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The variation in childhood social-emotional development within at-risk populations may
be attributed in part to epigenetic mechanisms such as DNA methylation (DNAm)
that respond to environmental stressors. These mechanisms may partially underlie
the degree of vulnerability (and resilience) to negative social-emotional development
within adverse psychosocial environments. Extensive research supports an association
between maternal adversity and offspring DNAm of the NR3C1 gene, which encodes
the glucocorticoid receptor (GR). A gap in knowledge remains regarding the relationship
between NR3C1 DNAm, measured in neonatal (1-month of age) buccal cells, and
subsequent social-emotional development during infancy and early childhood. We
conducted a longitudinal cohort study of n = 53 mother-child dyads (n = 30 with
developmental outcomes formed the basis of current study) who were enrolled in a
home visiting (HV) program. Higher mean DNAm of the NR3C1 exon 1F promoter was
significantly associated with lower 6-month Ages and Stages Questionnaire: Social-
Emotional (ASQ:SE) scores—more positive infant social-emotional functioning. A similar
trend was observed at 18-months of age in a smaller sample (n = 12). The findings
of this pilot study indicate that in a diverse and disadvantaged population, the level of
neonatal NR3C1 DNAm is related to later social-emotional development. Limitations and
implications for future research are discussed.

Keywords: NR3C1, glucocorticoid receptor, DNA methylation, adversity, home visiting, social-emotional
development

INTRODUCTION

Infant social-emotional development is foundational to later child development and behavioral
health. This domain of development includes social and emotional competencies that support
secure relationships and appropriate expression and regulation of emotions (Yates et al., 2008).
Young children living in poverty have significantly increased risks for negative social-emotional
functioning (Heberle and Carter, 2015; Steele et al., 2015). Psychosocial stressors such as maternal
depression are concentrated in poverty and can disrupt infant social engagement, regulatory
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behaviors, and normal stress reactivity (Feldman et al., 2009).
Still, differential coping capacities are observed and many
disadvantaged children demonstrate positive adjustment to
adverse psychosocial environments (Masten et al., 1990; Kim-
Cohen et al., 2004; Rosenberg et al., 2008; Brown et al., 2012).
Several factors (e.g., parental mental health, community violence)
are known to mediate the effects of early disadvantage on child
development (Pascoe et al., 2016), yet a need remains to elucidate
the biological mechanisms that further explain vulnerability.

Epigenetic mechanisms such as DNA methylation (DNAm)
may contribute to the degree of vulnerability (and resilience)
to negative social-emotional development within adverse
psychosocial environments. DNAm (5-methylcytosine) at
CpG sites (i.e., cytosine-guanine dinucleotides) located within
gene promotors can regulate gene expression. Perturbations
in early environments may or may not alter DNAm levels at
specific CpGs within cell types that are functionally relevant
to developmental processes. Although the determinants of
early development are indeed complex and multifactorial, these
differences in DNAm may significantly influence developmental
phenotypes—adaptive or maladaptive in nature (Lester et al.,
2016; Szyf et al., 2016).

There has been extensive research that supports an association
between early adversity and child DNAm of the nuclear receptor
subfamily 3, group C, member 1 (NR3C1) gene, which encodes
the glucocorticoid receptor (GR; Monk et al., 2012; Palma-
Gudiel et al., 2015; Cao-Lei et al., 2017). The GR supports
signaling in the hypothalamic-pituitary-adrenal (HPA) axis to
regulate a stress response, including reactivity (e.g., mobilization
of energy substrates) and negative feedback (Sapolsky et al.,
2000; Arlt and Stewart, 2005). Animal and human studies have
demonstrated that DNAm in the NR3C1 exon 1F promoter (and
rat ortholog 17) is associated with decreased gene expression
(Weaver et al., 2007; McGowan et al., 2009). Further, NR3C1
DNAm (placental tissue) has been associated with altered cortisol
reactivity among infants (Oberlander et al., 2008; Stroud et al.,
2014; Conradt et al., 2015). In response to DNAm levels at
NR3C1 regulatory regions, the quantity of GRs may differ
in relevant tissues, directly affecting circulating cortisol levels
and glucocorticoid sensitivity. These physiological differences
may shape an infant’s regulatory behaviors and related social-
emotional functioning.

