta time integration39,

Δqkþ1 � hvk ¼ h2

4
M�1 Fkþ1 þ Fk

� �

Δqkþ1 ¼ h
2

vkþ1 þ vk
� �

Δvkþ1 ¼ vkþ1 � vk;

ð2Þ

where the velocity vector (time derivative of DOF) is v,
superscript k+ 1 (and k) denotes evaluation of the quantity at
time tk+1 (and tk), M is the diagonal mass matrix, h is the time
step size, and F= (Fs+ Fb+ Fg+ Fd+ Fr) is the sum of
elastic, damping, and external forces defined before. In the
absence of dissipative forces and external contact forces, this

method is symplectic and momentum preserving39,43,44—a
critical feature for simulation of robots where inertial effects are
significant.

As soft robots are often intended for locomotion on
unstructured terrain, we require a method to account for contact
and friction with the ground. Importantly, the surface normal can
vary with the horizontal x axis. We model the nonpenetration
constraints and frictional contact forces that resist sliding along
interfaces based on Coulomb’s law. At each time step, we apply
continuous collision detection to the predicted trajectory to
gather contact constraints into a contact set C, shown in Fig. 1c.
For these calculations, the velocity u ¼ ½v2j�1; v2j�T (subscript
denotes element number in a vector), and the reaction force
R ¼ ½Fr2j�1; F

r
2j�T , at the jth node (the contact point) satisfy the

condition

C u;Rð Þ ,
R ¼ 0 and u? > 0 ðtake offÞ
Rk < μR? and u ¼ 0 ðstickingÞ
Rk ¼ μR? and u? ¼ 0 ðslidingÞ;

8
><

>:
ð3Þ

where μ= 0.8 is the friction coefficient characterized by
experiments (Supplementary Methods), and the superscript ∥
(and ⊥) denotes the component along (and perpendicular to) the
ground. At the normal and tangential subspaces of a contact node
xj, we either know its perpendicular velocity u⊥ (u∥ for tangential
component) or the perpendicular reaction force R⊥ (R∥ for
tangential component), so the Coulombic frictional contact law
can be treated as a Second Order Linear Complementary Problem
(SOLCP)45. We employ the modified mass method33 to solve this
SOLCP such that a contact node xj can be free (degrees of
freedom is 2, taking off), constrained along the normal to the
ground p (degrees of freedom is 1, sliding), or fully constrained
(degrees of freedom is 0, sticking). The two modified equations of
motion for the jth node (j= 1, …, N) are

F2j�1

F2j

" #

�
Δvkþ1

2j�1
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� h
2Mj
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2j�1

Fkþ1
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" #

þ
Fk2j�1

Fk2j

" # !

� Δzkþ1 ¼ 0;

ð4Þ
where F2j�1 is the left hand side of the (2j−1)-th equation of
motion, Mj is the mass associated with jth node, Δzk+1 is the
change in velocity we want to enforce along the constrained
direction(s), and the modified mass matrix is

Skþ1 ¼
I if ndof ¼ 2;

I� ppTð Þ if ndof ¼ 1;

0 if ndof ¼ 0;

8
><

>:
ð5Þ

where ndof is the number of free DOF at jth node and I is the 2 ×
2 identity matrix. Note that when a node is free, Δzk+1= 0, and
Equation (4) reduces to Equation (2). If the node is fully
constrained (Sk+1= 0), Equation (4) reduces to Δvkþ1

j ¼ Δzkþ1

and the change in velocity (as well as the position) is enforced to
take the value prescribed by Δzk+1.

The solution to the 2N equations of motion in Equation
4 starts with an initial guess (Δvk+1)(0) and subsequent Newtons
iterations to improve the solution until a desired tolerance is
achieved:

Δvkþ1
� �ðnþ1Þ¼ Δvkþ1

� �ðnÞ �JðnÞnFðnÞ; ð6Þ

where JðnÞ ¼ ∂F
∂ Δvkþ1ð Þ is the Jacobian matrix evaluated at (Δvk+1)(n).

