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ABSTRACT: Novel highly stereoselective syntheses of (+)-strep-
tol and (−)-1-epi-streptol starting from naturally abundant
(−)-shikimic acid were described in this article. (−)-Shikimic
acid was first converted to the common key intermediate by 11
steps in 40% yield. It was then converted to (+)-streptol by three
steps in 72% yield, and it was also converted to (−)-1-epi-streptol
by one step in 90% yield. In summary, (+)-streptol and (−)-1-epi-
streptol were synthesized from (−)-shikimic acid by 14 and 12
steps in 29 and 36% overall yields, respectively.

1. INTRODUCTION
C7-cyclitols are an important category of natural products
possessing a broad spectrum of biological activities, so that a
lot of natural C7-cyclitols and their derivatives have become the
targets of organic synthesis due to these attractive biological
properties.1 (+)-Streptol [also known as (+)-valienol, 1 in
Figure 1] and (−)-1-epi-streptol [or (−)-1-epi-valienol, 2 in

Figure 1] are two members of C7-cyclitols. (+)-Streptol 1 has
been isolated from some microbial organisms2 such as
Streptomyces sp. no. 1409,2a Dacthylosporangium aurantiacum
SANK 61299,2b and Streptomyces lincolnensis DSM 40355.2c It
has shown plant growth inhibitory activity2a,b,3 and antitumor
activity.4 (−)-1-epi-Streptol 2 is an intermediate involved in
the biosyntheses of acarbose and salbostatin (α-glucosidase
inhibitors) in Actinoplanes and Streptomyces.5 Several total
syntheses of (+)-streptol 1 and (−)-1-epi-streptol 2 have been
reported.6 (+)-Streptol 1 has been synthesized from (R,R)-
tartaric acid,6a D-glucose,6b,c D-gluconolactone,6d,e and some
chiral building blocks.6f−h (−)-1-epi-Streptol 2 has also been
synthesized from D-glucose6b,i and D-gluconolactone.6e Despite
the above-mentioned syntheses, novel practical and efficient
syntheses of cyclitols 1 and 2 might be highly desirable to
further investigate the biological activities of these two
particular C7-cyclitols and their derivatives.

(−)-Shikimic acid (see Figure 1) has captured worldwide
attention7 in recent decades due to its wide use in the
syntheses of drugs or pharmaceutically valuable molecules
(Tamiflu, valiolamine, valienamine, and so on)8 as well as
some chiral building blocks.9 Many researchers have tried to
improve the production of (−)-shikimic acid by means of
extraction from plants,7a,10 fermentation based on microbial
engineering,7c,e,g,11 and chemical syntheses.7a,12 (−)-Shikimic
acid has been found in many plant species.13 It is noted to be
in extremely high abundance in Chinese star anise (Illicium
verum)14 and thus can be readily manufactured in a large
quantity by extraction from the Chinese star anise due to the
development of new methods for rapid and high-yielding
extraction.15 Recently, we have been engaged in developing
novel stereoselective syntheses of various pharmaceutically
valuable molecules from (−)-shikimic acid.8a−j Herein, we
want to disclose highly stereoselective, efficient, and practical
syntheses of (+)-streptol 1 and (−)-1-epi-streptol 2 by
commercially available and inexpensive (−)-shikimic acid as
the starting material.

2. RESULTS AND DISCUSSION
The novel total syntheses of (+)-streptol 1 and (−)-1-epi-
streptol 2 starting from (−)-shikimic acid are depicted in
Scheme 1. The total syntheses can be briefly described as
follows: esterification of (−)-shikimic acid first produced
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Figure 1. Three related compounds.
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methyl (−)-shikimate 3 in 97% yield.16 Next, when compound
3 was exposed to 5.0 equiv of SOCl2 in anhydrous N,N-
dimethylformamide (DMF) at room temperature (r.t.) for 18
h, compound 4 was thus obtained in 92% yield; the
regioselectivity of this chlorination is very high just like a
previous report.8e Reaction of compound 4 with 2.0 equiv of
K2CO3 in absolute methanol at room temperature for 9 h
furnished epoxide 5 in 95% yield. Protection of the hydroxyl at
the C-5 position with the tert-butyldiphenylsilyl (TBDPS)
group could be achieved by treatment of compound 5 with 1.5
equiv of tert-butyldiphenylsilyl chloride and 3.0 equiv of
imidazole in CH2Cl2 under reflux for 2 h; compound 6 was
thus obtained in 93% yield. When compound 6 was treated
with 5.0 equiv of AcOH and 0.5 equiv of CF3COOH in
CH2Cl2 under reflux for 6 h, high regioselective ring openning
of epoxide took place smoothly to give compound 7 in 86%
yield, and during this epoxide opening, the nucleophile
(AcOH) favorably attacked the more reactive allylic C-3
position rather than the C-4 position. When compound 7 was
treated with 1.5 equiv of Ac2O, 2.0 equiv of Et3N, and 0.1

equiv of N,N-dimethylaminopyridine (DMAP) in anhydrous
ethyl acetate at 0 °C for 2 h, acylation of the hydroxyl at the C-
4 position occurred rapidly to afford compound 8 in 96% yield.
Subsequently, RuCl3-catalyzed highly stereoselective dihy-

droxylation17 of α,β-unsaturated ester 8 produced the desired
pinacol 9. When compound 8 was treated with 0.02 equiv of
RuCl3 and 1.5 equiv of NaIO4 in a mixed solvent (CH3CN/
EtOAc/H2O = 3:3:1) at −5 °C for 1 h, compound 9 could be
obtained in 89% yield. During the stereoselective dihydrox-
ylation of compound 8, the ruthenium catalyst coordinated
with the double bond in the opposite direction of the OAc (at
C-3) and o-tert-butyldiphenylsilyl (OTBDPS) (at C-5) groups
due to their high steric hindrance, so that two hydroxyls at C-1
and C-2 of compound 9 should have the desired downward
orientation. Compound 9 was then exposed to 5.0 equiv of
NaBH4 at room temperature for 1 h in a mixed solvent
(EtOAc/H2O = 10:1), the ester group (CO2Me) at C-1 was
selectively reduced, and other two ester groups (two OAc at C-
3 and C-4) remained intact during the reaction; compound 10
was thus obtained in 91% yield.