Although interrogating DNAm as a molecular mediator
requires more rigorous analysis of cellular models (Lappalainen
and Greally, 2017), emerging evidence suggests a mechanistic
role for NR3C1 DNAm that links the early environment to
profiles of neurodevelopment and behavior (Monk et al., 2012;
Bromer et al., 2013; Paquette et al., 2015; Parade et al., 2016;
Stroud et al., 2016). Factors such as prenatal maternal smoking
and depressive symptoms have been associated with DNAm
of NR3C1 exon 1F across different tissue types including
placental tissue, cord blood and infant buccal cells (Oberlander
et al., 2008; Braithwaite et al., 2015; Stroud et al., 2016);
however, much less is known about the functional relevance of
NR3C1 DNAm to infant/child development. Existing evidence
suggests that placentalNR3C1DNAm is associated with neonatal
neurobehavioral status including quality of movement, attention,

and self-regulation (Bromer et al., 2013; Paquette et al., 2015;
Stroud et al., 2016). Similar associations may exist between
NR3C1 DNAm in saliva specimens collected from preschool
aged children and concurrent behavioral outcomes (Tyrka et al.,
2015; Parade et al., 2016; Cicchetti and Handley, 2017). There
is some support for using saliva/buccal tissue in epigenetic
analyses as a surrogate for the target brain tissue (Smith et al.,
2015). However, the potential cell type heterogeneity and a
limited number of epidemiologic studies identify a need for
longitudinal research devoted to this tissue type in behavioral
health.

As interest in epigenetic markers (i.e., DNAm) continue
to grow, there remains a lack of longitudinal studies that
characterize the relationship between early (neonatal) NR3C1
DNAm and subsequent social-emotional outcomes in diverse,
disadvantaged populations. Early childhood home visiting
(HV) programs are common and offer a unique opportunity
to study these effects in sociodemographically high-risk
populations. Therefore, the objective of this pilot study was
to characterize the relationship between neonatal NR3C1
DNAm (exon 1F), measured in buccal cells, and infant
social-emotional development at 6 and 18 months of age
within a HV population. We hypothesized that the mean
NR3C1 DNAm across 10 CpG sites in the promotor region
(proximal to a known transcription binding factor) would be
significantly associated with subsequent infant social-emotional
functioning.

MATERIALS AND METHODS

Participants
Participants were part of the Cincinnati Pregnancy and Infant
Development (PRIDE) Study, a longitudinal cohort study of 53
at-risk mother-child dyads conducted to examine relationships
betweenmaternal prenatal factors and offspring neonatal DNAm
and neurodevelopment. Eligibility criteria for the Cincinnati
PRIDE Study included English-speaking mothers who were at
least 18 years of age and between 12 and 35 weeks gestation at
enrollment. All study participants were recruited from mothers
enrolled in the Every Child Succeeds HV program in greater
Cincinnati, Ohio from November 2015 to June 2016. Children
in the study sample were born between December 2015 and
October 2016. Every Child Succeeds home visitors were asked
to approach all eligible mothers about study participation and
refer those mothers who reported interest in the study. During
the study time frame, 75 (30%) of an estimated 250 eligible
mothers were referred to the Cincinnati PRIDE Study. Among
the 75 mothers, 68 (91%) agreed to participate in the study.
Following eligibility screening by study staff, 56 mothers enrolled
in the study and 53 completed both study visits (described in
‘‘Procedures’’ section below).

Although mothers were enrolled in the HV program,
participation in the Cincinnati PRIDE Study was separate,
and mothers may have discharged from HV while remaining
enrolled in the study. HV programs were designed to
mitigate developmental risks observed in poverty by providing
family supports and building positive parent-child interactions
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at sensitive points during early development (Sweet and
Appelbaum, 2004; Adirim and Supplee, 2013). Every Child
Succeeds home visits were provided to study participants under
the Healthy Families America (HFA) service model (Daro and
Harding, 1999). The HV program enrolls families prenatally and
up to 3 months postpartum and seeks to retain them until the
child is 3 years of age; however, approximately 50% of families
remain active by 12-months (Folger et al., 2016). Home visits
were scheduled to occur weekly or bi-weekly (depending on the
point of service) during pregnancy.

Procedures
Research assistants collected data at two study visits within the
home environment. The first study visit occurred prenatally
and included measurement of maternal psychological health.
During the second study visit (1-month post-partum) infant
buccal samples were collected for DNA isolation. Developmental
screens were collected by home visitors from n = 30 infants
who remained active in the HV program until at least 6-months
of age. These data formed the basis of the current study
to examine the association between neonatal DNAm at the
NR3C1 promotor (exon 1F) and infant 6-month social-emotional
functioning. At 18-months of age, developmental screens were
available and included in the analyses for a smaller subset of
infants (n = 12). This study was carried out in accordance
with the recommendations of Cincinnati Children’s Hospital
Medical Center Institutional Review Board. All participants
provided written informed consent in accordance with the
Declaration of Helsinki. The protocol was approved by the
Cincinnati Children’s Hospital Medical Center Institutional
Review Board.

