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Abstract: Bionanocomposite has promising biomemristic behaviors for data storage inspired by a
natural biomaterial matrix. Carboxylated chitosan (CCS), a water-soluble derivative of chitosan
avoiding the acidic salt removal, has better biodegradability and bioactivity, and is able to absorb
graphene quantum dots (GQDs) employed as charge-trapping centers. In this investigation,
biomemristic devices based on water-soluble CCS:GQDs nanocomposites were successfully achieved
with the aid of the spin-casting method. The promotion of binary biomemristic behaviors for
Ni/CCS:GQDs/indium-tin-oxide (ITO) was evaluated for distinct weight ratios of the chemical
components. Fourier transform infrared spectroscopy, Raman spectroscopy (temperature dependence),
thermogravimetric analyses and scanning electron microscopy were performed to assess the nature
of the CCS:GQDs nanocomposites. The fitting curves on the experimental data further confirmed
that the conduction mechanism might be attributed to charge trapping–detrapping in the CCS:GQDs
nanocomposite film. Advances in water-soluble CCS-based electronic devices would open new
avenues in the biocompatibility and integration of high-performance biointegrated electronics.

Keywords: biomemristic behavior; water-soluble CCS:GQDs nanocomposites; CCS-based
binary biomemory

1. Introduction

Memristic devices, beneficial to high density, large scalability, low power consumption,
high endurance and retention performance, have emerged as promising candidates for future
high-performance nonvolatile data memory [1–3]. They possess a capacitor-like two-terminal
metal-insulator-metal (MIM) configuration, where an insulating material is sandwiched between
two conductive electrodes. Natural biomaterials offer remarkable building blocks for exploitation
in next-generation biosustainable electronics, such as in organic thin-film transistors [4], organic
displays and light-emitting devices [5,6], and organic photovoltaics [7]. They provide these devices
with environmental benignity, high performance and large-scale fabrication capability at low cost.
The nature of biomaterials paves the way for next-generation ultrahigh density and high-speed green
data storage devices [8–11].

As a large constituent of the polysaccharide family, chitosan (CS) bears excellent potential for the
development of biointegrated electronic devices, in application to sensor skins, biomedical diagnosis
and therapy, and brain-machine interfaces [12–18]. Its appealing properties consist of biocompatibility,
biodegradatiblity, bioresorbability, natural abundance and light weight [19,20]. Unfortunately, some
toxic or pungent solvents like trifluoroacetic and acetic acid have been employed for the CS dissolution
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process. Consequently, acidic salts are generated during the solution-processable method which must
be removed in the following experiment. Thus, carboxylated chitosan (CCS) is more environmentally
friendly, and has better biocompatibility, with water serving as its solvent. Graphene quantum
dots (GQDs) are graphene nanosheets of usually less than 10 nm in size. Advances in GQDs make
them suitable for optoelectronic applications, due to their small size, attractive optical properties,
biocompatibility and low preparation cost. GQDs can hold charge storage in the trapping level under
the exciton confinement and quantum size effects [21]. The carriers cannot be effectively transported to
electrodes as a result of their poor coupling with each other. A method blending inorganic nanoparticles
into natural biomaterials has opened up a new way to create biomemristic materials.

Great efforts to develop biocompatible or biodegradable devices have been made, adopting both
organic materials and inorganic materials [13,22]. However, the balance between device performance
and biocompatibility or biodegradability has been insufficiently considered. The biodegradability
and biocompatibility requirements predominantly impose restrictions on the suitability of conductive
materials for complementary metal-oxide−semiconductors (CMOS), such as Pt, Ag, Al, Si, etc. [23].
Therefore, it is crucial to rebuild bioelectronic systems to achieve a trade-off between device performance
and biocompatibility. Nevertheless, biomemory devices based on biocompatible materials like protein,
cellulose and DNA exhibit binary resistive-switching behavior, with biologically incompatible electrodes
like Al, Pt, Au and Ag [24–26]. This may hinder the implementation of a practical biomemory system.
This paper aims at providing a novel biomemristic device using Ni/CCS:GQDs/indium-tin-oxide
(ITO), in which CCS:GQDs nanocomposites serve as passive components; ITO and Ni are used
as top and bottom electrodes, respectively. CCS:GQDs nanocomposites are nontoxic, sustainable,
and environment-friendly, and, furthermore, ITO and Ni are nontoxic and non-polluting for the
environment and can be recycled and reused. The focus is on the charge trapping–detrapping
mechanism concerning CCS:GQDs nanocomposites as well, which renders them promising candidates
for enabling the biocompatibility and integration of high-performance biomemristic devices.