Scheme 1. Total Syntheses of (+)-Streptol 1 and (−)-1-epi-Streptol 2 Starting from (−)-Shikimic Acid
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Next, when compound 10 was treated with 3.0 equiv of
benzoyl chloride, 4.0 equiv of Et3N, and 0.1 equiv of p-
dimethylaminopyridine (DMAP) in dichloromethane at 0 °C
to room temperature for 5 h, selective benzoylation of primary
and secondary hydroxyls occurred smoothly to afford
compound 11 in 94% yield; in the meantime, the tertiary
hydroxyl in compound 10 remained unchanged during the
reaction probably due to its high steric hindrance. Exposure of
compound 11 to 5.0 equiv of SOCl2 and 3.0 equiv of pyridine
in dichloromethane under reflux for 6 h led to the formation of
olefinic compound 12 in 87% yield via regioselective β-

elimination. The silyl protecting group (TBDPS) was then
removed by treatment of compound 12 with 4.5 equiv of
Bu4NF and 4.5 equiv of AcOH in tetrahydrofuran for 8 h at
room temperature; compound 13 could be thus obtained in
92% yield.
Compound 13 is a common intermediate for syntheses of

targeted molecules 1 and 2. When compound 13 was treated
with a large excess of aqueous ammonia in methanol for 24 h
at room temperature, all four acyl groups were removed in the
one-pot reaction, and (−)-1-epi-streptol 2 was obtained in 90%
yield. Next, when compound 13 was exposed to 2.0 equiv of

Figure 2. 1H−1H COSY and 1H−1H NOESY spectra of 9.
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methanesulfonyl chloride (MsCl) and 1.5 equiv of Et3N in
ethyl acetate at 0 °C for 1 h, olefinic methanesulfonate I-A was
formed and was immediately used for the following step
without purification due to its unstability. When crude
intermediate I-A was treated with 6.0 equiv of acetic acid
(AcOH) and 3.0 equiv of 1,8-diazabicyclo[5,4,0]undec-7-ene
(DBU) in toluene at 85 °C for 5 h according to our previous
report,18 an SN2-type substitution took place to furnish
compound 14 in 80% yield over two steps. The (R)
configuration of the chiral center at the C-1 position was
inversed to an (S) configuration during the SN2-type
substitution. Finally, when compound 14 was treated with a
large excess of aqueous ammonia in methanol for 24 h at room
temperature, all five acyl groups were removed in the one-pot
reaction, and (+)-streptol 1 was thus obtained in 90% yield.
In addition, some particular points in the above-described

total syntheses (as shown in Scheme 1) are worthy to be
further discussed in the following.
First, in the RuCl3-catalyzed highly stereoselective dihydrox-

ylation of α,β-unsaturated ester 8, the stereochemistry of
product 9 has been unequivocally confirmed by the two-
dimensional (2D) NMR technique. 1H−1H correlation
spectroscopy (COSY) and 1H−1H nuclear Overhauser effect
(NOE) spectroscopy (NOESY) spectra of compound 9 are
shown in Figure 2. As can be seen from the 1H−1H COSY
spectrum of compound 9, the dd peak at 5.18 ppm could be
assigned to proton H-4, which has correlation spots (a and b)
with protons H-3 and H-5; the dd peak at 4.96 ppm could be
assigned to proton H-3, which has correlation spots (c and a)
with protons H-2 and H-4; the m peak at 4.19 ppm could be
assigned to proton H-5, which has correlation spots (b and d)
with protons H-4 and H-6; the d peak at 3.94 ppm could be
assigned to proton H-2, which only has a correlation spot (c)
with proton H-3; and the m peak at 1.86 ppm could be
assigned to proton H-6, which only has a correlation spot (d)
with proton H-5. As can be seen from the 1H−1H NOESY
spectrum of compound 9, there are obvious NOE correction
spots between H-3 and H-5, meaning that protons H-3 and H-
5 have the cis relationship, there are obvious NOE correction
spots between H-2 and H-4, and also there is no correction
spot between H-2 and H-5, meaning that protons H-2 and H-4
have the cis relationship and that protons H-2 and H-5 have
the trans relationship, so the chiral center at C-2 of compound
9 has an (S) configuration. According to the mechanism of Ru-
catalyzed dihydroxylation of olefins,17b two hydroxyls at C-1
and C-2 positions in compound 9 should have the cis
relationship, so the chiral center at C-1 of compound 9 has an
(R) configuration.
Second, it is worth noting that chemoselectivity for the

reduction of compound 9 with NaBH4 was very high; a
reasonable explanation for the high chemoselectivity of the
reduction of compound 9 to compound 10 is proposed in
Figure 3 according to the literature.19 The α-hydroxy group of
CO2Me in compound 9 first reacted with NaBH4 to produce
intermediate complex I-B, and then, it underwent intra-
molecular reduction of the methyl ester group (CO2Me) to
lead to the desired compound 10.
Third, as can be seen from Tables 1 and 2, 1H and 13C NMR

data of the samples of (+)-streptol 1 and (−)-1-epi-streptol 2
from present syntheses shown in Scheme 1 are consistent with
the literature data for authentic samples.2a,6g (Note that
1H/13C NMR data of the authentic sample of compound 1
were published by Sakuda et al. in 19872a and 1H/13C data of

the authentic sample of compound 2 were published by
Leermann et al. in 2010.6g)

3. CONCLUSIONS
In conclusion, we have performed stereoselective total
syntheses of (+)-streptol [(+)-valienol] 1 and (−)-1-epi-
streptol [(−)-1-epi-valienol] 2 starting from the naturally
abundant (−)-shikimic acid. (+)-Streptol 1 has been
synthesized starting from the naturally abundant (−)-shikimic
acid in 14 steps in 29% overall yield; (−)-1-epi-streptol 2 has
also been synthesized starting from (−)-shikimic acid in 12
steps in 36% overall yield. Moreover, the stereochemistry of
key intermediate compound 9 has been unequivocally
confirmed by analyses of its 1H−1H COSY and 1H−1H
NOESY spectra (see Figure 2).
Compared with the known syntheses of (+)-streptol 1 and

(−)-1-epi-streptol 2,6 present total syntheses, albeit with
moderate overall yields, are more economic and practical
because none of the expensive reagents such as lithium
diisopropylamide (LDA),6e diisobutylaluminum hydride

Figure 3. Chemoselective reduction of 9 with NaBH4.

Table 1. Comparison between 1H/13C NMR Data (δ ppm)
of the Synthetic and Authentic Samples of (+)-Streptol 1a

synthetic sample authentic sample

positions 1H NMR 13C NMR 1H NMR 13C NMR

1 4.30 68.3 4.33 68.3
2 3.58 72.9 3.61 72.9
3 3.71 74.4 3.73 74.3
4 4.09 74.7 4.11 74.4
5 144.3 144.3
6 5.85 124.3 5.88 122.4
7 4.15 (7a) 63.4 4.17 (7a) 63.5

4.24 (7b) 4.26 (7b)
aD2O was used as the solvent.