Measures
Maternal and child characteristics were collected and evaluated
as covariates and potential confounders. These measures
included maternal race, age, education, estimated household
income, smoking status, pregnancy complications (e.g.,
hypertension), and child’s gender and gestational age at birth
(< or ≥ 37 weeks gestation). Note that household income was
estimated by mother and therefore, not reported on a continuous
scale; this measure did not necessarily reflect mother’s personal
income. Although not collected by the Cincinnati PRIDE Study
team, breastfeeding status (Yes or No) at the postpartum home
visit was also gathered. Home visitors asked mothers whether
they were giving breast milk to the baby at the time of the home
visit, which occurred within the first month after birth.

Edinburgh Postnatal Depression Scale (EPDS)
The Edinburgh Postnatal Depression Scale (EPDS; Cox et al.,
1987) was used to measure maternal depressive symptoms at the
prenatal visit. The EPDS is a 10-item inventory used to screen
for major or minor depression; higher scores are associated with
elevated depressive symptoms. The total score (range 0–30) was
treated as a continuous variable in the statistical models.

Interpersonal Support Evaluation List (ISEL-40)
The perceived interpersonal support of mothers was measured
with the 40-item Interpersonal Support Evaluation List (ISEL;

Cohen and Hoberman, 1983) at the prenatal study visit. A total
score for overall support was derived from subscales including
appraisal, tangible, self-esteem, and belonging.

DNA Methylation
We collected 10 buccal samples from each infant at 1-month of
age, alternating between samples designated for DNA extraction
(stored in lysate solution) and for cell spinning (stored in
phosphate-buffered saline). Sponges were used to swab the
inner cheek until saturated. Cells used for DNA extraction
were collected using the DNAGenotek OGR-250 infant saliva
collection kits similar to the process described by Conradt et al.
(2016). DNAm measurement was performed by pyrosequencing
individual bisulfite-treated DNA buccal samples subjected to
PCR amplification of regions, as previously described (Ji et al.,
2010, 2015; Zhang et al., 2014). Briefly, bisulfite treatment
converts all non-methylated cytosine nucleotides to uracil while
retaining all methylated cytosine (5-methylcytosine), allowing
for the quantification of methylation through pyrosequencing
after PCR amplification. DNAm of candidate CpG sites
was measured by quantitative pyrosequencing using the
PyroMark Q96 MD system (Qiagen) and the Pyro Q-CpG
methylation software 1.0 (Qiagen). The pyrosequencing assay
was validated using SssI-treated human genomic DNA as a
100% methylation control and human genomic DNA amplified
by GenomePlexr Complete WGA kit (Sigma, St. Louis, MO,
USA) as 0% methylation control. All samples were sequenced
in triplicates and repeated if differed by >2%. Beta values
were derived to estimate the percent methylation in each
sample.

The current study focus included 10 CpG sites located
in the promotor region of the NR3C1 1F exon identified
as in Braithwaite et al., 2015. The PCR and pyrosequencing
primers and CpG genomic coordinates are provided in Table 1.
These were sites shown in previous research to affect gene
expression and have associations with prenatal maternal stressors
(Oberlander et al., 2008; McGowan et al., 2009; Braithwaite
et al., 2015). CpG sites 8 and 9 are consensus binding sites for
the transcription factor nerve growth factor-inducible protein A
(NGFI-A), suggested in human and animal studies to modulate
expression of the GR (Weaver et al., 2007; Oberlander et al., 2008;
McGowan et al., 2009; Braithwaite et al., 2015).

Cell Type Heterogeneity
We estimated the proportion of cell types in our biosamples.
Cells were spun onto a glass slide, dried overnight and Hema
3-stained. Slides were then mounted and examined under
microscope to estimate cell composition. Nearly 100% were
buccal epithelial cells with a minimal number of leukocytes
(1%–2% macrophages). Due to a uniform sample of cells,
it was unnecessary to control for cell type in our statistical
models.

Ages and Stages Questionnaire: Social-Emotional
(ASQ:SE)
The Ages and Stages Questionnaire: Social-Emotional (ASQ:SE;
Squires et al., 2002) was collected during routine HV service and
used to measure the outcome of social-emotional functioning
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TABLE 1 | Bisulfite pyrosequencing primers.