2. Materials and Methods

CCS (Mn = 48 kg/mol) was purchased from Aladdin (Tianjin, China). The aqueous solution
of GQDs (1 mg·mL−1) was obtained from Tanfeng Tech. Inc (Suzhou, China). For fabrication of
biomemristic devices, homogeneous CCS:GQDs nanocomposite solutions (10 mg·mL−1) with GQD
contents of 1 wt%, 3 wt%, and 5 wt%, respectively, were prepared in deionized water by means of
ultrasonication. The glass substrates were precleaned by a sonication-aided washing process in which
the washing solvents covered acetone, absolute alcohol, and deionized water. They were then dried
in an oven (Zhonghuan Furnace, Tianjin, China) at 40 ◦C. Afterwards, a spin-casting process was
employed at a speed of 2000 rpm/40 s, in which the CCS:GQDs nanocomposite solution was spun
onto the precleaned glass slides coated with an ITO layer (the square resistance Rs ≤ 6 Ω/sq). Then,
the CCS:GQDs nanocomposite films were dried on a hot plate at 60 ◦C for 1 h. By thermal evaporation,
Ni electrodes were deposited onto biofilms (coated on the substrates) at a pressure below 10−5 Torr. The
top metal electrode was determined to have a thickness of 200 nm, and a size of up to 1.0 × 1.0 mm2.

The thermal, structural, and morphological property characterizations and comparisons of
CCS:GQDs nanocomposites were carried out by thermogravimetric analyses (TGA), fourier transform
infrared spectroscopy (FTIR), Raman spectroscopy and scanning electron microscopy (SEM). Thermal
properties of CCS:GQDs nanocomposites were taken into account, which were characterized by TGA
(TA Instruments, New Castle, DE, USA) under N2 at a heating rate of 10 ◦C/min. A Foss DS 2500
Infrared Spectrometer (Hillerød, Denmark), using KBr pellets, was employed to test FTIR spectra swept
from 400 cm−1 to 4000 cm−1, to elucidate functional groups of CCS:GQDs nanocomposites. Raman
spectroscopy (Horiba Jobin Yvon, Villeneuve-d’Ascq, France), scanned from 100 cm−1 to 3200 cm−1, was
utilized to detect the structure of CCS:GQDs nanocomposites. The morphological and cross-sectional
profiles of the nanocomposite films with GQDs embedded into CCS were additionally characterized
by an Apreo Scanning Electron Microscope (Themoscientific, Waltham, MA, America). This compared
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the morphologies of the CCS:GQDs nanocomposite films with biomemristic behaviors. Electrical
measurements without any device encapsulation were fulfilled by a Keithley 4200 semiconductor
parameter analyzer (Solon, OH, USA).

3. Results

The sandwiched MIM configuration for the biomemristic device Ni/CCS:GQDs/ITO was presented
in Figure 1, together with the schematic structure of CCS and GQD. To study the thermal stability of CCS
and CCS:GQDs nanocomposites, TGA–DTG was investigated under an N2 atmosphere. TGA–DTG
curves are shown in Figure 2a,b, in which different mass loss steps are displayed. CCS and its
nanocomposites predominately showed three mass loss steps [27,28]. CCS:GQDs nanocomposites
exhibited a dehydration mass loss step ascribed to water loss from the surface of CCS. After dehydration,
the decomposition of CCS and its nanocomposites with GQD contents of 1 wt%, 3 wt% and 5 wt%
occurred in two steps, starting at 287.0 ◦C, 295.9 ◦C, 291.8 ◦C, and 290.8 ◦C, respectively. It was witnessed
that CCS:GQDs nanocomposites were more stable than CCS because of higher initial temperatures
of thermal degradation [29]. After dehydration, the other mass loss steps were attributed to thermal
decomposition of the polymer chain [30]. Table 1 provides a description of events, temperature
intervals and quantitative data for CCS and CCS:GQDs nanocomposites. The proportionality between
the second and first steps after water loss was also calculated (Table 1) [27,28]. Compared with CCS, it
was observed that the ratio between the mass losses in the second and first step of decomposition was
augmented from 0.6 to 1.0 for CCS:GQDs nanocomposites with content of GQDs increasing from 1 wt%
to 5 wt%. Therefore, the results showed that CCS:GQDs nanocomposites had similar decomposition
process but were more stable in contrast with CCS.
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Figure 1. Schematic structure of carboxylated chitosan (CCS) and graphene quantum dots (GQDs),
and configuration of the sandwiched biomemristic device Ni/CCS:GQDs/ITO.

