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Worldwide, breast cancer is the leading cause of cancer-related deaths in women. Breast cancer is a heterogeneous disease
characterized by different clinical outcomes in terms of pathological features, response to therapies, and long-term patient survival.
Thus, the heterogeneity found in this cancer led to the concept that breast cancer is not a single disease, being very heterogeneous
both at the molecular and clinical level, and rather represents a group of distinct neoplastic diseases of the breast and its cells.
Indubitably, in the past decades we witnessed a significant development of innovative therapeutic approaches, including targeted
and immunotherapies, leading to impressive results in terms of increased survival for breast cancer patients. However, these
multimodal treatments fail to prevent recurrence and metastasis. Therefore, it is urgent to improve our understanding of breast
tumor and metastasis biology. Over the past few years, high-throughput “omics” technologies through the identification of novel
biomarkers and molecular profiling have shown their great potential in generating new insights in the study of breast cancer, also
improving diagnosis, prognosis and prediction of response to treatment. In this review, we discuss how the implementation of
“omics” strategies and their integration may lead to a better comprehension of the mechanisms underlying breast cancer. In
particular, with the aim to investigate the correlation between different “omics” datasets and to define the new important key
pathway and upstream regulators in breast cancer, we applied a new integrative meta-analysis method to combine the results
obtained from genomics, proteomics and metabolomics approaches in different revised studies.
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INTRODUCTION

Breast cancer (BC) is the most frequently diagnosed cancer and a
major health issue in women, being the leading cause of cancer-
related deaths among women, worldwide [1-3]. Even if 5-10% of
BC cases are due to hereditary and genetic factors, non-hereditary
factors have been described as the primarily responsible for
differences in incidence between countries and ethnic groups [1].
BC is recognized as a heterogeneous disease, both at the
molecular and clinical level. In this regard, at the beginning of
the millennium, Perou and colleagues did a groundbreaking
discovery in BC using DNA microarray. Their extensive gene
expression profiling found variation in expression of 1753 genes in
84 experimental samples. They concluded that BC is not a uniform
disease, instead it is composed of five distinct subtypes: luminal A,
luminal B, basal-like, normal breast-like, and HER-2 enriched [2-5].
In fact, these subtypes of BC are also well known as “Perou’s
molecular subtypes” [6]. Moreover, being a multifaceted disease, BC
is characterized by intratumoral and intertumoral heterogeneity.
Specifically, it is defined as intratumoral when cells within a tumor
in a single patient are involved, while intertumoral when cells of
the same subgroup of tumors in different patients are involved [2].
Thus, the heterogeneity found among BCs led to the concept that
BC is not a single disease and rather represents a group of

distinct neoplastic diseases of the breast and its cells [7].
Nowadays, therapeutic options for BC treatment include surgery,
radiotherapy, chemotherapy, and targeted therapies [4, 8]. Despite
recent and important advances in understanding BC biology,
diagnosis and treatment, several significant clinical issues still
remain unclear. In particular, these unmet clinical needs are
related to prevention, diagnosis, tumor progression, treatment,
therapeutic resistance and metastasis formation [3, 9]. In this
context, modern systems biology based on “omics” approaches
can potentially make a major contribution to overcome these
problems. In fact, in the era of precision medicine, “omics”
strategies and their integration in the study of BC may be
considered as a new biomarker discovery tool, leading to novel
biomarker molecules and molecular signature with a potential in
clinical practice [9]. It is worth noting that a molecular profiling is
involved in BC, as in any phenotypic alterations, and is
recognizable on different levels: genome, transcriptome, pro-
teome, and metabolome. At the beginning of the twenty-first
century, revolutionary progress of high-yield and innovative
technologies in nucleic acid sequencing and mass spectrometry
(MS) have driven the advent of Genomics, Transcriptomics
(functional genomics), Proteomics and finally of Metabolomics,
leading to the “multi-omics” era [9-11]. Anyway, we should
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consider that, even if each “omics” approach is essential to
systems biology, giving its contribution in a specific way to shape
the biological phenotype under study, some are more mature
than others [11]. These “omics” approaches are quite different
from the conventional methods for the study of BC complex
biology, mainly for the possibility of obtaining a huge number of
molecular measurements within cells, a tissue or in biological
fluids [12]. Once applied to a pathological condition of interest,
they allow to obtain a snapshot of the underlying biology, with a
resolution never achieved before. Interestingly, the application of
each aforementioned “omics” technology and their integration by
network science for studying BC gives the possibility of holistic
investigation and contextually of a comprehensive pathophysio-
logic understanding of such a complex disease, with the promise
of providing novel insights into precise diagnosis, potential
therapeutic options and tailored treatment [11, 13, 14]. Thus, the
main advantage of “omics” strategies is to bring out the omics-
based molecular profiling with the clinical outcome under study.
Actually, in the multi-omics context it has become evident that the
use of integrative tools and of computational approaches is
necessary [14] to deeply understand biological mechanisms from
a system-wide perspective [15].

The present manuscript reviewed recent works in literature of
the findings by omics-based studies in BC until 2020. In particular,
we summarized and updated previously published literature on
BC molecular candidates obtained by the application of three
kinds of omics approaches, including genomics, proteomics, and
metabolomics. In addition, we applied a network science
paradigm performing a systematic integration of the molecular
alterations at multiple levels including genome, proteome, and
metabolome. In fact, elaborating heterogeneous-omics data sets
has the potential to gain novel, mechanistically significant insights
into the BC disease [14, 16].

Finally, we aimed to prove that the real challenge of multi-omics
investigations lies in the integration of their frameworks and the
cautious interpretation of the myriad of data in order to gain
further insights on BC and to move toward P4 medicine
(preventive, predictive, personalized, and participatory) [11, 14].