NR3C1 1F Assay 2 chr5:143, 404, 013-143, 404, 147† (strand)
PCR primer forward (5′ biotinylated) GTTGTTATTAGTAGGGGTATTGG
PCR primer reverse AACCACCCAATTTCTCCAATTTCTTTTC
Pyrosequencing primer (reverse) CAACTCCCCCACTCCAAACCC
Targeted CpG sites 1–5 chr5:143, 404, 124; 143, 404, 121; 143, 404, 114; 143, 404, 099; 143, 404, 091
NR3C1 1F Assay 1 chr5:143, 404, 011-143, 404, 097† (strand)
PCR primer forward AGTTTTAGAGTGGGTTTGGAG
PCR primer reverse (5′ biotinylated) AAAACCACCCAATTTCTCCAATTTCTT
Pyrosequencing primer (forward) GAGTGGGTTTGGAGT
Targeted CpG sites 6–10 chr5:143, 404, 075; 143, 404, 073; 143, 404, 063; 143, 404, 057; 143, 404, 043

†Chromosomal coordinates for PCR and sequencing are based on UCSC Genome Browser Human December 2013 (GRCh38/hg38) Assembly.

of children at 6 and 18-months of age. The ASQ:SE is a well-
validated, parent-completed screening tool that contains items
to assess infant/child competencies and problem behaviors in
the dimensions of self-regulation, compliance, communication,
adaptive functioning, autonomy, affect, and interaction with
people. The tool has generally high internal consistency and
test-rest reliability and acceptable sensitivity (range: 0.75–0.89)
and specificity (range: 0.82–0.96; Squires et al., 2001). ASQ:SE
items are used to identify problem behaviors and strengths and
include questions at 6-months such as ‘‘When upset, can your
baby calm down within a half-hour?’’ Home visitors trained
in clinical evaluation introduced the ASQ:SE to mothers prior
to administration; they were available to answer questions as
mothers completed 19 and 26 questions at 6- and 18-months,
respectively. We used the ASQ:SE score as a continuous outcome
as in previous research (Folger et al., 2017). Higher scores are
associated with poorer social-emotional functioning.

Statistical Analysis
Descriptive analyses were conducted to examine the
sociodemographic and psychosocial characteristics of the
study sample (n = 30) with child ASQ:SE measures at 6 months.
The study sample of n = 30 was compared to the Cincinnati
PRIDE Study population of n = 23 mother-child dyads who did
not have an ASQ:SE at 6 months. Bivariate comparisons were
performed using the chi-square or Fisher’s exact chi-square
tests for categorical variables and student’s t-tests or Wilcoxon
rank-sum tests for continuous variables. Spearman correlation
coefficients were calculated for percent DNAm and ASQ:SE
measures.

A multivariable general linear model was constructed in
which the ASQ:SE score was regressed on the measured
intensity of NR3C1 DNAm. First, DNAm was averaged across
the 10 CpG sites, obviating the need to adjust for multiple
comparisons in the primary study analysis. Next, DNAm beta
values (i.e., interpreted as percentmethylation) were transformed
to M-values (log2 ratio of methylation percentage). The M-value
was used as the main effect in the model because of the desired
statistical properties over beta values (Du et al., 2010). Last,
multiple variables were evaluated for inclusion in the model
as potential confounding factors: maternal age, race, education,
and household income; maternal prenatal depressive symptoms
(EPDS); maternal interpersonal supports (ISEL-40); maternal
smoking status; maternal breastfeeding status; and the quantity of
prenatal home visits (i.e., dose of service). Variables were retained

in the final model if statistically significant (p-value < 0.05)
and/or there was a priori or observed evidence of confounding.
Standardized regression coefficients were also derived from the
model. We assessed multicollinearity using the variance inflation
factor and condition index. There was no missing data on
the parameters selected for model inclusion. An alternative
multivariable tobit model was fit to account for the left-truncated
ASQ:SE distribution, in which n = 9 children scored a zero.

In a secondary analysis, Spearman correlation coefficients
were calculated to interrogate each individual CpG site. In
separate multivariable models, we tested the independent
associations between each CpG site and the study outcome.
A false discovery rate adjustment was applied to the p-values
generated from the individual models. All analyses were
performed in SAS 9.4.

RESULTS

Sample Characteristics
The primary sample of n = 30 mother-child dyads had similar
characteristics to the full Cincinnati PRIDE Study population of
n = 53, minimizing the potential for a selection bias (Table 2).
However, the study sample differed significantly from the full
study population by mean maternal age, mean prenatal home
visits, and the proportion of babies born preterm (<37 weeks
gestation). The n = 23 and n = 41 dyads who were missing the 6-
and 18-month child ASQ:SE scores, respectively, were discharged
from the HV program for reasons including no longer having
time to participate, moving from service area, and excessive
missed visits. Study participant characteristics included young
maternal age, limited education, and living in poverty (Table 2).
Over 50% of mothers were African American and 40% reported
elevated prenatal depressive symptoms.