Table 2. Comparison between 1H/13C NMR Data (δ ppm)
of the Synthetic and Authentic Samples of (−)-1-epi-
Streptol 2ab

synthetic sample authentic sample

positions 1H NMR 13C NMR 1H NMR 13C NMR

1 4.10 (m) 71.3 4.17 (m) 73.6
2 3.36 71.9 3.43 74.2
3 3.42 75.1 3.49 77.4
4 4.10 (m) 75.5 4.17 (m) 77.8
5 138.3 140.6
6 5.51 124.9 5.58 127.2
7 3.99 (7a) 61.0 4.06 (7a) 63.3

4.10 (m) (7b) 4.17 (m) (7b)
aD2O was used as the solvent. bThe same difference (0.07 ppm) of
the δ value for each proton between 1H NMR spectra of synthetic and
authentic samples might result from a zero-point calibration error.
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(DIBAL-H),6a,h K-selectride6b,e LiHMDS,6i TBSOTf,6f and
excessive Ag(OAc)2

6g were used and also none of the drastic
reaction conditions such as Ph2O/230 °C,6f LDA/−78 °C,6c,e

(COCl)2/dimethyl sulfoxide (DMSO)/−78 °C,6d trifluoro-
acetic anhydride (TFAA)/DMSO/−78 °C,6c,i and DIBAL-H/
−78 °C6a,h were used in every step.

4. EXPERIMENTAL SECTION
4.1. General Method. 1H NMR and 13C NMR spectra

were acquired on a Bruker AM-400 instrument; chemical shifts
are given on the δ scale as parts per million (ppm) with
tetramethylsilane (TMS) as the internal standard. IR spectra
were recorded with a Nicolet Magna IR-550 instrument. Mass
spectra were acquired with an HP1100 LC-MS spectrometer.
Optical rotations of chiral compounds were measured on a
PerkinElmer polarimeter at room temperature. Melting points
were determined on a Mel-TEMP II apparatus. Column
chromatography was performed on silica gel (Qingdao Ocean
Chemical Corp.). Methyl shikimate 3 was prepared in 97%
yield according to a known procedure.16

4.2. Methyl (3S,4S,5R)-3-Chloro-4,5-bis(formyloxy)-
cyclohex-1-ene-1-carboxylate 4. SOCl2 (63.42 g, 533.1
mmol) was dropwise added to anhydrous DMF (120 mL) at
room temperature for 15 min. The resulting solution was
cooled to 5 °C by an ice bath, and then, the crushed methyl
shikimate 3 (20.06 g, 106.6 mmol) was slowly added in
portions. After the addition was finished, the ice bath was
removed, and the solution was further stirred at room
temperature for 18 h. The reaction solution was poured into
stirred biphasic solvents of toluene (500 mL) and ice-water
(600 mL). After the above well-stirred biphasic mixture was
put into an ice bath, powered K2CO3 (148.0 g, 1.071 mol) was
slowly added until the pH was adjusted to 8−9. The biphasic
mixture was transferred into a separatory funnel, two phases
were separated, and the aqueous phase was extracted again
with toluene (200 mL). The extracts were combined and dried
over anhydrous MgSO4. Evaporation of toluene under vacuum
gave an oily crude product that was purified by flash
chromatography (eluent, EtOAc/hexane = 1:5) to furnish
compound 4 (25.76 g, 98.08 mmol) as colorless oil in 92%
yield. [α]D

25 = +28.3 (c 1.0, CHCl3).
1H NMR (400 MHz,

CDCl3) δ 2.45−2.54 (m, 1H, H-6), 3.04 (dd, J1 = 17.8 Hz, J2 =
5.7 Hz, 1H, another H-6), 3.77 (s, 3H, OCH3), 4.68 (dd, J1 =
2.5 Hz, J2 = 8.1 Hz, 1H, H-3), 5.16−5.24 (m, 1H, H-5), 5.47
(dd, J1 = 9.5 Hz, J2 = 8.1 Hz, 1H, H-4), 6.79 (d, J = 2.5 Hz, 1H,
H-2), 8.03 (s, 1H, OCHO), 8.14 (s, 1H, another OCHO). 13C
NMR (100 MHz, CDCl3) δ 165.14, 159.65, 159.39, 135.17,
128.81, 73.25, 67.94, 55.53, 52.48, 29.13. High-resolution mass
spectrometry (HRMS) (electrospray ionization (ESI)) calcd
for C10H11O6NaCl [M + Na]+: 285.0142, found: 285.0140. IR
(neat) ν 2955, 1728, 1377, 1254, 1171, 1077, 752 cm−1.
4.3. Methyl (3R,4S,5R)-3,4-Epoxy-5-hydroxy-cyclo-

hex-1-ene-1-carboxylate 5. Compound 4 (10.05 g, 38.26
mmol) was dissolved in anhydrous methanol (100 mL), and
powered K2CO3 (10.58 g, 76.55 mmol) was added. The
reaction mixture was allowed to be stirred at room temperature
for 9 h. When the reaction was finished (checked by thin-layer
chromatography (TLC); eluent, EtOAc/hexane = 1:3), the
potassium salt was filtered by suction, and the filtrate was
concentrated under vacuum to give an oily residue, which was
partitioned between ethyl acetate (200 mL) and water (30
mL). Two phases were separated, and the aqueous solution
was extracted twice with ethyl acetate (50 × 2 mL). Organic

extracts were combined and dried over anhydrous MgSO4.
Removal of the solvent by vacuum distillation gave an oily
crude product that was purified by flash chromatography
(eluent, EtOAc/hexane = 1:3) to furnish compound 5 (6.186
g, 36.35 mmol) as colorless oil in 95% yield. [α]D

25 = +227.8 (c
1.0, CHCl3).

1H NMR (400 MHz, CDCl3) δ 2.20 (ddd, J1 =
17.5 Hz, J2 = 5.2 Hz, J3 = 3.3 Hz, 1H, H-6), 2.68 (dd, J1 = 17.5
Hz, J2 = 3.0 Hz, 1H, another H-6), 3.04 (d, J = 5.6 Hz, 1H,
OH), 3.45−3.37 (m, 1H, H-5), 3.48 (dd, J1 = 4.6 Hz, J2 = 3.5
Hz, 1H, H-4), 3.68 (s, 3H, OCH3), 4.44−4.48 (m, 1H, H-3),
7.04 (dd, J1 = 3.7 Hz, J2 = 3.3 Hz, 1H, H-2). 13C NMR (100
MHz, CDCl3) δ 166.83, 133.59, 130.66, 63.04, 56.01, 52.16,
46.35, 29.11. HRMS (ESI) calcd for C8H10O4Na [M + Na]+:
193.0477, found: 193.0475. IR (neat) ν 3421, 2954, 1715,
1645, 1439, 1268, 1096, 1005 cm−1.

