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Most biological neurons exhibit stochastic and spiking action
potentials. However, the benefits of stochastic spikes versus con-
tinuous signals other than noise tolerance and energy efficiency
remain largely unknown. In this study, we provide an insight into
the potential roles of stochastic spikes, which may be beneficial for
producing on-site adaptability in biological sensorimotor agents.
We developed a platform that enables parametric modulation of
the stochastic and discontinuous output of a stochastically spik-
ing neural network (sSNN) to the rate-coded smooth output. This
platform was applied to a complex musculoskeletal–neural system
of a bipedal walker, and we demonstrated how stochastic spikes
may help improve on-site adaptability of a bipedal walker to slip-
pery surfaces or perturbation of random external forces. We further
applied our sSNN platform to more general and simple sensorimo-
tor agents and demonstrated four basic functions provided by an
sSNN: 1) synchronization to a natural frequency, 2) amplification of
the resonant motion in a natural frequency, 3) basin enlargement
of the behavioral goal state, and 4) rapid complexity reduction and
regular motion pattern formation. We propose that the benefits of
sSNNs are not limited to musculoskeletal dynamics. Indeed, a wide
range of the stability and adaptability of biological systems may
arise from stochastic spiking dynamics.
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S tochastic spiking neurons fire transient action potentials to
generate irregular spike trains. The stochastic spike train

of a presynaptic neuron is propagated toward the synaptic ter-
minal and induces irregular and discontinuous time series of
the postsynaptic potential (PSP) in a connected neuron or a
muscle cell (1). Conventionally, neural spiking is considered to
underlie stable and efficient digitalized signal transmission (2).
In addition, recent studies have demonstrated that the transient
characteristics of stochastic spikes enable the exotic state tran-
sition of a neural network, allowing for spike annealing. Such
studies have indicated that stochastically spiking neural networks
(sSNNs) enable significantly more rapid and efficient optimiza-
tion than do networks involving rate-based model neurons (3–5).
Nevertheless, other merits of irregular/impulsive PSP time series
remain largely unclear.

Theoretically, it is well known that noise is beneficial in a non-
linear excitable system that generates all-or-none responses (i.e.,
neurons or cells): Noise induces ordering of the nonlinear system
and aids in the synchronization and formation of spatiotempo-
ral patterns in the excitable media (6–10). The occurrence of
noise-induced ordering (11, 12) is not limited to an excitable sys-
tem and is observed in other systems such as granular particles
perturbed by vibration (12). Thus, it is highly feasible that sim-
ilar noise-induced ordering effects occur in a dynamical system
exposed to stochastic spikes.

The computational results of the present study suggest that
an sSNN may be the core prerequisite for realizing the instant
adaptability of a biological sensorimotor system. In the follow-

ing sections, we first briefly describe the sSNN model, following
which we discuss the architecture that enables us to modulate the
spikiness of PSPs generated by the sSNN, where we define the
term spikiness as a root-mean square of the second derivative
of the PSPs to represent the impulsive and irregular dynam-
ics of the PSPs. We demonstrate how stochastic spikes help
improve the adaptability of a musculoskeletal bipedal walker;
we demonstrate that decreases in the spikiness of PSPs lead to
a reduction in the adaptability. To further analyze how stochas-
tic spikes help improve the adaptability of a bipedal walker, and
to understand how sSNNs may help other more-general agents,
we study several simple sensorimotor models driven by sSNNs
and present four sSNN functions. Furthermore, we propose that
spike-induced ordering is manifested as the spatiotemporally
coordinated motion of a bipedal walker, such as the smooth and
stable gait (re)initialization and robust balancing.