The non-trivial terms in the evaluation of this Jacobian are
the Hessian matrices of the elastic energies. Owing to the presence
of the ground, we need to check whether the new solutions, e.g.,
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qk+1, vk+1, and (Fr)k+1 (computed from force balance), satisfy the
following conditions:

● A node xj cannot fall below the ground.
● The normal component of reaction force R⊥ exerted by the

ground on a node xj must be along the outward normal to the
surface, e.g., R⊥ > 0.

● The reaction force R should be in the frictional cone zone Kμ

(see Fig. 1c); if the reaction force is on the boundary of the
cone, this node is allowed to slide along the tangential
direction of surface opposite to reaction force, u⋅R < 0.

● If the tangential velocity u∥ at a sliding node xj changes its
direction, (u∥)k ⋅ (u∥)k+1 < 0, this node should be fully
constrained.

If one of the above rules is broken, we rewind the simulation,
add (or delete) constraints at the contact pair, and re-solve
Equation (4) with a new guess.

When an elastic body drops onto a rigid surface, the motion
normal to the surface of the contact nodes are constrained, the
normal velocities are set to zero, and the tangential velocities are
reduced based on impulse theory, Δu∥= μΔu⊥. If the structure is
modeled as an ideal mass-spring system without viscoelasticity,
the whole structure will rebound to a certain height and the
recovery factor—the ratio of rebound to initial height—is not
deterministic. This arises because the structure’s kinetic energy
will transfer into elastic potential energy during compression and
then convert back to kinetic energy during the rebound phase39.
We must account for the rate-dependent viscoelasticity of contact
for predictive simulation, where the energy loss of the
collision–compression–rebound process results in a deterministic
rebound height. In Supplementary Fig. 3 and Supplementary
Methods, we show that the decrease in rebound height of the
rolling robot can be determined by the parameter β in damping
force Fd ¼ � αMþ βKð Þv, such that the recovery factor of
collision is also related to β. Physically, β represents a damping

that opposes elastic deformation, without penalizing rigid body
motion. Opposition to rigid body motion and momentum
dissipation can be accounted by the viscosity α.

The overall numerical framework thus accounts for inertia,
friction, and collision and shows good convergence with both
time and space discretization, as outlined in Supplementary
Figs. 4, 5, and Supplementary Methods.

Rolling ribbon. Before examining soft robot locomotion, we first
investigate the simpler motion of a circular ribbon on a declined
surface in order to test the accuracy of numerical implementation
of friction and contact. In the numerical study here, the arc length
we chose for the circular ribbon is L0= 0.3 m, resulting in R=
0.3/2π ≈ 0.048 m (details in Supplementary Fig. 7 and Supple-
mentary Methods). Because of gravity, this close-loop elastic
structure will first undergo transient dynamics and then, as
shown in Fig. 2a, move with a steady state configuration. The final
shape is determined by the ratio Γg= Lg/R of the gravito-bending
length scale Lg= (EI/ρgA)1/3 to the ribbon undeformed radius
R40. In Fig. 2c, we plot the static configurations of rolling ribbon
at different values of Γg. At small values of Γg, the ribbon shows
relatively large deformation with large region of contact. As Γg
increases, the deformed shape becomes closer to its original
undeformed shape and the contact length decreases to reach a
single point at Γg=∞.

Now we turn to the motion of a rolling ribbon. Three different
motion patterns exist on a declined surface: pure sliding,
combined sliding and rotation, and pure rotation, depending on
a dimensionless number, μ/tan θ, where μ is the frictional
coefficient and θ is the decline angle. In Fig. 2b, we show the
ratio between the distance traveled by a point on the ribbon (red
mark in Fig. 2a) and the ribbon centroid, δ, as a function of
normalized friction coefficient, μ/tan θ, at different values of Γg.
When the normalized frictional coefficient μ/tan θ= 0, the ribbon
will slide along the tangential direction of the surface without any
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Fig. 2 Motion patterns of elastic ribbons. a Three different patterns in rolling ribbons: pure sliding (μ/tan θ= 0), combination of sliding and rotating (0 <
μ/tanθ < 1); and pure rotating (μ/tan θ≥ 1). b The ratio between the route of ribbon boundary point and ribbon centroid, δ= sb/sc, as a function of
normalized frictional coefficient μ/tan θ, for different values of normalized ribbon curvature, Γg. c Different typologies of rolling ribbons with different Γg.
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rotation, and the path of boundary point is the same as the path
of center, δ= 1. If 0 < μ/tan θ < 1, the motion of the ribbon is a
combination of sliding and rotation, and the larger the friction,
the higher the δ. The ribbon undergoes pure rotation at μ/tan θ ≥
1 when δ remains fixed at a constant value depending on Γg. At
the limiting case of a rigid ribbon, the motion is purely rotational
and any point on the ribbon traces a cycloid path, corresponding
to δ= 8/2π. We plot the boundary node position as a function
of time for all three cases in the Supplementary Fig. 6 to better
show their differences. This finding establishes that the simula-
tion can systematically capture elasticity, friction, and their
interplay.