4.4. Methyl (3R,4S,5R)-5-(tert-Butyldiphenylsilyloxy)-
3,4-epoxy-cyclohex-1-ene-1-carboxylate 6. Compound 5
(5.013 g, 29.46 mmol) was dissolved in CH2Cl2 (50 mL),
TBDPSCl (12.15 g, 44.20 mmol) and imidazole (6.017 g,
88.38 mmol) were then added. The resulting solution was
heated to reflux (41 °C) and further stirred for 2 h. After the
reaction was complete (ckecked by TLC; eluent, EtOAc/
hexane = 1:5), the solution was concentrated under vacuum to
remove dichloromethane, and then ethyl acetate (60 mL) and
an aqueous solution of potassium carbonate (15% w/w, 50
mL) were added. After the mixture was vigorously stirred for
15 min at room temperature, two phases were separated, and
the aqueous solotion was extracted again with ethyl acetate (50
mL). Organic extracts were combined and dried over
anhydrous MgSO4. Removal of the solvent by vacuum
distillation gave an oily crude product that was purified by
flash chromatography (eluent, EtOAc/hexane = 1:7) to furnish
compound 6 (11.20 g, 27.41 mmol) as colorless oil in 93%
yield. [α]D

25 = +113.5 (c 1.0, CHCl3).
1H NMR (400 MHz,

CDCl3) δ 1.03 (s, 9H, t-Bu), 2.09 (ddd, J1 = 17.2 Hz, J2 = 4.9
Hz, J3 = 3.2 Hz, 1H, H-6), 2.73 (dd, J1 = 17.2 Hz, J2 = 2.0 Hz,
1H, another H-6), 3.35 (ddd, J1 = 4.9 Hz, J2 = 2.7 Hz, J3 = 2.0
Hz, 1H, H-5), 3.44 (dd, J1 = 4.5 Hz, J2 = 2.7 Hz, 1H, H-4),
3.75 (s, 3H, OCH3), 4.52 (dd, J1 = 4.5 Hz, J2 = 2.4 Hz, 1H, H-
3), 7.16 (dd, J1 = 4.5 Hz, J2 = 3.2 Hz, 1H, H-2), 7.35−7.47 (m,
6H, Ph-H), 7.61−7.69 (m, 4H, Ph-H). 13C NMR (100 MHz,
CDCl3) δ 166.59, 135.77 (2C), 135.72 (2C), 133.65, 133.39,
133.15, 131.30, 129.95, 129.93, 127.81 (2C), 127.76 (2C),
64.98, 56.15, 51.98, 46.79, 29.14, 26.87 (3C), 19.24. HRMS
(ESI) calcd for C24H28O4SiNa [M + Na]+: 431.1655, found:
431.1652. IR (neat) ν 3071, 2955, 2931, 2858, 1719, 1647,
1429, 1263, 1109, 1094, 1008, 938, 823, 705, 611, 508 cm−1.

4.5. Methyl (3S,4R,5R)-5-(tert-Butyldiphenylsilyloxy)-
3-acetoxy-4-hydroxyl-cyclohex-1-ene-1-carboxylate 7.
Compound 6 (10.15 g, 24.84 mmol) was first dissolved in
dichloromethane (100 mL), and AcOH (7.458 g, 124.2 mmol)
and CF3COOH (1.416 g, 12.42 mmol) were then added. The
resulting solution was heated to reflux (41 °C), and further
stirred under reflux for 6 h. After the reaction was complete
(checked by TLC; eluent, EtOAc/hexane = 1:4), dichloro-
methane was removed by vacuum distillation. Ethyl acetate
(120 mL) and an aqueous solution of potassium carbonate
(20% w/w, 100 mL) were added. After the mixture was
vigorously stirred for 15 min at room temperature, two phases
were separated, and the aqueous solution was extracted twice
with ethyl acetate (2×100 mL). Organic extracts were
combined and dried over anhydrous MgSO4. Removal of the
solvent by vacuum distillation gave an oily crude product that
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was purified by flash chromatography (eluent, EtOAc/hexane
= 1:4) to give compound 7 (10.01 g, 21.36 mmol) as colorless
oil in 86% yield. [α]D

25 = +28.2 (c 1.0, CHCl3).
1H NMR (400

MHz, CDCl3) δ 1.09 (s, 9H, t-Bu), 2.10 (s, 3H, CH3 in Ac),
2.25−2.35 (m, 1H, H-6), 2.51−2.59 (m, 1H, another H-6),
3.67 (s, 3H, OCH3), 3.80−3.89 (m, 2H, H-4 and H-5), 5.34
(dd, J1 = 2.8 Hz, J2 = 4.2 Hz, 1H, H-3), 6.53 (dd, J1 = 2.8 Hz,
J2 = 2.6 Hz, 1H, H-2), 7.36−7.48 (m, 6H, Ph-H), 7.66−7.73
(m, 4H, Ph-H). 13C NMR (100 MHz, CDCl3) δ 170.67,
166.02, 135.93 (2C), 135.67 (2C), 134.48, 133.12, 133.04,
130.09, 129.98, 127.99, 127.86 (2C), 127.84 (2C), 74.57,
73.54, 71.63, 52.05, 32.59, 27.00 (3C), 21.02, 19.32. HRMS
(ESI) calcd for C26H32O6SiNa [M + Na]+: 491.1866, found:
491.1860. IR (neat) ν 3500, 3071, 2954, 2933, 2858, 1723,
1659, 1430, 1373, 1235, 1112, 1088, 970, 823, 705, 612, 506
cm−1.
4.6. Methyl (3S,4R,5R)-5-(tert-Butyldiphenylsilyloxy)-