Results
Model of a Spike-Based Sensorimotor Agent. Because the parame-
ters of sSNNs and conventional nonspiking neural networks (NS-
NNs) are substantially different (e.g., time constants, stochas-
ticity, and the nonlinearity of the activation function), simple
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comparisons of benchmark scores of sSNNs and NS-NNs would
not provide sufficient understanding of the functions of stochas-
tic neural spikes; it would be challenging to distinguish the effect
of stochastic spikes from that of other parameters. To investigate
the functions of stochastic spikes, we considered a sensorimotor
agent driven by sSNNs which convert the smooth signal gener-
ated by a base controller into the correspondent spike trains,
as shown in Fig. 1A. Employing this architecture enables the
modulation from stochastic and discontinuous sSNN behavior
to conventional rate-coded NS-NN behavior by altering PSP
timescale and sSNN size (altering these parameters is roughly
correspondent to changing the parameters of a lowpass and an
averaging filter, respectively) as described later (Fig. 1 C and D).

The i th sSNN Si in Fig. 1 consists of N stochastic leaky
integrate-and-fire (LIF) neurons, and each neuron in Si receives
a common input signal Ii(t) from a base controller (such as a
conventional feedback controller). Furthermore, the j th neu-
ron (in the i th sSNN) receives independent bias input bij and
Gaussian noise Diξij (t), where Di indicates the intensity.

As a synapse connecting an sSNN neuron and an actuator, we
assumed the simplest linear synapse model (6, 13–15). Then, the
activation level Ai(t) of the i th actuator, which is coupled with
the i th sSNN, is determined by the total PSP yi(t) as

τs ẏi =−yi +
1

N

N∑
j=1

σij (t), [1a]

Ai(t)= gA
i yi(t)−A0

i , [1b]

where σij (t) is the spike train of the j th LIF neuron, τs is the
PSP timescale, and gA

i is the amplification gain to convert exci-
tatory PSP (EPSP) to the activity of an actuator. A0

i is the offset
inhibition, and A0

i =0, unless otherwise stated. Note that Ai is
basically positive (although Ai may be offset by A0

i ); therefore,
the actuator driven by an sSNN can generate only unidirectional
output.

It is important to note that N does not influence 〈y(t)〉 (where
the operator 〈·〉 denotes the averaging over simulation trials)
or y =

∫
y(t ′)dt ′, but influences only the variance of y if each

spike train of different neurons is independent. [Note that some
input may break the independency of each neuron activity as a
strong common input inducing the neural synchronization (16,
17)]. Fig. 1D shows that N does not change y and changes only
the variance of y (we used I =5, b=4, D =10, and τs =5 ms).
Moreover, the stochasticity and discontinuity of the PSP signal
are clearly scaled by the PSP timescale τs . Hereafter, we dis-
cuss how N and τs scale the smoothness and stochasticity of
y and approximate the sSNN output to the rate-coded signal.
For further discussions, we introduce the variable Z , represent-
ing the mean magnitude of spikiness during a certain period
t = [t0, t0 +T ] as follows:

Z =

(
1

T

∫ t′=t0+T

t′=t0

(
ÿ(t ′)

)2dt ′)1/2

. [2]

Of note, Z can represent the stochasticity and discontinuity
and, therefore, can be a good index for distinguishing an sSNN
and a conventional rate-coded neuron network. Using Gaussian
approximation of the spike trains of a neuron ensemble (18, 19)
and linear-response techniques (6, 20, 21), we can show that
Z ∝ 1/

(√
N τ2s

)
. In fact, Z can be modulated by both the sSNN

neuron size,
√
N , and the PSP timescale, τs , as shown in Fig. 1C.

See Materials and Methods for details.
Hereafter, we use N and τs to parametrically morph the sSNN

output to a conventional rate-coded neuron model. Besides the
modulation of spikiness, the PSP timescale τs plays a special role,
described in detail in later sections of the text. Furthermore,
it is important to note that modulating τs does not influence
the total amount of actuator activation 〈

∫∞
0

yidt〉 (SI Appendix,
section S1).