GENOMICS IN BC

The history of BC genomics can be broadly divided into two
categories, before next-generation sequencing (NGS), or pre-NGS,
and after NGS, or post-NGS. Pre-NGS era is mainly characterized by
studying of individual genes associated with BC. During the pre-
NGS era, the hallmark genes such as BRCA1 and BRCA 2 were
discovered. After the advent of NGS, the study of BC genomics
boomed, and BC study was not limited to only few genes. A
number of new genes and intergenic interactions were discovered
during post-NGS era of BC. The genes associated with BC can be
found on Supplementary Table S1. The genes are categorized in
different groups, based on the type of alteration (i.e, mutation/
polymorphism) or susceptibility of developing cancer (high/
moderate/low penetrance). Gene expression or transcriptomic
data are not included in this review.

Pre-NGS era of BC

Genomics is one of the important factors determining the
outcome of BC. In the '90s, researchers observed that family
history is the strongest single predictor of a woman'’s chance of
getting BC. After a long search, two genes, BRCA1, was discovered
in 1994, and the second, BRCA2, in 1995, was found to be
associated with the BC in women [17, 18]. Importantly, a meta-
analysis shows that the mean cumulative BC risks at the age of 70
were 57% for BRCA1 and 49% for BRCA2 mutation carriers [19].
The search for other genes continues and several genes are
known to be involved in somatic and inherited susceptibility to
BC. Apart from BRCA1 and BRCA2 genes, which are used as the

SPRINGER NATURE

gold standard for genetic testing for BC, there are several other
genes involved in varying extent in the susceptibility of BC. The
pieces of evidence at that time made two things clear: first, BC is
not a single disease, but instead, it is composed of a spectrum of
tumor subtypes with distinct molecular, cellular and somatic
changes [20]. Secondly, various rare genetic syndromes are linked
with increased BC risk. For example, mutations that inactivate the
Tp53 gene, which primarily causes Li—-Fraumeni syndrome, are also
associated with increased susceptibility to BC [21, 22]. The risk of
developing BC before the age of 45 is 18-fold higher with the
females affected with Tp53 mutation as compared to the general
population [21]. Germline mutations in the Tp53 gene have been
estimated to account for <1% of BC cases [23-25]. However,
somatic mutations in the Tp53 gene are reported in 19-57% of
human BCs [26-28]. Inactivation of just one allele for Tp53 gene
may be sufficient for BC development [28]. Likewise, mutations in
the ATM gene are responsible for Ataxia-telangiectasia (A-T)
disease. Though A-T patients do not survive to an age at which BC
generally occurs [29] A-T carriers (heterozygous for ATM muta-
tions) appear to have an increased BC risk [30-33], with an
estimated increased risk of 11% by the age of 50 and 30% by the
age of 70 [34]. A study of 138 Austrian hereditary breast and
ovarian cancer patients without BRCA1 and BRCA2 mutations
showed functionally significant ATM germline mutations in at least
8.7% of the patients [35]. The penetrance for one of the mutations
(L1420F) was estimated to be 85% at age 60. Renwick et al.
sequenced ATM in 443 BRCA-negative cases from families with at
least three BC-affected members and in 521 controls. Nine
truncating and exon-skipping mutations were identified in cases,
while only two were found in controls. All mutations found in
cases were predicted to cause AT, and seven had been observed
previously in AT cases [36]. Bernstein et al. performed an ATM
mutation screen in 708 unilateral BC survivors who developed
contralateral BC following radiotherapy and 1397 who did not.
They found that women with AT-associated ATM mutations
treated previously with radiation had a significantly greater risk of
contralateral BC than unexposed women either with no mutation
or unexposed women with the same mutation [37]. Similarly, a
mutation in the PTEN gene leads to the Cowden syndrome in 80%
of Cowden syndrome families [38, 39]. On the other hand, the
same truncating PTEN mutations in Cowden syndrome families
are associated with 25-50% lifetime BC risk in women [39-41].
Loss of heterozygosity (LOH) at the PTEN locus is found in 11-41%
of sporadic BCs [42-45]. In one study (in 177 BC patients with a
positive family history for BC and without BRCA1 and BRCA2
mutations), an association was found between a polymorphism in
intron 4 of the PTEN gene and a lower age of diagnosis of BC (42.7
versus 48.1 years) [46]. Moreover, Peutz-Jeghers syndrome is an
autosomal dominant disorder, caused by truncating germline
mutations in the LKB1 gene [47, 48]. Patients with Peutz-Jeghers
syndrome have an increased BC risk [47-49]. Another genetic
disorder, Neurofibromatosis type 1 (NF1) is a common autosomal
dominant disorder associated with an increased risk for neoplasms
[50]. Women with NF1 develop BC at younger ages than the
general population, with an average of <50 years old. Moreover,
the risk of developing BC wit NF is 6.5-fold higher in women aged
30-39 years and 4.4 times higher among women aged 40-49 [51].
In patients with no BRCA1 or BRCA2 mutations, LOH in the NF1
region was found to be responsible for the onset of BC [52].