3,4-diacetoxy-cyclohex-1-ene-1-carboxylate 8. Com-
pound 7 (9.986 g, 21.31 mmol), Et3N (4.313 g, 42.62
mmol), and DMAP (260.5 mg, 2.132 mmol) were dissolved in
anhydrous ethyl acetate (100 mL), and the solution was then
cooled to 0 °C by an ice bath. Ac2O (3.265 g, 31.98 mmol)
was then dropwise added for 10 min. The mixture was further
stirred at 0 °C for 2 h. After the reaction was complete
(checked by TLC; eluent, EtOAc/hexane = 1:5), an aqueous
solution of HCl (2 N, 50 mL) was added to quench the
reaction. After the mixture was vigorously stirred for 5 min, the
two phases were separated by a separatory funnel. The aqueous
solution was extracted again with ethyl acetate (50 mL).
Organic extracts were combined, washed with an aqueous
solution of potassium carbonate (15% w/w, 50 mL), and then
dried over anhydrous MgSO4. Removal of the solvent by
vacuum distillation gave an oily crude product that was purified
by flash chromatography (eluent, EtOAc/hexane = 1:6) to
furnish compound 8 (10.45 g, 20.46 mmol) as white crystals in
96% yield; mp 88−90 °C. [α]D

25 = +34.5 (c 1.0, CHCl3).
1H

NMR (400 MHz, CDCl3) δ 1.05 (s, 9H, t-Bu), 1.79 (s, 3H,
CH3 in Ac), 2.04 (s, 3H, CH3 in another Ac), 2.34−2.45 (m,
1H, H-6), 2.56 (dd, J1 = 17.8 Hz, J2 = 5.8 Hz, 1H, another H-
6), 3.69 (s, 3H, OCH3), 4.03 (dd, J1 = 9.0 Hz, J2 = 5.8 Hz, J3 =
5.6 Hz, 1H, H-5), 5.27 (dd, J1 = 9.0 Hz, J2 = 7.2 Hz, 1H, H-4),
5.41 (dd, J1 = 7.2 Hz, J2 = 5.4 Hz, 1H, H-3), 6.55 (dd, J1 = 2.2
Hz, J2 = 5.4 Hz, 1H, H-2), 7.35−7.46 (m, 6H, Ph-H), 7.62−
7.71 (m, 4H, Ph-H). 13C NMR (100 MHz, CDCl3) δ 170.39,
170.22, 165.88, 136.00 (2C), 135.72 (2C), 133.76, 133.07,
130.20, 130.00, 129.78, 127.78 (2C), 127.66 (2C), 74.27,
71.50, 68.46, 52.12, 32.64, 26.78 (3C), 20.92, 20.89, 19.21.
HRMS (ESI) calcd for C28H34O7SiNa [M + Na]+: 533.1971,
found: 533.1973. IR (KBr film) ν 3072, 2955, 2930, 2857,
1750, 1723, 1657, 1430, 1367, 1240, 1112, 1061, 974, 822,
705, 610, 506 cm−1.
4.7. (1R,2S,3S,4R,5R)-5-(tert-Butyldiphenylsilyloxy)-

3,4-diacetoxy-1,2-dihydroxy-1-methoxycarbonyl-cyclo-
hexane 9. Sodium periodate (4.412 g, 20.63 mmol),
ruthenium trichloride (57.0 mg, 0.275 mmol), and water (10
mL) were added into a round-bottomed flask that was
equipped with a stirrer bar. The mixture was stirred at room
temperature for 15 min, and the color changed to bright
yellow. Compound 8 (7.022 g, 13.75 mmol) was dissolved in a
mixed solvent of ethyl acetate (30 mL) and acetonitrile (30
mL), and the resulting solution was cooled to −5 °C by a salt
ice bath. The above bright yellow aqueous viscous solution was
added, and the mixture was further stirred at −5 °C for 1 h.

After the reaction was complete (checked by TLC; eluent,
EtOAc/hexane = 1:3), ethyl acetate (100 mL) and a saturated
aqueous solution of Na2S2O3 (80 mL) were added. The
mixture was vigorously stirred for 15 min, and then, the two
phases were separated by a separatory funnel. The aqueous
solution was extracted twice with ethyl acetate (2 × 80 mL).
Organic extracts were combined, washed with brine (20 mL),
and then dried over anhydrous MgSO4. The organic solution
was concentrated under vacuum to give the crude product,
which was then purified by flash chromatography (eluent,
EtOAc/hexane = 1:2) to afford compound 9 (6.667 g, 12.24
mmol) as white crystals in 89% yield; mp 133−134 °C. [α]D

25

= −24.9 (c 1.0, CHCl3).
1H NMR (400 MHz, CDCl3) δ 1.01

(s, 9H, t-Bu), 1.77 (s, 3H, CH3 in Ac), 1.79−1.88 (m, 2H, two
H-6), 2.02 (s, 3H, CH3 in another Ac), 2.51 (s, 1H, OH), 3.36
(s, 1H, another OH), 3.76 (s, 3H, OCH3), 3.90 (d, J = 9.7 Hz,
1H, H-2), 4.14−4.23 (m, 1H, H-5), 4.96 (dd, J1 = 9.9 Hz, J2 =
9.8 Hz, 1H, H-4), 5.17 (dd, J1 = 9.8 Hz, J2 = 9.7 Hz, 1H, H-3),
7.34−7.46 (m, 6H, Ph-H), 7.58−7.67 (m, 4H, Ph-H). 13C
NMR (100 MHz, CDCl3) δ 173.73, 171.44, 170.20, 135.86
(2C), 135.71 (2C), 133.26, 133.21, 129.94, 129.81, 127.73
(2C), 127.65 (2C), 75.75, 75.38, 73.94, 73.78, 68.68, 53.55,
38.82, 26.75 (3C), 20.84, 20.79, 19.19. HRMS (ESI) calcd for
C28H36O9SiNa [M + Na]+: 567.2026, found: 567.2025. IR
(KBr film) ν 3490, 3072, 2957, 2934, 2858, 1746, 1429, 1367,
1243, 1113, 1047, 826, 705, 608, 504 cm−1.