An sSNN-Driven Musculoskeletal Bipedal Walker. We demonstrate
how stochastic spikes generated by sSNNs are integrated into
the adaptability of a bipedal musculoskeletal system. The con-
figurations for muscle–tendon units (MTUs), a bipedal model,
and a reflexive control system are based on ref. 22, as shown in
Fig. 2A. The smooth nonspiking input to the i th sSNN, Ii(t), is
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Fig. 1. (A) Schematic model of a spike-based sensorimotor agent for seamless modulation from spiking signals to nonspiking, rate-coded signals by altering
PSP duration and sSNN size. The neurons in an sSNN receive common (smooth) input and convert the smooth signal to a stochastic spike train. An agent
is controlled based on the PSP generated by the sSNNs. (B) Spikiness with respect to N and τs. The spikiness decreases and approaches the smooth, rate-
coding signal as N and τs increase. (C1 and C2) The PSP signals are induced by the periodic input I(t) of 0.1 Hz with N = 10 and τs = 5 ms and N = 200 and
τs = 30 ms, respectively. (D) The histogram of y in response to I = 5. The average values are the same: 0.66606 with N = 5 and 0.66600 with N = 100.
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Fig. 2. An sSNN-driven musculoskeletal system of a bipedal walker. (A) The bipedal walker consists of 16 muscle–tendon units (MTUs) in total, and the
activity of an MTU is determined by the corresponding sSNN, which converts the smooth control signal of a reflex system to an impulsive PSP. We considered
the hip flexor muscle group (HFL), the gluteus muscle group (GLU), a biarticular hamstring muscle group (HAM), the femoris muscle group (RF), the vasti
muscle group (VAS), the soleus muscle (SOL), the gastrocnemius muscles (GAS), and the tibialis anterior muscle (TA). (B1) The sSNN-controlled walker can
realize the instant walking rhythm reformation in an extremely slippery environment µ= 0.04. Results are shown for vg in the environment where the
friction coefficient is shifted from µ= 10 to µ= 0.04 during t = [10, 40] (blue line) and in the default environment where the friction coefficient is constant
and µ= 10 (red line). The frequency of walking rhythm changes in response to slipping, as shown in B2. The numerical simulation was obtained using an
sSNN with N = 125 and τs = 5 ms. (B2) Enlarged view of vg during slip and nonslip walking. The sSNN-driven agent can slow down and reform the walking
rhythm in response to slipping, as shown in B3. (C) Successful gait-initiation ratio pg of reflex, sigmoid, and sSNN controllers (with τ = 5 ms and several
different N values) in a slippery environment for x = [1.25, 5].

computed using the reflex rules proposed in refs. 22 and 23 and
then passed to the corresponding i th sSNN. The MTU activity
Ai is innervated by the EPSP induced by the corresponding neu-
ron ensemble (Eq. 1), and the generative force of an MTU is
computed based on the dynamics proposed in ref. 23.

A conventional sigmoid-type controller and a simple reflex
controller are prepared to compare the experimental results.
We use the real-coded genetic algorithms (GAs) using a blend
crossover α (BLX-α) method (24) to optimize the controllers.

Dynamic Walking Rhythm Formation during Slipping. Bipedal loco-
motion in a slippery environment requires an agent to decrease
the stride frequency. In fact, it is reported that the stride rate in
submaximal skating is less than 1 Hz (25) whereas the stride rate
during normal walking is usually greater than 1 Hz (26). Because
the reflex-based controller involves passive-walking dynamics
during the swing phase (23), the original reflex-based con-
troller has the potential ability to adaptively alter the locomotion
rhythm in response to environmental changes, such as changes
in the slope angle. The sSNN controller inherits this potential
ability to ensure reformation of the walking rhythm.

Fig. 2 B1 and B2 demonstrates that the sSNN can change the
walking rhythm in response to the sudden changes in the fric-
tion coefficient to µ=0.04 during the period t = [10, 40] s and
µ=10 otherwise (µ=0.04 is smaller than that of a banana skin
on the floor and mostly similar to a ski on wet snow) (27). Movie
S1 demonstrates bipedal walking using an sSNN controller that
successfully slows down the rhythm but fails to find a new sta-
ble gait pattern. Successful identification of a new stable gait
pattern and instantaneous transition to the stable walking pat-

tern are demonstrated in Movie S2. Note that Movies S1 and S2
are obtained using the same parameters. The difference between
Movies S1 and S2 can be accounted for by whether the sSNN
instantaneously found and transitioned to the new stable gait.