CCS has abundant amine groups in its structure, which can interact with hydroxyl groups of GQDs
by hydrogen bonding. For the presence of functional groups for CCS and CCS:GQDs nanocomposites,
FTIR spectra were tested for the samples before and after blending with GQDs, as shown in Figure 2c.
For FTIR spectra of pure CCS, it illustrates the OH stretching band at 3264 cm−1, the amide I band
at 1641 cm−1, the amide II band at 1550 cm−1, the bridge oxygen stretching band at 1152 cm−1, and
the C–O stretching bands at 1061 cm−1 and 1027 cm−1 [31]. The 1560/1070 peak ratio was used to
determine the percent deacetylation of CCS-based samples [32]. On the basis of the FTIR spectra for
CCS and its nanocomposites with GQD contents of 1 wt%, 3 wt% and 5 wt%, the samples were 94%,
74%, 57%, 49% deacetylated, respectively, as reckoned in Table 2. As a result of the interaction between
CCS and GQDs, significant changes were observed in the FTIR spectra. FTIR spectra of CCS:GQDs
nanocomposites presented a distinct change in the carbonyl-amide region. The primary amine peak
decreased while a new peak for C=N imine appeared [33]. Moreover, the C=N peak appeared as a
strong split peak at 1650 cm−1. The addition of GQDs incrementally, from 1 wt% to 5 wt%, to CCS
resulted in conformational changes, such as: the peaks of CCS at 3264 cm−1 shifting to 3270 cm−1,
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3262 cm−1, and 3259 cm−1, respectively; the peak at 1550 cm−1 shifting to 1550 cm−1, 1557 cm−1,
and 1578 cm−1, respectively; the peak at 1401 cm−1 shifting to 1400 cm−1, 1397 cm−1 and 1386 cm−1,
respectively; the peak at 1027 cm−1 shifting to 1028 cm−1, 1028 cm−1, and 1030 cm−1, respectively. This
is possibly due to the interaction between CCS and GQDs. FTIR spectra of CCS:GQDs nanocomposites
with different amounts of GQDs were similar to that of CCS. However, the absorption peak at 3264
cm−1 slightly widened and moved by blue shift, which might be attributed to the overlapping of
O–H and NH− stretching vibrations [34]. Stemming from the interaction between GQDs and CCS,
the change altered the chemical environment of hydrogen bonds between CCS molecules, GQDs and
amino groups of CCS [35].
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Figure 2. (a) TGA, (b) DTG and (c) FTIR spectra of pure CCS, and CCS:GQDs nanocomposites.

Table 1. Data obtained from TGA–DTG curves of CCS and its nanocomposites.

N2 Atmosphere TGA–DTG

∆T a,b (◦C) Mass Loss (%) Ratio

CCS Dehydration 45.3–287.0 14.3
1st step 287.0–372.3 28.7 0.6 b

2nd step 287.0–600 16.0
CCS:1 wt% GQDs Dehydration 45.3–295.9 22.0

1st step 295.9–351.6 24.0 0.6 b

2nd step 351.6–600 15.2
CCS:3 wt% GQDs Dehydration 45.3–291.8 24.2

1st step 291.8–338.6 19.9 0.8 b

2nd step 338.6–600 16.8
CCS:5 wt% GQDs Dehydration 45.3–290.8 26.1

1st step 290.8–332.5 16.6 1.0 b

2nd step 332.5–600 16.2
a Temperature range; b ratio between mass losses in the second and first step after water loss.
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Table 2. Evaluation of the percent deacetylation based on FTIR spectra of pure CCS and
CCS:GQDs nanocomposites.

N–H (amine II) C–O–C

νN–H (amine II) (cm−1) Intensity νC–O–C (cm−1) Intensity

CCS 1550 61.3 1062 65.4
CCS:1 wt% GQDs 1550 40.0 1064 53.9
CCS:3 wt% GQDs 1557 35.1 1065 61.3
CCS:5 wt% GQDs 1576 33.7 1065 69.2