4.8. (1S,2S,3S,4R,5R)-3,4-Diacetoxy-1,2-dihydroxy-1-
hydroxymethyl-5-(tert-butyldiphenylsi lyloxy)-
cyclohexane 10. Compound 9 (5.447 g, 10.00 mmol) was
dissolved in ethyl acetate (60 mL), and water (6 mL) was
added. While the mixture was well stirred, NaBH4 (1.895 g,
50.09 mmol) was added in portions for 15 min at room
temperature. After the addition was finished, the mixture was
further stirred for 1 h. Ethyl acetate (60 mL) and water (50
mL) were added, and the biphasic mixture was vigorously
stirred for 5 min. Two phases were separated, and the aqueous
phase was extracted again with ethyl acetate (60 mL). Organic
extracts were combined and dried over anhydrous MgSO4. The
organic solution was concentrated under vacuum to give the
crude product, which was then purified by flash chromatog-
raphy (eluent, EtOAc/hexane = 1:2) to afford compound 10
(4.705 g, 9.107 mmol) as white crystals in 91% yield; mp 174−
176 °C. [α]D

25 = −14.7 (c 1.0, CHCl3).
1H NMR (400 MHz,

CDCl3) δ 1.01 (s, 9H, t-Bu), 1.40 (dd, J1 = 13.8 Hz, J2 = 9.2
Hz, 1H, H-6), 1.72 (dd, J1 = 13.8 Hz, J2 = 5.0 Hz, 1H, another
H-6), 1.77 (s, 3H, CH3 in Ac), 1.99 (s, 3H, CH3 in another
Ac), 2.90 (br. s, 1H, OH), 3.04 (br. s, 1H, OH), 3.30 (dd, J1 =
11.2 Hz, J1 = 6.0 Hz, 1H, CHHOH), 3.43 (dd, J1 = 11.2 Hz, J2
= 3.5 Hz, 1H, CHHOH), 3.52 (d, J = 6.0 Hz, 1H, OH), 3.62
(dd, J1 = 9.3 Hz, J2 = 5.7 Hz, 1H, H-2), 4.18−4.26 (m, 1H, H-
5), 4.96 (dd, J1 = 8.8 Hz, J2 = 8.5 Hz, 1H, H-4), 5.04 (dd, J1 =
9.3 Hz, J2 = 8.5 Hz, 1H, H-3), 7.32−7.44 (m, 6H, Ph-H),
7.59−7.68 (m, 4H, Ph-H). 13C NMR (100 MHz, CDCl3) δ
171.89, 170.44, 135.91 (2C), 135.74 (2C), 133.53, 133.48,
129.89, 129.74, 127.72 (2C), 127.63 (2C), 75.86, 74.47, 74.36,
72.19, 72.18, 68.48, 37.91, 26.79 (3C), 20.93, 20.82, 19.19.
HRMS (ESI) calcd for C27H36O8SiNa [M + Na]+: 527.2077,
found: 527.2071. IR (KBr film) ν 3572, 3493, 3072, 2952,
2932, 2860, 1734, 1709, 1428, 1379, 1234, 1112, 1049, 823,
706, 608, 512 cm−1.

4.9. (1S,2S,3R,4R,5R)-2-Benzoyloxy-1-benzoyloxy-
methyl-5-(tert-butyldiphenylsilyloxy)-3,4-diacetoxy-1-
hydroxy-cyclohexane 11. Compound 10 (4.000 g, 7.742
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mmol) was dissolved in dichloromethane (50 mL), and the
solution was cooled to 0 °C by an ice bath. Et3N (3.134 g,
30.97 mmol), DMAP (95.0 mg, 0.778 mmol), and BzCl (3.265
g, 23.23 mmol) were added in turn. After the addition was
finished, the ice bath was removed, and the mixture was further
stirred at room temperature for 5 h. When the reaction was
complete (checked by TLC; eluent, EtOAc/hexane = 1:3),
dichloromethane was removed by vacuum distillation. Ethyl
acetate (120 mL) and an aqueous solution of potassium
carbonate (15% w/w, 50 mL) were added, and the biphasic
mixture was vigorously stirred for 2 h. Two phases were
separated, and aqueous phase was extracted again with ethyl
acetate (60 mL). Organic extracts were combined and
successively washed with an aqueous solution of HCl (2 N,
30 mL) and brine (15 mL). The organic solution was dried
over anhydrous MgSO4 and then concentrated under vacuum
to give the crude product, which was purified by flash
chromatography (eluent, EtOAc/hexane = 1:4) to afford
compound 11 (5.276 g, 7.278 mmol) as white crystals in 94%
yield; mp 127−128 °C. [α]D

25 = −20.2 (c 1.0, CHCl3).
1H

NMR (400 MHz, CDCl3) δ 1.04 (s, 9H, t-Bu), 1.70−1.80 (m,
1H, H-6), 1.81 (s, 3H, CH3 in Ac), 1.85 (s, 3H, CH3 in
another Ac), 2.00 (dd, J1 = 13.9 Hz, J2 = 5.0 Hz, 1H, another
H-6), 2.45 (br. s, 1H, OH), 3.99 (d, J = 11.6 Hz, 1H,
CHHOBz), 4.16 (d, J = 11.6 Hz, 1H, CHHOBz), 4.38 (ddd, J1
= 10.0 Hz, J2 = 5.2 Hz, J3 = 5.0 Hz, 1H, H-5), 5.29 (dd, J1 =
10.0 Hz, J2 = 10.1 Hz, 1H, H-4), 5.43 (d, J = 9.9 Hz, 1H, H-2),
5.51 (dd, J1 = 10.1 Hz, J2 = 9.9 Hz, 1H, H-3), 7.28−7.46 (m,
10H, Ph-H), 7.52 (t, J = 7.8 Hz, 2H, para-H in Bz), 7.66 (t, J =
7.8 Hz, 4H), 7.81 (d, J = 7.8 Hz, 2H, meta-H in Bz), 7.89 (d, J
= 7.8 Hz, 2H, ortho-H in Bz). 13C NMR (100 MHz, CDCl3) δ
170.16, 170.15, 166.18, 165.25, 135.88 (2C), 135.76 (2C),
133.59 (2C), 133.44, 133.26, 129.93 (2C), 129.81 (2C),
129.66, 129.10, 128.73 (2C), 128.58 (2C), 128.35 (2C),
127.71 (2C), 127.66 (2C), 75.86, 73.97, 72.37, 71.21, 68.24,
68.08, 38.53, 26.78 (3C), 20.83, 20.54, 19.20. HRMS (ESI)
calcd for C41H44O10SiNa [M + Na]+: 747.2601, found:
747.2598. IR (KBr film) ν 3474, 3071, 2960, 2932, 2857,
1724, 1601, 1428, 1365, 1269, 1111, 1050, 825, 708, 612, 514
cm−1.
4.10. (1R,2R,3S,4R)-4-Benzoyloxy-5-benzoyloxymeth-

yl-1-(tert-butyldiphenylsilyloxy)-2,3-diacetoxy-cyclo-
hex-5-ene 12. Compound 11 (5.019 g, 6.924 mmol) was
dissolved in dichloromethane (50 mL), and the solution was
cooled to 0 °C by an ice bath. SOCl2 (4.120 g, 34.63 mmol)
and pyridine (1.643 g, 20.77 mmol) were slowly added. After
the addition was finished, the ice bath was removed, and the
mixture was heated to reflux (41 °C). The mixture was further
stirred under reflux for 6 h. When the reaction was complete
(checked by TLC; eluent, EtOAc/hexane = 1:4), dichloro-
methane was removed by vacuum distillation. Ethyl acetate
(100 mL) and water (50 mL) were added, and the biphasic
mixture was vigorously stirred for 10 min. Two phases were
separated, and the aqueous phase was extracted again with
ethyl acetate (60 mL). Organic extracts were combined and
successively washed with an aqueous solution of potassium
carbonate (15% w/w, 25 mL) and brine (15 mL). The organic
solution was dried over anhydrous MgSO4 and then
concentrated under vacuum to give the crude product, which
was purified by flash chromatography (eluent, EtOAc/hexane
= 1:5) to afford compound 12 (4.258 g, 6.024 mmol) as
colorless oil in 87% yield. [α]D