The sSNN ability for the instant rhythm formation becomes
most pronounced in an experiment where a walker is required to
initiate a stable gait in a slippery environment; a walker expe-
riences slipping within the first few steps and is required to
realize the drastic state transition from a static standing state to
a dynamic and stable locomotion gait while preventing falling
by slip. Movies S3 and S4 demonstrate that the sSNN con-
troller can slow down the timing of the leg swing in response to
the slip of the stance leg and prevent falling, while the reflex-
based controller fails to change the walking rhythm, resulting in
falling. We used µ=0.04 for x = [1.25, 5]. The successful gait-
initiation rate pg in this environment is shown in Fig. 2C. Note
that pg =Csuc./Ctot., where Csuc. is the number of trials the walker
successfully initiated the gait and kept walking during 20 s, and
Ctot.=500 is the number of total trials. The reflex and sigmoid
controllers exhibited a threshold-like behavior in response to µ;
the reflex and sigmoid controllers required µ≥ 0.05 and µ≥
0.09, respectively, to realize gait. The sSNN controller largely
relaxed this threshold-like constraint and realized a locomotion
with a smaller friction coefficient µ< 0.04. It is also shown that
there was an optimal neuron ensemble size N to maximize the
adaptability to slipping; N =125 has greater adaptability than
N =50 or N =500. To obtain Fig. 2C, we first collected the
sigmoid and reflex controllers satisfying the optimization cost
J < 0.2 and then selected the controllers that had the highest
successful gait-initiation rate.
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Emergent Well-Coordinated Motions. The sSNN-driven walker
sometimes exhibits athletic and well-coordinated motion,
depending on the initial simulated states. Movie S5 and SI
Appendix, Fig. S1A demonstrate that the sSNN-driven walker
tolerates the extremely long-term and long-distance slipping of
approximately 0.5 s and 0.5 m slipping. Furthermore, the sSNN-
driven walker can recover from the near-falling state if the walker
reaches the end of the slippery surface and can have a con-
tact with the nonslippery ground, as shown in Movie S6 and SI
Appendix, Fig. S1B. Skating-like motion, that is obtained using
the different parameters of the reflex system and sSNN from
other movies, on slippery ground with µ=0.1, is demonstrated
in Movie S7.

Adaptability to External Random Force Perturbation. To further
investigate the adaptability of the system, we examined the
falling-prevention ratio pF when a random perturbing external
force was applied: Every 0.25 s, the agent upper body receives
an external force Fext =F0 +FDξF with a probability of 1/4,
where FD is the noise intensity and ξF is a value sampled every
0.25 s from a Gaussian distribution (i.e., with a probability of 3/4,
Fext =0; note that Fext is constant for 0.25 s and is updated to a
new value every 0.25 s). We compute pF using 100 trials of 30-s
numerical simulations.

Adaptability Provided by Spikiness. The results shown in Fig. 3A
demonstrate that the short PSP duration τs =2 ms with a limited
neuron ensemble size N < 100 is associated with very high adapt-
ability. It is worth noting that the graph for fall-prevention ability
with respect to N and τs is highly similar to the graph of spiki-
ness shown in Fig. 1C. This result clearly implicates that spikiness
plays an important role in the ability for instant adaptation.

Furthermore, an sSNN controller exploiting spikiness out-
performed a reflexive controller and a sigmoidal controller in
the falling-prevention task, as shown in Fig. 3C; the admissi-
ble force load of an sSNN controller (with N =30 and τs =2
ms) was fivefold and twofold larger than that of a sigmoidal
and a reflex controller, respectively (i.e., the maximum force
load for an sSNN, a sigmoid, and a reflex controller was 110,
18, and 50 N, respectively). The procedure to select the sig-
moidal/reflex controller used in Fig. 3C is the same as that
to obtain Fig. 2C. Note that the reflex controller has a higher
falling-prevention ratio than the sigmoidal controller. This might
be because the sigmoid controller could not generate the large
MTU activation necessary to prevent falling due to the saturation
dynamics.