Social-Emotional Function
Mean DNAm
The correlation between mean NR3C1 percent DNAm and
the 6-month ASQ:SE score was negative and significant
(Figure 1; Spearman correlation: −0.44, p = 0.02). Although not
statistically significant, the correlation was again negative for the
n = 12 children with ASQ:SE measures at 18-months of age
(Figure 2; Spearman correlation coefficient: −0.52, p = 0.08). In
an unadjusted model, mean DNAm (M-value) was a significant
predictor of infant ASQ:SE score at 6-months of age [coefficient:
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TABLE 2 | Study sample characteristics by the sub-cohort with 6-month developmental screens.

Full (n = 53) 6-months (n = 30) pf

Maternal factors
Age (years), mean (SD) 21.8 (3.3) 22.6 (3.9) 0.04
Race, n (%) 0.13

Black 33 (62.3) 16 (53.3)
White 15 (28.3) 10 (33.3)
Other 5 (9.4) 4 (13.3)

Education, n (%) 0.88
High school or less 42 (79.3) 24 (80.0)
Some college/ college degree 11 (20.8) 6 (20.0)

Insurancea, n (%) 0.50
Medicaid or None 49 (96.1) 27 (93.1)
Private 2 (3.9) 2 (6.9)

Annual household incomea, n (%) 0.27
Less than $25,000 28 (54.9) 14 (48.3)
$25,000 or more 23 (45.1) 15 (51.7)

Depressive symptomsb, n (%) 0.80
High 22 (41.5) 12 (40.0)
Low-mod 31 (58.5) 18 (60.0)

Interpersonal supportsc, n (%) 0.71
High 13 (24.5) 9 (30.0)
Low-mod 40 (75.5) 21 (70.0)

Prenatal smoking, n (%) 10 (18.9) 4 (13.3) 0.24
Pregnancy complicationsd, n (%) 19 (35.9) 11 (36.7) 0.89
Breastfeedinge, n (%) 36 (72.0) 23 (76.7) 0.37
Prenatal home visits , med (IQR) 10 (7) 14.5 (11) <0.01

Child Factors
Gender, n (%) 0.18

Female 29 (54.7) 14 (46.7)
Male 24 (45.3) 16 (53.3)

Gestational age at birth, n (%) 0.03
<37 weeks 7 (13.2) 1 (3.3)
≥37 weeks 46 (86.8) 29 (96.7)

ASQ:SE 6-months, med (IQR) - 7.5 (20) -
NR3C1% DNAm, med (IQR) 2.0 (3.6) 2.0 (4.2) 0.54

DNAm, DNA methylation; SD, standard deviation; med, median; IQR, interquartile range. aTwo records missing household income data; two missing insurance. bSymptoms determined
using the Edinburgh Postnatal Depression Scale (EPDS) total score ≥10. cHigh social support determined using the Interpersonal Support Evaluation List-40 (ISEL-40) total score at
or above the 75th percentile. dSelf-reported diagnoses of hypertension, gestational diabetes, anemia, and/or placenta previa. eBreastfeeding/breastmilk reported at the postpartum
home visit; three records missing data. fp-value derived from comparison of n = 30 with a 6-month Ages and Stages Questionnaire: Social-Emotional (ASQ:SE) vs. n = 23 without a
6-month ASQ:SE.

−3.12, 95% confidence interval (CI): −5.79, −0.46]. Higher
mean DNAm in the NR3C1 promoter was associated with
lower ASQ:SE scores—more positive infant social-emotional
functioning. At 18 months, the unadjusted estimate followed the
same trend, but was non-significant (−5.44, 95% CI: −11.90,
1.00; p = 0.10).

After multivariable adjustment, the effect remained
statistically significant, indicating that higher/lower mean
DNAm was associated with lower/higher infant ASQ:SE scores
at 6-months of age (Table 3; adjusted coefficient: −3.22, 95% CI:
−5.80, −0.65). A 1 standard deviation (SD) change in DNAm
level was associated with a −0.41 SD change in ASQ:SE score.
We included the following predictors in the multivariable model:
maternal smoking status, depressive symptoms and the number
of prenatal home visits received (Table 3). Maternal age, race,
education, household income, ISEL-40 total score, breastfeeding
status, and child gender were excluded in favor of a more
parsimonious model; these measures did not improve model
fit and did not appear to confound the observed DNAm effect.
Note that one participant did not report estimated household

income. We also excluded gestational age at birth (i.e., < or
≥ 37 weeks gestation) because this factor had little variation in
the study population (Table 2). NR3C1 DNAm accounted for
16% (semipartial η2: 0.158) of total variance; this was relative to
10% accounted for by both smoking and prenatal home visits
and 2% by depressive symptoms. Multicollinearity was not
observed (condition index: 1.6). Although the sample size was
markedly reduced at 18-months of age (n = 12), the multivariable
model was fit and suggested a larger effect than at 6-months
(adjusted coefficient: −6.44, 95% CI: −13.1, 0.20; p-value: 0.06).
The small sample size precluded the inclusion of the binary
maternal smoking variable in this model.