Rolling robot. The star-shaped, rolling robot in Fig. 1a is com-
prised of seven compliant actuators/limbs that are arranged radially.
Each limb has a curved part with length lc= 2.2 cm and a straight
part with length ls= 0.8 cm. The natural curvature of the curved
part is �κ0 � 1=Rc ¼ 120 m−1. The material density of the rolling
robot is ρ= 1912 kgm−3. The mass center is located at (xc,yc). The
height, H ≈ 5 cm, is used as the body length. We then discretize the
structure into N nodes, shown schematically in Fig. 1a. This cor-
responds to a DOF vector, q= [x0, y0, ..., xN−1, yN−1]T, of size 2N,
representing the vertical and horizontal coordinates of each node.
Here, the superscript T denotes transposition. The length of each
edge—the segment between two consecutive nodes—in this study is
Δl ≈ 2.5 mm, resulting in N= 84 nodes (convergence study in
Supplementary Fig. 4).

Actuation is incorporated into the simulation by varying
natural curvature and bending stiffness with time. This variation
is measured through characterization of a single SMA-powered
actuator, as described next. The electrically activated SMA wire
enables rapid transition between a soft curled unactuated state
and a stiff straight-like actuated state41,42. The relative natural
curvature �κ=�κ0 and Young’s modulus E/E0 are temperature-
dependent, and can change as a function of time during the
actuating–cooling process. As shown in Fig. 3, when SMA is
actuated for 0.25 s, its natural curvature and Young’s modulus
increase linearly in a short time period, t0, followed by a logistic
decay until reaching the unactuated state. Notice that the plot
here is from experimental fitting, see Supplementary Fig. 2 and
Supplementary Methods for details. We use a piece-wise function

to describe the natural curvature of SMA actuators:

�κðtÞ ¼
ðn�1Þt

t0
�κ0 þ �κ0 when t < t0

ð1�nÞ
1þe�τðt��tÞ �κ0 þ n�κ0 when t > t0;

8
<

:
ð7Þ

where n ¼ �κmin=�κ0 is the ratio between the minimum curvature
(at t= t0) and the initial curvature (at t= 0), and τ;�t; t0 are
numerical parameters obtained from experimental fitting.
The change of Young’s modulus of SMA follows a similar
piece-wise function. Note that the parameter t0 is not necessarily
equal to the actuation time of 0.25 s. As a result, the curvature
slightly increases (and Youngs modulus decreases) even when the
actuator is being heated (at t0 < t < 0.25 s). The primary reason
behind behavior is that the fitting function is constrained to be
smooth and monotonic (i.e., either increase, decrease, or remain
constant). Although we could separate the fitting into more than
two piece-wise functions involving more fitting parameters, this
will lead to added complexity with little improvement in fitting
accuracy. With these fitting parameters, we can achieve excellent
match between experimental measurements and numerical
simulations performed on a single actuator (details on the fitting
can be found in Supplementary Fig. 2 and Supplementary
Methods).