Adaptability Provided by Optimal PSP Timescale. The fall-preven-
tion probability shown in Fig. 3B is only weakly dependent on
the neuron ensemble size N , while the PSP timescale τs is of crit-
ical importance for the ability to stabilize. In Fig. 3B, τs : [15, 30]
ms maximizes stabilization during walking, and the rate of fall
prevention is almost insensitive to the size of N . In fact, stabil-
ity is not reduced or enhanced in the rate-coding regime, such
as when N =1,000. This result implies that an sSNN can pro-
duce adaptability within the musculoskeletal system of a bipedal
walker based on principles other than spikiness. Furthermore,
Fig. 3B implies the existence of an optimal PSP timescale τs to
maximize adaptability.

Analyses Using Simple Sensorimotor Agents. Balancing of a stand-
ing biped system is often modeled using an inverted pendulum
on a ground (28, 29) supported by passive torque generated by
the ankle joint stiffness. Such a system has a bistable potential
function as V (x )= cos(x )+ kx2, where x is the scaled pendu-
lum angle and k is a spring coefficient (30, 31), and increasing
the muscle coactivation at the ankle or hip joint increases the
joint stiffness k and improves the posture stability (32, 33).
Gait (re)initiation from the initial posture or the near-falling
state requires a transition from the such-stabilized (and rather
rigidized) posture to a dynamical and periodic alternation of
joint posture such as forward–backward swinging of the upper
body (34, 35). Furthermore, to improve energy efficiency and
locomotion stability, the periodic motions of an upper body or
a swinging leg must match the natural frequency of a passive
mechanical system (23, 36, 37). Bipedal walking and recovery
from the near-falling state require solving these issues. Here-
after, we discuss how sSNNs help an agent achieve these subtasks
by using several simplified abstract models.

Synchronization to the Natural Frequency. We start our analysis for
how sSNNs may help a tight synchronization to the natural fre-
quency (SNF) of a target system. We consider generating the
oscillatory motion of a particle connected to a spring, for sim-
plicity, because the mass–spring system has an explicit form of
a natural frequency. The motion equation of the spring–mass
system is described as ẍ =−γẋ − kx +(A0−A1)+Kp (xg − x ),
where k is the spring coefficient, γ is the damping coefficient, and
A0/1 is the force generated by sSNNs. Note that if Kp is as small
as Kp < 1/4γ2, the system has convergent solution and x→ x g

(with the assumption Ai =0). Likewise, if Kp =1/4γ2, the sys-
tem exhibits stable periodic behaviors, and for Kp > 1/4γ2, the
system exhibits periodic and divergent behaviors.
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Fig. 3. The falling-prevention ratio pF in response to an external perturbing force. We found that adaptability manifested in two different ways: Adapt-
ability was significantly improved by spikiness, as shown in A. In addition, adaptability was improved by an optimal PSP timescale range, i.e., τs : [15, 30],
although these effects were only weakly related to the neuron ensemble size N (B). (A) Adaptability in response to external perturbation is maximized with
N< 100 and τs < 5 ms, exhibiting strong similarity to the graph of spikiness shown in Fig. 1B. We used F0 = 50 N and FD = 100 N. (B) We found another
parameter set for which adaptability occurred critically dependent on τs and almost insensitive to N. We used F0 = 30 N and FD = 75 N. (C) pF of sSNN,
sigmoidal, and reflex controllers in response to the stationary force input F0 to a hip. The sSNN controller used in A outperformed the other controllers.
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The input and output of sSNNs are designed so that sSNNs
generate a periodic oscillatory motion of a spring–mass system;
sSNNs form a positional feedback controller where the gains gs
and gA are adjusted sufficiently large to generate the oscilla-
tory motion of a particle. The input to sSNNs is described as
I0(t)= gs (x − x g)and I1(t)= gs (x

g − x ). Furthermore, we used
the bias input b=0.5 (SI Appendix, section S3).