The alternative tobit regression model included the same
covariates and also showed that DNAm was significant predictor
at 6-month of age (adjusted coefficient: −5.05, 95% CI: −6.85,
−3.85; p < 0.01).

Site-Specific DNAm
DNAm at CpG sites 6, 7 and 9 had the strongest
associations with 6-month ASQ:SE scores as observed in
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FIGURE 1 | Mean NR3C1 DNA methylation (DNAm) and 6-month Ages and
Stages Questionnaire: Social-Emotional (ASQ:SE) score. Scatterplot of mean
percent DNAm across CpG sites and social-emotional impairment. Higher
ASQ:SE scores are associated with greater social-emotional concerns. Note
that four points occupy similar coordinates, and these are represented by
bolded/staggered circles.

FIGURE 2 | Mean NR3C1 DNAm and 18-month ASQ:SE score. Scatterplot
of mean percent DNAm across CpG sites and social-emotional impairment.
Note that two points occupy similar coordinates, and these are represented
by the bolded circle.

separate multivariable models. Both of these CpG sites
had correlation values and model parameter estimates that
were statistically significant a p-value < 0.05 (Table 4).
However, no sites survived FDR adjustment. CpG
9 is located at a reported NGFI-A transcription factor
binding site.

DISCUSSION

Psychosocial factors in the early life environment are known
to influence infant developmental trajectories. However,
individual biological vulnerabilities attributed to adverse

TABLE 3 | Models for the association between mean infant NR3C1 DNAm and
offspring social-emotional functioning at 6 months.

Predictors Adjusted parameter
estimates (95% CI)

p

Mean NR3C1 DNAm
M-valuea

−3.22 (−5.80, −0.65) 0.01
M-value (tobit)b −5.05 (−6.85, −3.45) <0.01

Prenatal depressive symptomsc 0.38 (−0.24, 1.00) 0.23
Prenatal smokingd 11.81 (0.45, 23.20) 0.04
Prenatal home visiting dosee

−0.67 (−1.43, 0.10) 0.09

Note: Maternal age, race, and education were non-significant and did not change the
main effect (DNAm) substantially when included in model and therefore, these factors
were excluded. CI, Confidence Interval. aConverted beta coefficient; all other parameters
were derived from the model including the M-value as main effect. bParameter estimate
derived from tobit regression model; no other parameters are reported for tobit model
although the same covariates were included in the model. cEPDS scale; higher scores
associated with elevated depressive symptoms. dSelf-reported ever smoking during
pregnancy vs. not smoking. eThe quantity of home visits received during pregnancy.

psychosocial factors remain enigmatic. Epigenetic mechanisms
such as DNAm are promising targets to better understand
childhood developmental risk and resilience within the
context of adversity. Epigenetic changes may occur to
maximize function within the anticipated environment
(Blair and Raver, 2012; Shonkoff et al., 2012; Provençal and
Binder, 2015); however, these psychobiological responses to
adversity may be insidious and favor childhood behavioral
traits that undermine healthy development. Alternatively,
epigenetic responses such as increased/decreased DNAm at
specific loci may favor phenotypes of resilience to early-life
adversity (Van der Doelen et al., 2015). Elucidating these
epigenetic effects may eventually help interventions that
seek to optimize social-emotional development in the
context of early adversity. Our findings indicated that
within the context of psychosocial adversity the level of
DNAm at NR3C1 CpG sites was associated with differential
social-emotional functioning during infancy and into early
childhood.