Post-NGS era of BC

NGS of DNA introduced rapid and cost-efficient way to identify
genes involved in BC [53]. NGS allows detecting multiple genetic
alterations at the same time, using the same assay, leading to the
concept of “multigene sequencing”. Based on the multigene
sequencing, several other genes were found to be involved in the
susceptibility of the BC. BRCAT-associated ring domain (BARD1), a
direct interacting partner of BRCA1, is likely to be a low-moderate
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penetrance BC risk gene [54]. Loss-of-function (LoF) mutation in
BRAD1 gene was present in 0.51% of BC patients. Also, BARD1-
mutated BC patients showed a significantly younger mean age at
first diagnosis (42.3 years, range 24-60 years) compared with the
overall study sample (48.6 years, range 17-92 years) [55].
Similarly, germline LoF mutations in BRCA1 interacting protein
C-terminal helicase 1 (BRIP1), which is a low penetrance gene, are
associated to contribute to BC risk, particularly among patients
who develop the disease at an early age [56]. Normal BRIP1
activity is required for DNA interstrand cross-link (ICL) repair and
is thus central to the maintenance of genome stability. Next-
generation sequencing of germline DNA in 2,160 early-onset BC
and 1,199 patients with ovarian cancer revealed nearly 2% of
patients carry a very rare missense variant in BRIP1, which is
3-fold higher than the frequency of all rare BRIP1 missense alleles
reported in more than 60,000 individuals of the general
population [56]. The study by Seal et al. sequenced the exons
and exon-intron boundaries of BRIP1 in 1212 BC cases with a
family history of the disease and no BRCA mutation and 2081
controls and found mutations in nine cases (0.74%) but only in
two controls (0.10%) [57]. Similarly, mutated CHEK2 or CHEK2
pathogenic variant (PV) is a high penetrance BC gene [58].
Biallelic CHEK2 PV carriers have a higher risk for BC, are more
likely to be diagnosed younger, and have multiple primary BCs
compared to monoallelic carriers [58]. A population-based study
found that deletion in CHEK2 (CHEK2*1100delC) is present at a
frequency of 1.1% in controls, 5.1% in cases with a family history,
and 13.5% in cases with a family history of male BC in a
population with a positive history of BC but no BRCA mutation
[59]. SMAD4 is another gene that gets inactivated in BC patients.
SMAD4 is a common signal transducer in the bone morphoge-
netic protein (BMP)/transforming growth factor-f (TGF-B) signal-
ing pathway, and functions as a transcription corepressor for
human estrogen receptor a (ERa) [60]. SMAD4 is located on
18921, a region frequently lost in BCs [61]. Inactivation or
suppressed expression of TGF-B/SMAD4 signaling has been found
to play an important role in BC development [61-63].

Besides the above-mentioned genes, NGS revealed that germ-
line LoF mutations in PALB2 confers a predisposition to BC. PALB2
interacts with BRCA1 and BRCA2, and biallelic mutations in PALB2
(also known as FANCN), disrupts the Fanconi anemia-DNA repair
pathway and increases BC predisposition [64, 65]. Furthermore,
L35Pa, a pathogenic missense mutation in PALB2, abrogates the
PALB2-BRCA1 interaction which may lead to failure in BC
suppression [66]. In recent years, RAD51C and RAD51D are the
other two genes that have been used in the screening of BC
susceptibility [67, 68]. The estimated cumulative risks of develop-
ing BC to 80 years is 21% for RAD51C and 20% for RAD51D
pathogenic variant carriers. BC risks for RAD51C and RAD51D
pathogenic variants could be 44-46%, for carriers with two first-
degree relatives diagnosed with BC [69]. Other notable genes that
get mutated in BC are NBN and CDK12.

NBN gene mutation shows moderate to low penetrance [70].
Among NBN variants, a protein-truncating variant, c.657del5, is
sufficiently common in some Eastern European populations to
allow its evaluation in case-control studies. A meta-analysis of
10 studies reported strong evidence of an association with BC risk
for this variant [34, 70].

Moreover, CDK12 (cyclin-dependent kinase 12), a low pene-
trance gene, is a regulatory kinase with evolutionarily conserved
roles in modulating transcription elongation. In BCs, CDK12 is also
frequently co-amplified with the HER2 oncogene [71]. CDK12
expression was found to be high in 21% of primary unselected BCs
[72, 73]. Other low penetrance genes that are mutated in BC
include MutYH, MSH2, CDKN2A and APC. The MutYH gene is
involved in base excision repair. Carriers of variants in MutYH,
although not very common, may have an increased risk of BC [74].
In a study in Italy by Rizzolo et al., biallelic MutYH pathogenic
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variants (p.Tyr179Cys/p.Arg241Trp) in one MBC patient with a
phenotypic manifestation of adenomatous polyposis and Mono-
allelic pathogenic variants in 14 (2.5%) MBC patients were
identified. Overall, the study suggests that MutYH pathogenic
variants may have a role in MBC and, in particular, the p.Tyr179Cys
variant may be a low/moderate penetrance risk allele for MBC [75].
On the other hand, Thibodeau et al. identified two patients with
BC, each carrying a pathogenic germline MutYH variant with a
somatic MutYH copy loss leading to the germline variant being
homozygous in the tumor [76]. Regarding MSH2, a study showed
that 1.1% woman with BC carries MSH2 mutation [77]. Moreover,
another low penetrance gene CDKN2A mutation was identified
(A148T variant) in 157 of 3,069 women with BC (5.1%) in a study in
Poland. Their study shows that CDKN2A A148T variant seems to
contribute to early-onset BC [78]. Furthermore, the adenomatous
polyposis coli (APC) gene is a regulatory gene of the Wnt/
-catenin signaling pathway, which are independently involved in
maintaining low levels of 3-catenin in the cell. In an Indian study, a
single nucleotide polymorphism (SNP), rs2229992 was identified
in APC gene, with an increased risk of breast carcinogenesis in a
BC and control population from eastern India [79].

PROTEOMICS IN BC

In recent years, omics approaches have emerged as a promising
and extremely useful tool to reveal innovative molecular pathways
as well as to identify and quantify the levels of molecules
differentially expressed. In this scenario, mass spectrometry (MS)
techniques have occupied an increasingly central position in the
investigation of potential biomarkers, applied above all to
complex and multifactorial pathologies, such as the study of
cancer. To date, several studies based on the quantification
of proteins are carried out with approaches based on the use of
antibodies which are strongly linked to the availability, quantity,
affinity and specificity [80]. Furthermore, as their use is inevitably
linked to a starting hypothesis, this could hinder the study of the
“neglected proteome” for the study of new potential biomarkers,
or new biological pathways and functions related to BC [80, 81].
Proteomics can be defined as a high-throughput and large-scale
study of proteins, investigating their classification, expression
levels, properties and function [82]. Proteomic approaches based
on MS techniques can be classified into two macro-groups:
targeted and non-targeted proteomics. The main objective of the
non-targeted applications is to cover almost complete proteomic
knowledge, suitable for the application of the biomarkers
discovery. The targeted approach, on the other hand, is more
suitable for the validation of the results obtained from the first
“discovery” approach and therefore for clinical applications. This
fit-for-purpose approach has the aim of maximizing the coverage
of potential objectives that can be assessed in the early stages for
the discovery of biomarkers or therapeutic targets [80].