The natural frequency of the spring–mass system is f γ0 =√
k +Kp − 1/2γ2/(2π) Hz, and the oscillation amplitude of

x (t) diverges if the frequency of any external forces matches
to f γ0 . It is clear that introducing the positional feedback gain
Kp is equivalent to modulating the spring coefficient k as k→
(k +Kp). Therefore, theoretically, all smooth rate-based feed-
back controllers inevitably distort the original intrinsic dynamics
of a subject system. This is clearly shown in Fig. 4A, where we
define Rf as the ratio of f , the actual frequency of the oscillatory
motion of x (t), and the natural frequency f γ0 as Rf = f /f γ0 . Evi-
dently, perfect synchrony to the intrinsic dynamics gives Rf =1.
Fig. 4B demonstrates that the sSNN can achieve 〈Rf 〉∼ 1 with a
wide range of f γ0 and gA. Note that, however, for very low natural
frequencies such as f γ0 ≤ 0.1, the neuron time constant τ or PSP
time constant τs must be adjusted to realize 〈Rf 〉∼ 1. See also SI
Appendix, Fig. S2 for further analyses for the 〈Rf 〉 dependency
on the parameters such as τ and τs .

As a subsequent measure to observe the sSNN synchrony to
the intrinsic dynamics, we used the signal-to-noise ratio (SNR)
around the natural frequency f γ0 (with Kp =0). The SNR was
computed as SNR=10 log10

(
A2

s/A
2
n

)
, where the signal power,

As , is the spectrum amplitude around the f γ0 , and the noise
power, An , is computed by subtracting As from the total power
spectrum. (The SNR was computed using the data obtained dur-
ing t =200 to 500 s.) The resonant motion of a mass–spring
system is generally evaluated from the maximum amplitude of
the induced oscillatory motion. However, the maximum ampli-
tude of the motion cannot discriminate resonances in the natural
frequency and in the frequency distorted by a smooth controller.
Therefore, we used SNR such that only the resonant motions in
the natural frequency will result in high SNR.

PSP Resonance: Resonance Amplitude in Natural Frequency Is Mod-
ulated by PSP Time Constant. Fig. 5 shows the graphs of SNR
for several natural frequencies f γ0 and neuron time constants
τ with respect to the PSP timescale τs . These graphs indicate
that sSNNs can induce resonant motion (i.e., SNR > 0) with a

significantly wide sSNN parameter range. Furthermore, Fig. 5
A and B indicates an interesting characteristic of sSNNs: SNR
drastically changes by a small difference of τs . It is shown that
Ws , i.e., the width of τs for the SNR peak (see Fig. 5B for the
schematic explanation of what Ws indicates), increases corre-
sponding to the range of τs . For example, the Ws (for f γ0 =
3) was <0.2 s for the peak around τs ≈ 1.2 s, and for the peak
around τs ≈ 6 s, Ws increases to ∼2 s. Furthermore, Fig. 5B
shows that the resonance peak positions are different for the dif-
ferent values of f γ0 ; e.g., the peaks for f γ0 =3 are given by τs =
{22, 31, . . . , 400, 600, 1,200, 6,000} ms, and the peaks for f γ0 =5
are given by τs = {8.5, 9.5, 11, . . . , 520, 2,100} ms (SI Appendix,
Fig. S3).

To summarize, sSNNs do not distort the intrinsic dynamics
of a system unlike the conventional smooth rate-based con-
trollers, and therefore an sSNN-based motion controller would
be more suitable for exploiting profoundly more mechanical
intrinsic dynamics. For example, the locomotion rhythm change
in slipping shown in Fig. 2 would be accounted for by SNF; in
slipping, the potential of a mechanical bipedal system is reduced
from V (x )= cos(x )+ kx2 to cos(x ) because the ankle support
drops so that k ∼ 0, and therefore the natural frequency of the
system is modulated by slipping. Furthermore, we observed a
locomotion gait where the agent swings the legs and the upper
body largely as shown in Movie S8, which is very similar to pas-
sive dynamic walking (38). This gait is used to obtain the result in
Fig. 3B, and therefore this gait stability is mostly dependent on
the PSP timescale τs and only weakly sensitive to the sSNN size
N . This gait pattern might be realized using the SNF and PSP
resonance.