25 = −94.5 (c 1.0, CHCl3).
1H

NMR (400 MHz, CDCl3) δ 1.06 (s, 9H, t-Bu), 1.87 (s, 3H,

CH3 in Ac), 1.92 (s, 3H, CH3 in another Ac), 4.64 (dd, J1 = 7.9
Hz, J2 = 2.4 Hz, 1H, H-1), 4.70 (s, 2H, CH2OBz), 5.35 (dd, J1
= 11.0 Hz, J2 = 7.9 Hz, 1H, H-2), 5.51 (dd, J1 = 11.0 Hz, J2 =
8.0 Hz, 1H, H-3), 5.77 (d, J = 1.9 Hz, 1H, H-6), 6.18 (d, J =
1.9 Hz, 1H, H-4), 7.34−7.45 (m, 10H, Ph-H), 7.49−7.58 (m,
2H, Ph-H), 7.61−7.66 (m, 2H, Ph-H), 7.66−7.72 (m, 2H, Ph-
H), 7.87−7.93 (m, 4H, Ph-H). 13C NMR (100 MHz, CDCl3)
δ 170.11, 169.80, 165.67, 165.66, 135.93 (2C), 135.79 (2C),
133.43, 133.10, 132.94, 132.87, 130.88, 130.34, 130.11, 130.00,
129.78, 129.69 (2C), 129.51 (2C), 129.02, 128.49 (2C),
128.35 (2C), 127.88 (2C), 127.82 (2C), 73.88, 72.12, 71.67,
70.98, 63.24, 26.76 (3C), 20.73, 20.59, 19.22. HRMS (ESI)
calcd for C41H42O9SiNa [M + Na]+: 729.2496, found:
729.2490. IR (neat) ν 3071, 2955, 2933, 2858, 1757, 1727,
1602, 1452, 1428, 1368, 1234, 1109, 823, 707, 610, 503 cm−1.

4.11. (1R,2S,3S,4R)-4-Benzoyloxy-5-benzoyloxymeth-
yl-2,3-diacetoxy-1-hydroxy-cyclohex-5-ene 13. Com-
pound 12 (4.109 g, 5.813 mmol) was dissolved in
tetrahydrofuran (35 mL). Bu4NF (6.840 g, 26.16 mmol) and
AcOH (1.571 g, 26.16 mmol) were added. The mixture was
then stirred at room temperature for 8 h. When the reaction
was complete (checked by TLC; eluent, EtOAc/hexane = 1:4),
tetrahydrofuran was removed by vacuum distillation. Ethyl
acetate (50 mL) and an aqueous solution of potassium
carbonate (10% w/w, 30 mL) were added, and the biphasic
mixture was vigorously stirred for 10 min. The two phases were
separated, and the aqueous phase was extracted again with
ethyl acetate (50 mL). Organic extracts were combined and
dried over anhydrous MgSO4 and then concentrated under
vacuum to give the crude product that was purified by flash
chromatography (eluent, EtOAc/hexane = 1:4) to afford
compound 13 (2.505 g, 5.347 mmol) as white crystals in 92%
yield; mp 131−132 °C. [α]D

25 = −75.6 (c 1.0, CHCl3).
1H

NMR (400 MHz, CDCl3) δ 1.96 (s, 3H, CH3 in Ac), 2.11 (s,
3H, CH3 in another Ac), 3.04 (br. s, 1H, OH), 4.54 (dd, J1 =
7.9 Hz, J2 = 2.1 Hz, 1H, H-1), 4.83 (s, 2H, CH2OBz), 5.22
(dd, J1 = 10.2 Hz, J2 = 7.9 Hz, 1H, H-2), 5.53 (dd, J1 = 10.2
Hz, J2 = 7.7 Hz, 1H, H-3), 6.03 (d, J = 2.1 Hz, 1H, H-6), 6.18
(d, J1 = 7.7 Hz, 1H, H-4), 7.35−7.44 (m, 4H, Ph-H), 7.50−
7.59 (m, 2H, Ph-H), 7.92-8.00 (m, 4H, Ph-H). 13C NMR (100
MHz, CDCl3) δ 171.20, 170.04, 165.94, 165.75, 133.52,
133.21, 131.69, 130.30, 129.82 (2C), 129.70 (2C), 129.41,
128.97, 128.54 (2C), 128.37 (2C), 74.98, 71.64, 71.51, 70.12,
63.47, 20.83, 20.59. HRMS (ESI) calcd for C25H24O9Na [M +
Na]+: 491.1318, found: 491.1315. IR (KBr film) ν 3424, 3071,
2951, 2926, 2873, 1752, 1724, 1601, 1451, 1377, 1261, 1120,
1068, 959, 712 cm−1.

4.12. (1S,2S,3S,4R)-4-Benzoyloxy-5-benzoyloxymeth-
yl-1,2,3-triacetoxy-cyclohex-5-ene 14. Compound 13
(1.450 g, 3.095 mmol) was dissolved in anhydrous ethyl
acetate (15 mL), and the solution was cooled to 0 °C in an ice
bath. Methanesulfonyl chloride (709.0 mg, 6.190 mmol) and
Et3N (470.0 mg, 4.645 mmol) were added, and the mixture
was stirred at 0 °C for 1 h. When the reaction was complete
(checked by TLC; eluent, EtOAc/hexane = 1:4), ethyl acetate
(30 mL) and an aqueous solution of HCl (1 N, 20 mL) were
added. After the biphasic mixture was vigorously stirred for 10
min, two phases were separated, and the aqueous phase was
extracted again with ethyl acetate (30 mL). Organic extracts
were combined, washed with an aqueous solution of potassium
carbonate (10% w/w, 15 mL), and then dried over anhydrous
MgSO4. Removal of ethyl acetate under vacuum gave the crude
unstable intermediate compound I-A, which was dissolved in
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toluene (5 mL). AcOH (1.115 g, 18.57 mmol) and DBU
(1.414 g, 9.288 mmol) were added. The mixture was then
heated to 85 °C and was stirred at this temperature for 5 h.
When the reaction was complete (checked by TLC; eluent,
EtOAc/hexane = 1:4), toluene was removed by vacuum
distillation. Ethyl acetate (30 mL) and an aqueous solution of
HCl (1 N, 15 mL) were added. After the biphasic mixture was
vigorously stirred for 5 min, two phases were separated, and
the aqueous phase was extracted twice with ethyl acetate (2 ×
30 mL). Organic extracts were combined, washed with an
aqueous solution of potassium carbonate (10% w/w, 15 mL),
and then dried over anhydrous MgSO4. Evaporation of ethyl
acetate under vacuum gave the crude product that was then
purified by flash chromatography (eluent, EtOAc/hexane =
1:5) to furnish compound 14 (1.264 g, 2.476 mmol) as
colorless viscous oil in 80% yield. [α]D