Proteomics features and studies in BC

In this literature review, to deepen proteomics features and
studies in BC, we searched the PubMed site including quite recent
scientific works approximately from 2010 to 2020, typing the
keywords “Breast cancer proteomics Biomakers” and including in
this study only the proteomics works followed by validation of the
results obtained using different approaches. The research for BC is
strongly aimed at the study of diagnosis, prognosis and disease
course biomarkers in easily accessible biofluids, for this reason we
listed in Supplementary Table S2 the candidate BC biomarkers
found in serum [83-97], plasma [98-107], urine [108, 109], and
Nipple Discharge biofluids [110].

In particular, human urine is considered one of the most
interesting biofluids as it represents an excellent resource for the
discovery of new biomarkers, with the advantage over tissue
biopsy samples thanks to the ease and the less-invasive nature of
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the collection [111]. Furthermore, the high level of stability, the
ease of sampling and an inactive and low complexity test matrix
offer numerous potential advantages also compared to the use of
other biofluids such as serum and plasma [112].

Interestingly, nipple secretion has also been proposed as a new
clinical diagnostic technique and source of secreted proteomes
that may reflect early pathological changes in the ductal-lobular
epithelial microenvironment and could therefore provide specific
BC biomarkers, while remaining an easily accessible and non-
invasive source [110].

In recent years, much attention has been paid not only to the
study of cell markers, but also especially to that of the
“secretome”. “Secretome” is defined as the rich and complex set
of molecules and proteins secreted by living cells and released
from the surface. The need to develop increasingly effective
cancer biomarkers has shifted the focus towards the study of
tumor cell secretome as a means of identifying and characterizing
diagnostic and prognostic markers and potential pharmacological
and therapeutic targets, bearing in mind that secretome proteins
carry out a key role in cell signaling, communication and migration
[113].

Of note, recent technological developments in the field of
proteomics have significantly stimulated and facilitated research
in this direction. Hence, in this Review, the works involved in the
research of protein biomarkers of BC through proteomics
approaches on secretome and on extracellular matrices were
collected, schematizing for each biomarker the clinical significance
associated (Table S3).

As mentioned above, BC is considered a heterogeneous disease
and the most common mistake is to treat BC as a single entity.
Current insights from studies on intratumoral heterogeneity and
cancer stem cells increase the possibility that multiple BC subtypes
can coexist within a tumor and, therefore, the stratification of
tumors is fundamental to obtain better clinical results [114].

In this work, we report a list of proteins considered Cell/Tissue
Breast Cancer Biomarker, through proteomics studies and
subsequent validation experiments (Table S4). Most of the
research works cited in Table S4 are studies based on the research
of protein biomarkers closely related to the onset of metastases or
tumor growth and progression. Other proteins listed in the tables
have been studied according to their correlation to
epithelial-mesenchymal transition [115-117].

BC cell lines have been widely used for BC modeling, which
includes a group of diseases with distinct phenotypic associations.
The wide use of cell lines in biomarker research is due to its
extremely homogeneous and potentially unlimited content for
proteomics studies. Moreover, BC cell lines are also relatively easy
to culture.

Numerous studies on protein biomarkers of prognosis, tumor
growth and aggression have been conducted on various cellular
subtypes of BC. Most of the proteomic studies reported on cellular
models are exclusively conducted on Triple-negative (TN) BC
(TNBC) tumor subtypes, any BC characterized by the lack of
expression of estrogen and progesterone receptor, and of human
epidermal growth factor receptor 2. In Table S4, asterisk (¥) and
hash (#) symbols are used to highlight the potential protein
biomarkers found on the cell subtypes or on primary tumor tissues
of BC patients, respectively.

As a group, TNBCs is viewed clinically as an aggressive
subgroup of BC with a complex and heterogeneous genomic
landscape, with an earlier age of presentation and requiring
adjuvant chemotherapy to improve survival. The classification of
TNBCs in subtypes on the basis of gene expression patterns can
provide benefits from specific therapeutic agents [118].

In consideration of complex genomes, high levels of genetic
instability, and a high degree of intertumor and intratumor
heterogeneity, conventionally TNBCs are defined high-grade
carcinomas.
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Most TNBCs defined as high-grade tumors have an unfavorable
prognosis. Anyway, a subset of TNBCs, comprising histologically
low-grade lesions and therefore defined low-grade TNBCs, vastly
differs from those high-grade TNBCs and has a favorable outcome.
High-grade TNBC include carcinomas with apocrine differentia-
tion, carcinomas with bone marrow characteristics and metaplas-
tic breast carcinomas [118]. Furthermore, current studies suggest
several subgroups of low-grade TN malignancies such as a subset
of lesions that includes microglandular adenosis, atypical micro-
glandular adenosis and acinic cell carcinoma. Low-grade variants
of metaplastic breast carcinomas and solid papillary carcinoma
with polarity reversal are additional rare special histological types
of low-grade TNBC. The complexity and study of the various
histological subtypes of TN disease should not be overlooked, as
therapeutic approaches for rare low-grade TNBC subtypes are
fundamentally different from those of high-grade TNBC [118].