The simplest scenario is presented in Fig. 4 (also Supplemen-
tary Movie 1), where the surface normal is anti-parallel to gravity.
Figure 5d plots the x coordinate of the centroid of the robot, xc,
with time over four actuation cycles. Note that the different
symbols correspond to repeated experimental runs. In our
numbering system for the limbs (see Fig. 4), Limb 5 is in contact
with the ground at t= 0. Upon actuation of Limb 4, the robot
rolls to the right and the contact limb changes from 5 to 6. In the
next cycle, Limb 5 (the limb to the left of the contact limb) is
actuated. We choose the actuation period Δt= 3 s (0.25 s for
actuation and 2.75 s for cooling); the single SMA actuator can
totally reshape to its original configuration within 3 s.
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Next, we consider planar surfaces that are inclined at an angle θ
with respect to the horizontal plane (also see Supplementary
Movie 1). Figure 5a compares the simulation and experimental
results for θ=+3.0°, and Fig. 5e–g plots the location of the robot
centroid at three different values of θ. We find good agreement
between experiments and simulation in all the cases. In particular,
we observe that when the angle of inclination increases from θ=
−3.0° to θ=+3.0°, the distance traveled by the robot decreases in

both experiments and simulations. The gait at θ= {−3.0°, +3.0°}
is similar to the horizontal planar case described above. Beyond a
certain threshold for θ, the robot can no longer move forward
owing to the increased role of gravity, e.g., the robot fails to roll
up the incline when at θ=+6.0°. The simulation also accurately
captures this observation.

We now move to the case of an uneven surface with an
outward normal that varies with location. As a representative
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example shown schematically in Fig. 5b, c, we consider a 3D
printed surface that can be described by f(x)= A sin(2πx/λ)
with amplitude A= 6.5 mm and period λ= 200 mm. We
consider two experimental trials: first, the robot is initially
located at the crest of the surface in Fig. 5b; and second, the
robot is on the trough in Fig. 5c. Figure 5h, i shows the location
of the robot centroid with time from both experiments and
simulations. In the crest case, the robot rolls once at the first
cycle. However, at the second cycle, the robot rolls multiple
times, undergoes oscillatory motion, and settles stay at the
trough. On the other hand, if the locomotion starts with the
robot at the trough, the robot successfully rolls once in the first
two cycles, but fails to roll in the third cycle. All of these
observations are captured in both experiments and simulations.
However, we should also note that our simulator always under-
predicts the motion of the rolling robot. We attribute this to the
finite thickness of the actuator elements, which is not accounted
for in the model.

Our novel numerical tool can achieve real-time simulation of
the soft rolling robot. In Fig. 6, with a fixed number of vertices,
N= 84, the computation time linearly scales with time step size h
for all the scenarios. The simulations ran on a single thread of
AMD Ryzen 1950X CPU @ 3.4 GHz. Also, our simulator can run
faster than real time when the time step size h≳ 2.5 ms.
Numerical issues associated with a large step size appear at
h≳ 10 ms, in which case the computation time is infinite because
we cannot get convergence.

Jumper. Finally, we emphasize the generality of the simulation by
examining another soft robot with a different geometry. The
SMA-based jumper shown in Fig. 7a is an asymmetric circle with
radius �R0 � 5 mm. Detailed geometric property of Jumper robot
can be found in the Supplementary Fig. 7 and Supplementary
Methods. When the material is actuated, the whole structure can
rise and move forward because of the reaction forces from the
ground. To model the tension from the electrical wire connected
at the leading edge of the jumper, we apply a force at the first
node; the magnitude and duration of the force are obtained from
fitting to experimental data (Supplementary Fig. 7). In Fig. 7a, we
show snapshots of the jumper at t= {0.000, 0.125, 0.250}s from
both experiments and simulations and see qualitative agreement.
For quantitative comparison, Fig. 7b, c present experimental and
simulation data on the normalized position of the first node on
the robot as a function of time. The two sets of results—experi-
ments and simulations—appear to be in strong quantitative
agreement, providing further evidence for the physical accuracy
of our DDG-based formulation. We should also note that, at time
t= 1.5 s, the x position predicted by numerical simulation has a
sudden drop, which is not reflected in the experimental data. The
mismatch between numerical simulation and experimental
observation is owing to the discontinuity in Coulombs formula-
tion, i.e., the jumper robot would move only if the external
reaction force is out of the frictional cone.