To make a further investigation of the composition of CCS:GQDs nanocomposites, Raman
spectroscopy was carried out by the 532 nm line of an argon laser, tested in the spectral range from
100 cm−1 to 3200 cm−1. In a sample volume of 200 µm3, using a 50 × objective, the Raman signal was
utilized to analyze the temperature dependence of Raman spectra. As indicated in Figure 3, this was to
unveil whether there existed hydrogen bonding in CCS:GQDs nanocomposites. As shown in Figure 3a,
Raman spectra of CCS and CCS:GQDs nanocomposites at room temperature were represented by three
wide regions that ranged between 800 cm−1 and 970 cm−1, between 1000 cm−1 and 1200 cm−1, and
between 1240 cm−1 and 1500 cm−1 [36]. In the first region, two peaks for CCS that appeared at 907 cm−1

and 966 cm−1 were contributions of NH2 wagging facilitating the peaks for CCS:GQDs nanocomposites
at 905 cm−1 and 963 cm−1, 905 cm−1 and 963 cm−1, and 900 cm−1 and 957 cm−1, respectively [37,38].
The second region revealed the presence of three peaks for CCS at 1067 cm−1, 1115 cm−1 and 1152 cm−1,
which corresponded to C–C stretching vibrations of all-trans segments, C–C stretching vibrations of
the gauche conformer, and C–C stretching vibrations of the trans conformer, respectively [37]. For
CCS:GQDs nanocompostes, the corresponding peaks were at: 1067 cm−1, 1112 cm−1 and 1152 cm−1

for CCS 1 wt% GQDs; 1061 cm−1, 1112 cm−1 and 1149 cm−1 for CCS 3 wt% GQDs; 1066 cm−1, 1113
cm−1 and 1151 cm−1 for CCS 5 wt% GQDs. Three peaks for CCS observed at 1375 cm−1, 1416 cm−1

and 1460 cm−1 within the third region were ascribed to the CH bending, wagging and twisting of
CH2 [36,39]. For Raman spectra of CCS:GQDs nanocomposites, Figure 3b–d clearly reveal a very
subtle merging intensity around 3040 cm−1 in the freeze-dried product (−30 ◦C). This additional band
in the freeze-dried sample was detected in the special region where N–H stretching bands were Raman
active between C–H and O–H stretching bands. This might be caused by intermolecular motions
involved in intermolecular associations via hydrogen bonding [40]. Through hydrogen bonding
between CCS and GQDs, the successful nanocomposite formation could be verified [24]. To further
explore the morphological and cross-sectional profiles of CCS:GQDs nanocomposite films, the surface
microstructure was observed by SEM (Figure 4a–f). Discontinuous bulges arose on the surface of
CCS:GQDs nanocomposite films. The addition of GQDs modified the microstructure of the CCS-based
films by increasing the surface bulges (Figure 4b,c). Moreover, compact structures were observed in
the cross-sections of CCS:GQDs nanocomposite films, as indicated in Figure 4g–i. These bulges might
be attributed to the hydrogen bonding interaction between CCS and GQDs, because CCS might act as
a binder to bind GQDs, which may then form aggregates to make a difference to the morphology [24].

In this work, biomemristic behaviors of Ni/CCS:GQDs/ITO can be observed in Figure 5, in which
the compliance current of 0.1 A was set up to avoid permanent electrical breakdown. The arrows in
the diagram demonstrate the cyclic scanning directions of the applied biases in turn. For Ni/CCS:1
wt%GQDs/ITO, when a voltage was initially applied from 0 V to 1.6 V (sweep 1), a relatively low
current was observed. The corresponding resistance level could be defined as a high resistance state
(HRS) or OFF-state. When the sweeping bias exceeded 1.6 V (VSET), a current increase suddenly
arose, indicating that the device switched from an HRS to a low resistance state (LRS) or ON-state.
This switching corresponded to a “SET” process. Moreover, the device was kept in an LRS even if
the applied bias continuously increased up to 6 V. Subsequently, a positive voltage was swept from
0 V to 6 V (sweep 2) once again, indicating that the device still remained stable in an LRS. When the
applied bias was continuously scanned from 0 V to the negative voltage VRESET = −3.6 V (sweep 3),
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the device switched back to HRS. The relative process can be denoted as “RESET”. Then the negative
bias was swept from 0 V to −6 V again, when the device was maintained in an LRS (sweep4). An
important parameter was the HRS/LRS resistance ratio for binary biomemory applications based on
the bistable resistive switching effect. A high HRS/LRS resistance ratio (RHRS/RLRS > 103) was obtained
for Ni/CCS:1 wt% GQDs/ITO, which could effectively avoid the error detection in the biomemristic
states during the SET and RESET processes.
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Figure 6a exhibits I–V characteristics over 100 consecutive resistive switching cycles, which proved
that the biomemristic behaviors of the device were bistable without obvious attenuation. In addition,
the binary biomemristic performance of Ni/CCS:3 wt% GQDs/ITO was tested, whose VSET and VRESET