25 = +10.7 (c 1.0,
CHCl3).

1H NMR (400 MHz, CDCl3) δ 1.99 (s, 3H, CH3 in
Ac), 2.04 (s, 3H, CH3 in Ac), 2.15 (s, 3H, CH3 in Ac), 4.86 (s,
2H, CH2OBz), 5.26 (dd, J1 = 7.8 Hz, J2 = 4.2 Hz, H-2), 5.68−
5.78 (m, 2H, H-6 and H-3), 6.03−6.13 (m, 2H, H-1 and H-4),
7.38−7.48 (m, 4H, Ph-H), 7.52−7.62 (m, 2H, Ph-H), 7.94-
8.06 (m, 4H, Ph-H). 13C NMR (100 MHz, CDCl3) δ 170.23,
169.94, 169.77, 165.73, 165.68, 137.62, 133.58, 133.28, 129.89
(2C), 129.71 (2C), 129.34, 128.91, 128.85, 128.55, 128.42
(2C), 123.61, 71.14, 69.51, 68.12, 65.40, 63.29, 20.93, 20.68,
20.62. HRMS (ESI) calcd for C27H26O10Na [M + Na]+:
533.1424, found: 533.1420. IR (neat) ν 3066, 2928, 2853,
1751, 1727, 1602, 1452, 1371, 1242, 1112, 1068, 940, 712
cm−1.
4.13. (1S,2S,3S,4R)-5-Hydroxymethyl-1,2,3,4-tetra-

hydr-oxy-cyclohex-5-ene [(+)-Streptol] 1. Compound 14
(1.020 g, 1.998 mmol) was dissolved in methanol (25 mL).
Aqueous ammonia (25% w/w, 5 mL) was added, and the
mixture was then stirred at room temperature for 24 h. The
reaction solution was concentrated to dryness under vacumm.
Ether (20 mL) and pure water (20 mL) were added, the
biphasic mixture was vigorously stirred for 5 min, two phases
were separated, and the organic phase was extracted again with
pure water (20 mL). Aqueous extracts were combined and
concentrated under vacumm to give the crude product that
was then purified by chromatography on a column of Duolite-
C20 resin (eluent, methanol/water =1:2) to afford pure
(+)-streptol 1 (317.0 mg, 1.799 mmol) as colorless viscous oil
in 90% yield. [α]D

25 = +95.2 (c 0.5, CH3OH) {lit.
6c [α]D

25 =
+95.6 (c 0.45, CH3OH)}

1H NMR (400 MHz, D2O) δ 3.58
(dd, J1 = 10.7 Hz, J2 = 4.2 Hz, 1H, H-2), 3.71 (dd, J1 = 10.7
Hz, J2 = 7.8 Hz, 1H, H-3), 4.09 (dd, J1 = 7.8 Hz, J1 = 1.8 Hz,
1H, H-4), 4.15 (d, J = 14.2 Hz, 1H, CHHO), 4.24 (d, J = 14.2
Hz, 1H, CHHO), 4.30 (dd, J1 = 4.3 Hz, J2 = 4.2 Hz, 1H, H-1),
5.85 (dd, 1H, J1 = 4.3 Hz, J2 = 1.8 Hz, H-6). 13C NMR (100
MHz, D2O) δ 144.34, 124.31, 74.73, 74.43, 72.88, 68.31,
63.46. HRMS (ESI) calcd for C7H12O5Na [M + Na]+:
199.0582, found: 199.0580. IR (neat) ν 3420, 2923, 1640,
1564, 1411, 1102, 1060, 998, 621 cm−1.
4.14. (1R,2S,3S,4R)-5-Hydroxymethyl-1,2,3,4-tetra-

hydr-oxy-cyclohex-5-ene [(−)-1-epi-Streptol] 2. Com-
pound 13 (1.005 g, 2.145 mmol) was dissolved in methanol
(25 mL). Aqueous ammonia (25% w/w, 5 mL) was added, and
the mixture was then stirred at room temperature for 24 h. The
reaction solution was concentrated to dryness under vacumm.
Ether (20 mL) and pure water (20 mL) were added, the
biphasic mixture was vigorously stirred for 5 min, two phases
were separated, and the organic phase was extracted again with

pure water (20 mL). Aqueous extracts were combined and
concentrated under vacumm to give the crude product that
was then purified by chromatography on a column of Duolite-
C20 resin (eluent, methanol/water =1:2) to afford pure (−)-1-
epi-streptol 2 (340.5 mg, 1.933 mmol) as a colorless viscous oil
in 90% yield. [α]D

25 = −33.2 (c 1.0, CH3OH) {lit.
6i [α]D

22 =
−32.5 (c 0.22, CH3OH)}.

1H NMR (400 MHz, D2O) δ 3.36
(dd, J1 = 9.5 Hz, J2 = 4.6 Hz, 1H, H-2), 3.42 (dd, J1 = 9.5 Hz,
J2 = 7.8 Hz, 1H, H-3), 3.99 (d, J = 13.5 Hz, 1H, CHHO), 4.10
(m, 3H, H-1, H-4 and CHHO), 5.51 (dd, J1 = 1.8 Hz, J2 = 1.6
Hz, 1H, H-6). 13C NMR (100 MHz, D2O) δ 138.30, 124.91,
75.49, 75.10, 71.85, 71.33, 60.96. HRMS (ESI) calcd for
C7H12O5Na [M + Na]+: 199.0582, found: 199.0582. IR (neat)
ν 3360, 2975, 2897, 1658, 1564, 1422, 1091, 1049, 882, 651
cm−1.
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