Discussion
We have introduced a numerical framework based on DER for
examining the locomotion of limbed soft robots that is adapted
from methods popular in the computer graphics community. To
avoid the artificial energy dissipation during the time marching
scheme, we replaced the first order, implicit Euler integration by a
second order, symplectic Newmark-beta method, for momentum
preservation during the dynamic simulation. For the frictional
contact between the rigid wall and the soft material, Coulomb’s
law was implemented through a modified mass-based method,
and this fully implicit framework allows a larger time step for
convergence and numerical stability, which is also a prerequisite
for real-time simulation. Similarly, the elastic/inelastic collision
between the rigid wall and soft robots, related to the rate-
dependent viscoelastic behavior of soft material, can be precisely
described by the Rayleigh damping matrix. The mechanical
response of SMA during actuating–cooling process was first
experimentally measured through a single actuator, then fed to the
numerical framework to simulate the dynamics of the soft robots.
Overall, the simulation can seamless integrate elasticity, actuation,
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friction, contact, and elastic/inelastic collision to achieve quanti-
tative prediction of the motion of fast moving highly deformable
soft robots. The computational efficiency makes it ideally suited
for algorithms that iterate over a wide variety of parameters in
order to select a robot design or locomotion strategy.

Overall, our results show good quantitative agreement between
the simulations and experiments, suggesting that our numerical
approach represents a promising step toward the ultimate goal of a
computational framework for soft robotics engineering. However,
further progress depends on additional experimental validation for
a wider range of soft robot designs, locomotion gaits, and envir-
onmental conditions. The simulation introduced here also needs
some prerequisite experimentally measured data, e.g., material
properties of soft materials and their mechanical performance in
response to external actuation. It would be meaningful to develop
a more general constitutive relations that combines mechanics,
electricity, heat, and magnetic field, for the direct simulation of
soft robotic dynamics in response to external actuation. Moving
forward, it would also be interesting to explore how DDG-based
simulation tools that incorporate the formulation presented here
can be used to generate optimal locomotion gaits that minimize
cost of transport or maximize range for a prescribed energy input.

Methods
Fabrication of shape memory alloy actuators. The fabrication process is similar
to the one presented in refs. 42,46. We start the fabrication process by laser-cutting
two pieces of thermally conductive tape (H48-2, T-Global) with dimensions of
40 × 18 × 0.5 mm (55 × 18 × 0.5 mm for the jumping robot) and 80 × 55 × 0.5 mm
by a CO2 laser-cutting system (30W VLS 3.50; Universal Laser Systems). Then we
apply a layer of elastomer (Ecoflex 00-30, Smooth-On) that is prepared by mixing
prepolymer at a 1:1 ratio by mass in a centrifugal mixer (AR-100, THINKY) with a
thickness of 0.1 mm on top of the small thermally conductive tape and half-cure it
in the oven under 50 °C for 7 minutes. Next, we place the pre-bent Ω shape SMA
wire (0.015 inch diameter, 34 × 11 mm; Dynalloy) on top of the elastomer and
apply another layer of elastomer with a thickness of 0.5 mm to encapsulate the
SMA wire. Meanwhile, we stretch the larger thermally conductive tape (80 × 55 ×
0.5 mm) to 150% of its original length and apply a 0.1 mm thick layer of elastomer
on top of it. We place both thermally conductive tape in the oven under 50 °C for 7
minutes to half-cure them. After that, we attach the smaller thermally conductive
to the middle of the stretched larger thermally conductive tape, clamp them with
binder clips and place the bonded structure back to the oven for 10 minutes to fully
cure it. Finally, we cut out the actuator along with the outline of the smaller
thermally conductive tape.

Experimental setup. All robots and actuators in the experiment and character-
ization are powered by a desktop power supply (DIGI360, Electro Industries) under
a current of 6 A. Each actuator is individually connected to an n-MOSFET
(IRL7833, Nfineon for the rolling robot experiment and AO3416, Alpha & Omega
Semiconductor for the rest) and the actuation and cooling time are controlled by a
single-board microcontroller (Arduino UNO SMD R3, Arduino). The rolling robot
and jumper experiment are performed on top of a red linatex sheet (MCM linatex
1.5 mm class 2, Linatex Corp of America).

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
Our numerical methods were implemented using the software available in
the Supplementary Information of ref. 47.
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