However, BC cell lines are known to develop mutations during
initial establishment and subsequent culture series [118]. In fact,
BC cell lines are extremely useful, but often considered rough
models for tumors of the same subtype.

The onset of metastasis is one of the most important factors
causing the death of patients with BC. In fact, the detection of
metastases from BC is an indication of tumor aggression, and if
detected early, it should facilitate the correct management of the
progression of BC. Therefore, it is very important to look for
effective biomarkers for the metastasis and prognosis of BC.

Numerous studies focusing on the identification of metastasis-
related factors, potentially used as prognostic markers related to
tumor size, axillary lymph node status and histological grade /
subtype, have been found [119-122]. The profiling of tumor tissue
proteomics provides important information on the discovery of
biomarkers [123, 124]. In Table S4 the protein markers obtained
from studies conducted and validated in primary tumor tissues of
BC patients have been highlighted with the symbol “#".

In addition, in recent years many researchers have shifted their
attention from the study of BC cell lines to cancer steam cells
(CSCs). As a result, some protein biomarkers placed on the surface
of the CSCs [125] or involved in self-renewal of CSCs [126] have
been identified, indicated with the symbol “§" in Table S4. CSCs
are known to play an important role in the recurrence of cancer in
almost 65% of cases [127, 128]. Unlike cancer cells, CSCs are
quiescent, resulting resistant to anti-cancer drugs. Furthermore,
after anti-cancer treatment, these cells can become active and
multiply rapidly [129, 130].

For this reason, it has been necessary to develop specific CSC
tracking techniques and markers in order to maximize the
therapeutic effect of the treatment in cancer cells.

METABOLOMICS IN BC

Metabolomics, one of the newest promising techniques in the
“omics” field, allows the quantification of metabolites and/or the
evaluation of their ratios in a biofluid, cell, tissue, organ or
organism at a given state. As one of the most recent members of
the omics family, there has been significant progress in
metabolomics in the last decade, primarily driven by technological
advances in MS. The metabolome is dynamic, so that metabolite
levels and/or ratios can result altered in a pathological condition,
thus highlighting abnormal metabolic functions, mainly in
complex diseases as BC [11]. Moreover, variations in the
metabolome may be the result of genetic, environmental factors,
as well as exogenous and endogenous factors [131]. Nowadays, it
has become clear that metabolomics, through the comprehensive
and quantitative analysis of low-molecular-weight compounds in a
system provides the clue to a phenotype, with the potential for a
great clinical impact [12, 132, 133]. In fact, even a comprehensive
understanding of the state of genes, transcripts, and proteins in a
living system is not sufficient to reveal its phenotype [132, 133].
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When combining metabolomics with genomics, possibly tran-
scriptomics, and proteomics, a complete understanding of
biological mechanisms from a system-wide perspective can be
provided [7]. It is now well accepted the idea that metabolites
represent the link between genotype and phenotype, and that the
study of metabolome offers a significant advantage, allowing to
highlight the end-point markers of biological events [133]. Unlike
genomics and proteomics, metabolomics is able to provide
evidence of end-point markers for diagnosis or evaluation of
response to therapy [133]. In this view, the transcripts deriving
from DNA are translated into proteins, enzymes necessary for the
catalysis of metabolic intermediates [7]. In fact, metabolites,
identified by metabolomics strategies either in a targeted or in
unbiased manner, are downstream and thus are more sensitive
signs of alterations in biological system [131, 134]. Anyway, we
should recognize that metabolomics is still emerging with the
potential to be deeply (highly) effective in the discovery of
molecular candidates for cancer diagnosis, prognosis and treat-
ment[135].

There are two main strategies for metabolic studies: targeted
and untargeted analysis of endogenous and exogenous metabo-
lites (<1500 Da) in biological samples at a given point of time.
Targeted analysis aims to the quantitative measurement of
predetermined compounds taking part in the same biochemical
pathway. Thus, the metabolic profile characteristic of that sample
might be altered as a result of a gene mutation, diet, drugs, or
environmental factors [136]. Non-targeted metabolomics may be
described as an open analysis not driven by any preliminary
hypothesis for the comprehensive determination of all metabo-
lites present in a sample, with the aim to define alterations in
whole metabolome as metabolic fingerprinting characterizing the
biological system under specific conditions [131, 136]. Even if
metabolomics enables high-throughput analysis of different
metabolic pathways and processes all at once, it should be
emphasized that it is not yet possible to analyze the
entire metabolome and that no single analytical platform can
describe all the possible metabolites present in a complex sample,
because of their chemical differences and concentration [11].
However, it should be remembered that a wide coverage of
metabolism can be obtained by combining two high resolution
analytical frameworks: MS, coupled with different separation
techniques, and nuclear magnetic resonance (NMR) spectroscopy
[137]. In both platforms for metabolomics investigations, after
data acquisition, statistical analysis is crucial to give the right value
and significance to the dataset previously obtained by the
analytical tools [131]. NMR and MS are the most popular platforms
for metabolomics and are complementary to each other, even if
each approach has advantages and limitations [134]. NMR, the
pioneering platform in metabolomics, requires no or low sample
pretreatment and allows for reproducible, non-destructive and
non-selective analysis, also enabling the simultaneous measure-
ment of different classes of metabolites. Such approach generates
a NMR spectrum providing structural information for metabolite
identification. Anyway, it presents lower sensitivity if compared
with MS [9, 131, 136]. MS is an increasingly used analytical tool for
metabolomics applications aiming at the identification of poten-
tial biomarkers in different clinical fields. In general, direct-
injection MS analysis allows to obtain metabolic profile or
fingerprint, but this approach also has some limitations in terms
of co-suppression and low ionization efficiency. For this reason,
MS is often coupled to a separation technique, based on gas
chromatography (GC-MS), liquid chromatography (LC-MS) or
capillary electrophoresis. Briefly, GC-MS analysis are characterized
by high specificity, sensitivity and accuracy, but they have
limitations in mass range (mass-to-charge ratio, m/z 30-550) and
in some requirements since the compounds of interest need to be
volatile and also thermo stable. The overmentioned requirements
are not necessary in LC-MS analysis, the most promising and
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widely used tool for metabolomics in clinical applications [131].
The growing use of LC-MS can be explained with its high-
throughput, soft ionization, and with the possibility to cover a
wide range of metabolites. The success and popularity of LC-MS-
based metabolomic study is essentially due to the versatility
dependent on the sample pretreatment, more simple and rapid in
comparison to GC-MS technique, and to the variety of separation
possibilities and mass analyzer [131, 138].