To our knowledge, this is the first study to examine
the association between neonatal NR3C1 DNAm of buccal
cells and subsequent child social-emotional development at
two time points during early childhood. Further, this study
uniquely examined these relationships within a diverse and
disadvantaged population enrolled in a widely-disseminated
prevention model. Nearly one-quarter (24%) of low income
young children exhibit symptoms of social-emotional problems
(Brown et al., 2012), and the negative effects of poverty are
directly observed in the developing brain (Hair et al., 2015).
Negative social-emotional functioning during early childhood
is associated with decreased wellness in young adults across
multiple domains including education, employment, and mental
health (Jones et al., 2015). Early life NR3C1 DNAm, as
suggested by this work and previous research (Parade et al.,
2016), may be an early and objective marker of psychosocial
exposures that have significantly increased a child’s risk
for negative social-emotional development and behavior. As
research evolves, DNAm markers may help discern childhood
phenotypes of resilience relative to those characteristic of toxic
stress.
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TABLE 4 | Associations between DNAm of NR3C1 promotor CpG sites and offspring social-emotional functioning at 6 months.

CpG site RS Regression
coefficient‡

Percent
non-methylated

Range of percent
methylation

IQR of percent
methylation

1 −0.06 −1.63 (−5.21, 1.95) 9.4 0–9.9 0.4, 0.9
2 −0.20 −1.12 (−3.11, 0.87) 15.1 0–87.8 1.7, 4.3
3 −0.08 −0.30 (−3.77, 4.37) 1.9 0–13.6 1.7, 3.2
4 −0.29 −1.60 (−4.32, 1.13) 26.4 0–28.0 0, 2.8
5 −0.12 −1.78 (−5.27, 1.71) 17.0 0–26.8 1.7, 2.6
6 −0.38∗∗ −1.71 (−3.35, −0.07)∗∗ 45.3 0–29.1 0, 7.7
7 −0.38∗∗ −1.59 (−3.29, 0.11)∗ 47.2 0–30.0 0, 8.0
8†

−0.33∗ −0.93 (−2.72, 0.85) 32.1 0–33.2 0, 6.3
9†

−0.38∗∗ −1.92 (−3.71, −0.13)∗∗ 39.6 0–28.0 0, 5.9
10 −0.33∗ −1.56 (−3.34, 0.22)∗ 30.2 0–27.8 0, 6.8

∗p < 0.10, ∗∗p < 0.05. Note: there were no comparisons that survived FDR p-value adjustment. See Table 1 for chromosomal coordinates of CpG sites 1–10. RS: spearman correlation
coefficient for relationship between Percent DNAm and ASQ:SE Score. IQR, interquartile range. †Nerve growth factor-inducible protein A (NGFI-A) transcription factor binding sites.
‡DNAm M-values included in models; each model was adjusted for maternal prenatal depressive symptoms, smoking, and prenatal home visits.

The effects we observed were the strongest at CpG sites 6,
7 and 9. CpG site 9 is located at the NGFI-A transcription
factor binding site. This suggests that these sites may be integral
to transcriptional regulation and impact gene expression with
a direct impact on GRs and related signaling in the HPA
axis. Lower NR3C1 DNAm may support phenotypes that have
increased GC sensitivity, and therefore, specific developmental
vulnerabilities (Yehuda et al., 2005).

Although this research provides further support for the role
of NR3C1 DNAm in early development, the direction of our
findings contradicts that of effects reported in other studies.
We reported that higher mean DNAm was associated with
more optimal social-emotional functioning after adjusting
for factors that can impact development and potentially
DNAm. However, previous studies have shown maternal
prenatal adversity associated with increased NR3C1 DNAm
in varied tissue types (Oberlander et al., 2008; Braithwaite
et al., 2015). Further, the postmortem brains of individual
with histories of maltreatment also showed increased NR3C1
DNAm (McGowan et al., 2009). Profiles of increased placental
NR3C1 DNAm also have been linked to increased infant
cortisol reactivity (Conradt et al., 2015) and poorer infant
neurodevelopment (Paquette et al., 2015). Relatedly, a
study focused on child saliva specimens revealed increased
NR3C1 DNAm associated with increased internalizing (but
not externalizing) behaviors in preschool (Parade et al.,
2016).

Despite the aforementioned differences in effects and varied
tissue types, our findings align with studies that found higher
NR3C1 DNAm of placental tissue associated with greater
infant self-regulation (Conradt et al., 2015; Stroud et al.,
2016). These effects were further supported by findings that
suggested increased NR3C1 DNAm of placental tissue was
associated with more positive infant habituation (i.e., ability
to adapt to environment), stress abstinence (i.e., regulation
of physiologic and behavioral functioning), and quality of
movement (Bromer et al., 2013). Although tissue specificity
of NR3C1 DNAm likely exists, both placental tissue and our
target tissue, buccal epithelial cells (or saliva), may represent
key developmental phenotypes and have utility as biomarkers
(Armstrong et al., 2014). In a recent study of infant buccal

epithelial cells, preterm infants with more medical morbidities
had lower NR3C1 DNAm, and the authors speculated DNAm
as potentially promoting adaptive programming (Giarraputo
et al., 2017). Further, in a study of mothers with posttraumatic
stress disorder (PTSD), lower NR3C1 DNAm in saliva was
associated with greater symptom severity and parenting stress;
the authors posited that NR3C1 DNAm effect direction
could be dependent on how exposures are individually
‘‘processed,’’ reflecting the importance of context (Schechter
et al., 2015).