values were separately 1 V and −4.3 V. Its resistance ratio, RHRS/RLRS, could reach ~102. The device
was subject to 100 consecutive resistive switching cycles, with I–V characteristics as shown in Figure 6b.
In particular, the obtained I–V curves for Ni/CCS:5 wt% GQDs/ITO present bistable biomemristic
behaviors that display VSET = 0.5 V and VRESET = −4.45 V, with RHRS/RLRS approaching 30. Its 100
consecutive I–V characteristics for binary biomemory are indicated in Figure 6c. Furthermore, the
cycle-to-cycle performance of CCS:GQDs nanocomposite films was elaborately studied. Cumulative
plots of the current in HRS and LRS (IHRS and ILRS) for the cycle-to-cycle operation at V = 0.1 V are
exhibited in Figure 6d–f. The mean values and standard deviations of IHRS and ILRS are presented in
Table 3. Figure 6g–i represent the distributions of VSET and VRESET during the cycle-to-cycle operation.
The retention behaviors shown in Figure 7 demonstrate the stability of the biomemristic devices in an
HRS and an LRS for 104 s. During the retention time, the devices were read at a constant bias of −0.1 V,
kept without any substantial electrical degradation. The above data confirm the non-volatile binary
biomemristic behaviors of Ni/CCS:GQDs/ITO devices. These results show they meet the requirements
of green data storage.
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and (c) Ni/CCS:5 wt% GQDs/ITO during 100 continuous cycles for binary data storage applications. In
detail, (d–f) show cumulative analyses for the current distribution in the low and high-resistance states
(LRS and HRS) during cycle-to-cycle operation. (g–i) are SET and RESET voltage (VSET and VRESET)
distributions for 100 cycles, presented as histograms.

Table 3. Data profiles concerning the mean and standard deviations (Imean and Istd).

HRS LRS

Imean (A) Istd (A) Imean (A) Istd (A)

CCS:1 wt% GQDs 3.2 × 10−6 1.5 × 10−5 0.0023 4.7 × 10−4

CCS:3 wt% GQDs 8.8 × 10−5 4.8 × 10−5 0.0022 9.6 × 10−4

CCS:5 wt% GQDs 1.3 × 10−4 4.9 × 10−4 0.0022 9.1 × 10−4
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In order to understand the conduction mechanisms of the biomemristic devices, I–V curves
(Figure 5) were plotted in a log-log scale during the SET and RESET process and made by a linear
fitting, shown in Figure 8. The slope was ~1 when the device was maintained in the LRS, exhibiting
that the device displayed Ohmic conductance. For the HRS, the I–V relationship became nonlinear
as space-charge limited conductance (SCLC) dominated. On the log–log scale, the curve at the low
voltage region of the HRS showed a linear relationship, signifying Ohmic conduction, whereas the
slope of the I–V curve increased to 2 or exceeded 2 at the high voltage region, which revealed trap-free
or trap-limited SCLC [24,41]. Because CCS behaved like an insulator [42–45], the fitting curves on
experimental data further confirmed that the conduction mechanisms might be attributed to charge
trapping–detrapping in the CCS:GQDs nanocomposite film. At a lower voltage, charge transport
was limited on account of the insulating barrier provided by the CCS matrix, and GQDs captured the
injected charge from the electrode. The injected carriers exponentially increased when the bias exceeded
the switching voltage, giving rise to an abrupt growth of the current and transition of the device from
the HRS to the LRS. Consequently, almost all the traps were occupied in the LRS, with Ohmic behavior.
Moreover, the trapped charges were maintained in the GQDs, even when the devices were powered
off. By scanning a reverse voltage, the trapped charges could be detrapped, and the device returned
back to the HRS. Therefore, the SET and RESET processes of data storage were performed.
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4. Conclusions

In summary, this work has demonstrated that water-soluble CCS:GQDs nanocomposite films
possess binary biomemristic characteristics with RHRS/RLRS current ratios (memory window) greater
than 103. The results fully indicate that the biomemristic devices made from natural bionanocomposites
have remarkable potential for green data storage. CCS is nontoxic, sustainable, and environmentally
friendly, and ITO and Ni are nontoxic and non-polluting for the environment and can be recycled and
reused. This opens up a new way for the next generation of bioelectronic devices, with applications for
wearable equipment, medical facilities and implanted devices.
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