Metabolomics features and studies in BC

Bringing our attention back to BC and considering that cancer is a
disease that contributes to alterations in cellular metabolism,
metabolomics-based studies in the area of BC may be an useful
tool for novel biomarker discovery, identification of the related
disturbed pathway, early diagnosis, and the evaluation of
treatments [131]. When mentioning the perturbed pathway and
fighting BC, knowledge on metabolism is highly important [139].
In 1924, Otto Warburg put forward his metabolic hypothesis for
cancer. In oncology, the term Warburg effect indicates cancer
dependence on fermentative glycolysis, even when oxygen supply
is adequate [140]. Therefore, in cancer tissues, the metabolic state
often reflects hypoxic metabolism [139]. Metabolomics studies
have also described an altered protein and lipid metabolism in
cancer [141]. One hypothesis is that even small tumors influence
the way metabolites are used in the whole organism. Several
metabolic changes have been observed in the blood or urine
which reflect one further step downstream in metabolic
transformation. Samples for the metabolomic analysis of the BC
include urine, serum, plasma, saliva, or tissue and, since
metabolites are end products of cellular processes, their
concentrations reflect the systems-level response of biological
systems and may be valuable for diagnostic tests and therapeutic
interventions.

Metabolomics is based on recently developed technologies that
allow the quantitative investigation of a multitude of different
metabolites. A comprehensive coverage of metabolism can be
achieved only by a combination of analytical approaches. The
most popular approaches for metabolomics involve GC-MS, LC-MS
or NMR spectroscopy. MS-based approaches are typically more
sensitive. NMR spectroscopy can be applied to intact tissue
samples and even to observe metabolites in vivo, with the
technology being referred to as magnetic resonance spectroscopy
in the clinic. An improvement of NMR spectroscopic procedure is a
technique called high resolution magic angle spinning (HR-MAS)
NMR spectroscopy, which involves spinning of a biopsy sample at
an angle to the magnetic field, to improve the spectrum
resolution. GC-MS-based analyses of metabolic impact or changes
in metabolism have a long history in BC research—for example,
analysis of phospholipids [142], pharmacology (including tamox-
ifen metabolism) [143], exposure to xenobiotics [144], estrogen
levels [145] or urinary metabolomic profiles [146, 147].

In this work, we report a list of metabolites considered Biofluids/
Cell/Tissue Breast Cancer Biomarker, obtained using different
approaches (Tables S5 and S6).

NMR studies of human BC samples [148] have found higher
contents of Gly, Tau, Lact, and Succ, and lower levels of Gluc and
inositol for tumors compared to noninvolved breast tissue. In
addition, lipidomics studies have showed that the lipidomics
profile correlates with cancer tissue and tumor grade. One of the
other profound changes that accompany tumor proliferation is
alteration in the proportion of choline-containing metabolites. A
series of studies has provided a comprehensive picture of altered
Cho metabolism in tissues, as shown in the table [149, 150].
Numerous studies have showed raised levels of choline and its
phosphorylated metabolites in subjects with benign and malig-
nant tumors only, and these metabolites have been used for
classifying tumor types during the immortalization of cell lines and
during apoptosis and necrosis. Choline, phosphocholine and
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Table 1.
respectively.

Disease and biofunctions resulted from the meta-analysis on IPA tool for Genomics, Proteomics, and Metabolomics single data sets,

Diseases and Bio Functions

Morbidity or mortality
Apoptosis of tumor cell lines
Phagocytosis
Cell death of immune cells
Advanced malignant tumor
Cell survival
Neoplasia of tumor cell lines
Immune response of cells
Cell viability
Migration of carcinoma cell lines
Cell movement of tumor cell lines
Binding of breast cancer cell lines
Adhesion of breast cancer cell lines
Proliferation of lymphatic system cells
Growth of tumor

Invasion of breast cancer cell lines

Genomics Proteomics Metabolomics
0
0.825 -1.491 -2.121
0 0 3.003
-2.415 0.472 0.876
0 1.662 2.548
0 1.774 3.111
1.957 1.782 2.082
-1.223 1.905 2.003
-0.23 1.924 3.069
0 1.989 2.765
1.331 2.356 2.709
0 2.594 1.38
0 2.621 1.937
-1.488 2.929 3.233
2A559) 2.955 0.216
1.428 2.959 2.494

Activation z-score

glycerophosphocholine can be observed in clinical magnetic
resonance spectroscopy. This has a considerable clinical potential,
especially as the HR-NMR analysis is fast, relatively inexpensive,
and nondestructive.

In recent years, much attention has been paid to the study of
metabolite markers in biofluids.

Although both NMR and MS are commonly used for urine
metabolomics, most BC studies were based on MS. Urine samples
have the information that can discriminate between normal and
BC groups. Urine BC study identified among metabolites as
potential biomarkers, amino acids, organic acids, and nucleosides
including dimethylarginine, tyrosine, phenylalanine, pantothenic
acid, succinyladenosine, dimethylguanosine, apronal, threonyl
carbamoyl adenosine, tryptophan, kynurenic acid, nico-tinuric
acid, and indolelactic acid [151]. Homovanillate, 4-hydroxy-
phenylacetate, 5-hydroxyindoleacetate and urea have been
identified as biomarkers for BC from urine using GC-MS [146, 152].