The contrast of effects underscores the complexity of these
mechanisms and the likely importance of population context
in interpreting epigenetic responses. Increased DNAm may
reflect a compensatory response to prenatal adversity among
some infants who have parents enrolled in a HV program.
The high prevalence of poverty and interpersonal trauma
(Folger et al., 2017) in our HV study population may suggest
sub-groups in which NR3C1 DNAm (CpGs 6 and 9) is
protective of social-emotional health, although elucidation of
these hypothesized mediated relationships requires a larger-scale
study with adequate exposure variation. It could be that different
psychosocial contexts—positive and negative—can result in
different DNAm patterns following exposure to adversity, and
therefore, have different clinical meanings. For example, Conradt
et al., 2016 found that maternal parenting sensitivity moderated
the relationship between maternal depressive symptoms and
NR3C1 DNAm. This suggests that although NR3C1 DNAm
is a plausible mediator for early development, the effect
direction is conditional on parenting and environmental
contexts, e.g., HV programs that build parental nurturance.
Also important to consider are the conclusions from Bromer
et al. (2013) that DNAm may be protective in one domain of
development/behavior, while compromising other domains. It
is also possible that the dynamic nature of DNAm during early
childhood (i.e., change over time) must be measured to fully
appreciate risk phenotypes (Tronick and Hunter, 2016; Parent
et al., 2017).

This study has several strengths including leveraging a
population of diverse, low-income mother-child dyads enrolled
in a widely-implemented prevention program; the longitudinal
collection of measures including prenatal adversity, neonatal

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 February 2019 | Volume 13 | Article 14

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Folger et al. NR3C1 and Social-Emotional Development

DNAm and child development at 6 and 18 months of age; and
a homogenous cell type (buccal epithelial cells) collected for
DNAm analyses. Cell type heterogeneity can be a confounder
in epidemiologic studies, and therefore, measurement and
adjustment of this factor is important for unbiased effects.
Saliva/buccal specimens provide a convenient approach to
measure DNAm, and may provide improved interpretation over
other accessible tissue types (Smith et al., 2015). Although
supported by scant empirical data, limited evidence also suggests
a strong correlation between NR3C1 DNAm in buccal cells and
human brain tissue (Shinozaki et al., 2017). Buccal samples may
also have increased stability (i.e., technical replicate agreement)
compared with other peripheral tissue types (Forest et al., 2018).

Limitations
There were also several limitations to this study. First, the sample
size was small (particularly at 18-months of age), precluding
a robust assessment of mediation for investigating multiple
pathways. However, this study was exploratory, and studies of
similar size and focus have contributed to the emerging field
(Stroud et al., 2016; Yehuda et al., 2016). Nevertheless, the study
should be replicated with a larger cohort. Second, although the
NR3C1 DNAm has been linked to decreased gene expression
and our target region contained a known transcription factor
binding site, we did not collect RNA in this study and could not
quantify the relationship between DNAm and gene expression.
In addition, we restricted our focus to DNAm at the exon
1F, while a need remains to examine other alternative first
exons that may also have mediational effects (e.g., 1D and
1H). Third, the primary outcome measure in the study derived
from a screening tool collected in practice and by parent
report. This measure has been used in previous research as a
continuous outcome to demonstrate the intergenerational effects
of adversity (Folger et al., 2017), but future studies should
include developmental and behavioral assessments administered
by independent observers. Fourth, we observed low mean levels
of methylation at each CpG site, which has also been observed
in past research. However, low (<2%) levels of DNAm can be
detected through pyrosequencing, and this study was focused on
associations/correlations rather than total intensities of DNAm.
Further, our primary findings seem to suggest an effect that
was driven primarily by non-methylated relative to methylated
(i.e., >0%) CpG sites.

CONCLUSION

The study findings indicate that the level of neonatal NR3C1
DNAm was related to later social-emotional functioning, and
the effect persisted after adjustment for other predictors of
development (i.e., maternal smoking, depression and dose of
HV service). However, additional research in larger populations
is needed to replicate and further elucidate effects. As
research continues in similar populations, implications will
likely emerge for prevention programs including the optimal
timing of service, targeted service strategies, and determining
impact.
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