The most easily identifiable clinical biomarkers are derived from
blood. Therefore, it is an essential question whether the metabolic
response observed in the blood is directly derived from tumor
tissue, or whether it represents a more general response of the
organism to the presence of a tumor. Several studies identified
markers associated with amino acid metabolism, glycolysis, and
fatty acid metabolism. Biomarkers reported for metastatic subjects
include high values of Phe, Gluc, Pro, Lys, and N-acetyl-Cys
[153, 154], and low values of lipids. The final products of
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Fig. 1 Upstream Regulator Analysis Results. A Venn diagram for
significant upstream (both activated and inhibited) from the single
“Core Analysis” using IPA tool based on Proteomics (in green), or
Metabolomics (in light red). B Venn Diagram for significant upstream
(both activated and inhibited) from integrating “Omics” approaches
(in violet) vs the sum of the significant upstream obtained by each
single approach (Proteomics + Metabolomics, in yellow).
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[-oxidation (Acac and 3-HB) and lipid degradation (Gluc), N-acetyl
glycoproteins (NAC 1 and 2), Pyr, Glut and mannose have been
reported from the analysis of serum of early and advanced BC
patients. Overall reoccurring marker metabolites include His, Pro,
Phe, Glu, 3-HB, Lact, and lipids [155]. Thus, several critical
pathways for the early diagnosis of BC have been discovered,
including the metabolism of taurine and hypotaurin, and the
metabolism of alanine, aspartate, and glutamate [153, 156, 157].
Wang et al. [158] used a dried blood spot approach for rapid BC
detection. In this study, the target analytes were 23 aminoacids
and 26 acylcarnitines, and based on the results piperamide,
asparagine, proline, tetradecenoylcarnitine/palmitoylcarnitine,
phenylalanine/tyrosine, and glycine/alanine could be used as
potential biomarkers to diagnose BC.

Another explored biological fluid is saliva and from metabolites
identified, 3-methyl-pentanoic acid, 4-methyl-pentanoic acid,
phenol, p-tert-butyl-phenol, acetic, propanoic, benzoic acids, 1,2-
decanediol, 2-decanone, and decanal seem to be relevant for the
discrimination of BC patients [159]. Another type of molecules, the
polyamines, including N-acetylated forms, are associated with
tumor growth due to their biosynthesis and accumulation [160].

In literature, the reports performed involving human cell lines
focus mainly on diagnostic purposes. Finally, in the volatile
composition (VOMs) of BC cell lines, 2-pentanone, 2-heptanone, 3-
methyl-3-buten-1-ol, ethyl acetate, ethyl propanoate, and
2-methyl butanoate were detected only in cultured BC cell lines
[161]. These VOMs are formed endogenously or obtained from
exogenous sources (e.g., environmental, lifestyle, biological
agents), and can be recognized as a useful tool to BC non-
invasive diagnosis.

C. Rossi et al.

Data processing and elaboration

In this review, in order to combine the results from different
“omics” studies, we introduced a new methodical framework by
performing a meta-analysis through data “omics” integration.

In particular, we used Ingenuity Pathway Analysis software (IPA,
Qiagen, Hilden, Germany) for “Core Analysis” to map statistically
each gene or protein or metabolite for their functional annotation,
such as network discovery, Upstream Regulator Analysis (URA) and
downstream effects networks. Details of data processing and
elaboration by IPA are fully described in Supplementary Materials.

“Omics” integration in BC
Following the revision of recent works in literature of the findings
by omics-based studies in BC until 2020, we focalized our
attention on BC molecular candidates obtained by the application
of three specific omics approaches including genomics, proteo-
mics and metabolomics, providing a systematic and detailed
integration of the molecular alterations at multiple levels to better
describe the pathological phenotype of such a complex disease.
We have discussed above each corresponding “omics” technique
as used in the processing of biological data, starting from genomics,
the oldest of the “omics” technologies, for DNA, and going on with
proteomics for proteins and finally with metabolomics for
metabolites [9]. Thus, the term “omics” means an approach capable
of generating a complete data set of something measurable [133].
For sure, two are the most important tools which allowed “omics”
approaches to reveal their great potential: NGS and MS [135].
Anyway, it should be recognized that statistical and bioinformatics
tools are necessary for the processing of the large amount of data
turning out by the use of such “omics” approaches [9].

Table 2.

List of significant upstream results only from the integration of Proteomics and Metabolomics data.

UPSTREAM

Activazion z-score

GNMT
APOE
HDAC5
RARB
ADCYAP1

pyrrolidine dithiocarbamate

cholecalciferol
INS
WNT3A

NOTCH2
PTH

cholesterol
FGF7

Interferon alpha
D-glucose

miR-291a-3p (and other miRNAs w/seed AAGUGCU)

miR-141-3p (and other miRNAs w/seed AACACUG)

miR-34a-5p (and other miRNAs w/seed GGCAGUG)

The four upstream systems deemed most interesting and discussed in more detail are identified in bold.
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The meta-analysis we conducted on the IPA tool showed good
agreement with the literature currently available especially
considering the Proteomics and Metabolomics approaches in
BC. As shown in Table 1 the “Disease and Functions” that the data
uploaded on the IPA described are fully related to the topic and,
above all, they showed functions up-regulated (in orange) and
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down-regulated (in blue) often in agreement considering the
dataset of Proteomics and Metabolomics individually.

Moreover, we found upstream regulators resulting from first
loading of the datasets individually and subsequently from the
integration of protein and metabolic biomarker candidates much
interesting. As shown by the Venn diagram in Fig. 1A, 17.6% of
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Fig. 2 Upstream Regulator Analysis, based on “omics” integration using the Ingenuity Pathway Analysis software. Orange and blue
shapes represent predicted activation or inhibition, respectively. The predicted relationship between genes may lead to direct activation
(orange solid lines) or direct inhibition (blue solid lines). Red and green color indicate genes, proteins, and metabolites increased and
decreased in expression, respectively, while the numbers represent the measurements of their expression. A1 shows the proteins and
metabolites of the loaded dataset involved in the activation of the upstream regulator Interferon alpha. A2 shows the mechanistic network,
theoretically reconstructed that underlies the activation of the upstream Interferon alpha. B1 shows the proteins and metabolites of the
loaded dataset involved in the activation of the upstream regulator Fibroblast growth factor 7 (FGF7). B2 shows the mechanistic network,
theoretically reconstructed that underlies the activation of the upstream FGF7. C1 shows the proteins and metabolites of the loaded dataset
involved in the activation of the upstream regulator Insulin (INS). C2 shows the mechanistic network, theoretically reconstructed that underlies
the activation of the upstream INS. D shows the proteins and metabolites of the loaded dataset involved in the down-regulation of the

:pstream regulator Histone deacetylase 5 (HDACS).

significantly regulated upstream are in common considering the
Proteomics and Metabolomics datasets individually. When we put
together all the data collected from the literature (protein and
metabolic candidate biomarkers), 18 new upstream results were
significant in the meta-analysis on IPA, demonstrating the
enormous potential that an integrated omics approach can
generate (Fig. 1B). Among these interesting upstream regulators
(highlighted by data integration and listed in Table 2), we decided
to discuss and deepen the most interesting ones: Histone
deacetylase 5 (HDAC5), Insulin (INS), Fibroblast growth factor 7
(FGF7) and Interferon alpha. For each upstream regulator
considered, we have plotted a network showing which genes,
metabolites, and proteins of the loaded dataset were considered in
identifying the aforementioned upstream (Fig. 2A1-C1, D).
Interestingly, Fig. 2A2-C2 show the theoretical networks that the
activation or inhibition of the aforesaid upstream would contribute
within the biological system, as a sort of mechanistic prediction. In
particular, a panel of 10 biomarker candidates including proteins
and metabolites (Fig. 2A1) demonstrated an up-regulation of
Interferon alpha, in agreement with the literature, especially in
aggressive cell lines [162]. In fact, in agreement with literature data,
increased levels of interferon alpha have been reported in
inflammatory BC, the most aggressive and lethal subtype of BC.
Another interesting upstream is FGF7 (Fig. 2B1, B2) which is also
up-regulated and is known as a regulator involved in tumor growth
and invasion not only in BC but also in breast and ovarian cancer
[163, 164]. As reported in Fig. 2C1, the simultaneous modulation of
some metabolites, such as D-Glucose, Glycerol and Triacylglycerols
together with 5 proteins COX4/1, CRABP2, HNRNPK, NDUFV1, and
CDH1 promotes an up-regulation of INS. INS is a known upstream
regulator involved in tumorigenesis through a direct effect on
epithelial tissues or indirectly by affecting the levels of other
modulators, such as the family of insulin-like growth factor (/GF)
receptors, sex hormones and adipokines [165]. This can also be
highlighted from the mechanistic network in Fig. 2C2.

Finally, HDAC5 was significantly inhibited, as shown in Fig. 2
Panel D. Indeed, it is often down-regulated or eliminated in
human cancers, such as prostate cancer [166]. Conversely, the
elevated expression of SOX9 and HDACS5 is associated with lower
survival rates in BC patients treated with tamoxifen. HDAC5 was
widely expressed in human BC tissues and high HDAC5 expression
was associated with a lower prognosis, while HDAC5 knockdown
inhibited cell proliferation, migration, invasion and enhanced
apoptosis [167].

CONCLUSION

As well know, adding “omics” to a molecular term connotes a
comprehensive evaluation of a set of molecules, and thus multi-
omics approaches through high-throughput technologies give the
possibility to understand the flow of information underlying a
disease, from the original cause of disease to the functional
consequences [168], also leading to a crucial change in clinical
research [169]. Importantly, if the analysis of data from a single
omics technology is limited to correlations and mainly reflects
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reactive processes rather than causative ones, the integration of
data from multi-omics approaches is often applied to explain
potential causative changes that lead to disease, or the
therapeutic targets. When applying a multi-omics strategy to a
disease, it is important to consider the nature of the disorder:
simple disease or complex disease. In fact, the etiology of a
multifaceted disease as BC is much more complicated and is not
focused on a single specific factor but rather on a combination of
different factors [169]. In this review, we applied a new integrative
meta-analysis method to combine the results obtained from
different revised studies. Our meta-analysis proved to be a
powerful tool not only to investigate and summarize the
correlation between different “omics” datasets, but also to
distinguish and highlight new important key pathways and
upstream regulators related to BC. Hopefully, the results obtained
by our speculation suggest that an in-depth description of the
pathological phenotype in BC could be only reached by a proper
integration of the large number of biological components, their
complex interactions, and their relationships with environment.
Therefore, in a systems biology view, data integration is necessary
for the comprehensive understanding of the wide dataset arising
from multi-omics approaches in the study of a complex disease, as
BC. In fact, it is important to emphasized that BC, as each
biological phenomenon, is characterized by interdependent layers
of biological features. While a single omics approach can catch
only a slice of the complex pathological system, multi-omics
integration offers an unprecedented opportunity that is the
possibility of capturing a deeper and more complete description
of the pathological phenomena under study, with translation into
clinically relevant information [11, 14, 170]. In conclusion, in
comparison to traditional analysis focused on single biological
layer, integrative and holistic multi-omics approaches, despite
being complicated by the high dimensionality and heterogeneity
of the data and the lack of universal analysis protocols, represent
new opportunities for studying complex diseases in a more
comprehensive way [171-173].
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