Enlarging the Basin of a Goal State. Here, we analyze how sSNNs
help bipedal balancing in a near-falling state. Because the
bipedal system is analogously represented by a spring-supported
inverted pendulum (30, 31) which has a double-well potential, we
consider the particle agent in a double-well potential as shown
in Fig. 6A. The motion equation is described as ẍ =−γẋ −
∂xV (x )+ (A0−A1)+H (x , t); γ is a friction coefficient, and
∂x denotes differentiation with respect to x . Note that we con-
sider a more mathematically generalized double-well potential
V (x )= 1/4x4− 1/2x2.

The sSNNs are configured to compose a feedback controller
to reach the potential top xg =0. The inputs to S0 and S1

are I0(t)= gs (x
g − x ) and I1(t)= gs (x − x g), respectively. The
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Fig. 4. The comparison Rf = f/fγ0 using the conventional feedback controllers versus sSNNs. (A) 〈Rf 〉= f/fγ0 obtained using a conventional feedback
controller with xg = 0. Note that increasing controller gain Kp distorts the motion frequency apart from the natural frequency fγ0 . (B) 〈Rf 〉 obtained using
an sSNN controller. 〈Rf 〉 is only weakly sensitive to the changes in the controller gain gA, unlike the conventional feedback controller. The Rf was computed
using the data obtained during t = 200 to 500 s, and 〈Rf 〉 was obtained by averaging the 1,000 simulation trials with γ= 1. We used τ = 5 s, τs = 10 s,
gs = 50, and D = 3,000 for fγ0 = 0.1 Hz; τ = 500 ms, τs = 500 ms, gs = 5, and D = 1,500 for fγ0 = 0.5 Hz; and τ = 10 ms, τs = 100 ms, gs = 1, and D = 15 for
fγ0 = 5 Hz. Note that 〈Rf 〉 for fγ0 = 0.1 Hz corresponds to the upper x axis.
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Fig. 5. (A and B) SNR with respect to τs, fγ0 , and τ . A and B show that
a stochastic spiking controller can generate resonance in the natural fre-
quency of a system using a wide variety of parameter regions (i.e., SNR > 0
for a wide range of τs). Additionally, it should be noted that the value of
SNR is further amplified by optimal values of τs. Here, we used γ= 1, gs = 1,
b = 0.5, D = 15, gA = 5× 105, and N = 10. These results are only weakly
sensitive to the changes in N (SI Appendix, Figs. S2 and S3).

controller gains gs and gA were designed small so that the agent
which started from the potential bottom x =±1 could not reach
xg . The output of an sSNN controller is approximately sigmoidal
with respect to the agent position x , as shown in Fig. 6B. We pre-
pare a stochastic feedback controller for comparison; H (x , t)=
−Kpx +Df ξf (t), where Kp is the control gain and Df ξf (t) is
the Gaussian random perturbation with the intensity Df . Note
that H (x , t)= 0 when we use sSNN controllers. For the detailed
description of the controller setup, see SI Appendix, section S4).

Fig. 6 C1 demonstrates that H (x , t) cannot stabilize the agent
around x =0 even with the external help that is given as v0
or with the presence of noise Df ξf , if Kp is not large enough
to lift the agent from x±=1 up to xg =0. In contrast, Fig. 6
C2 demonstrates that the sSNN controller induces a metastable
state around the goal state and exploits the external help (i.e., v0)
and force noise generated by the stochastic spikes to overcome
the potential barrier to reach the goal state. This characteristic
helps the agent start from the wider range of the initial state
(x0, v0) to reach and stay in the goal state. Therefore, we investi-
gate the basin size, which reflects the size of the set of the initial
states (x0, v0) that enables the agent to reach xg =0 and stay
within [−0.1, 0.1] for a sufficiently long duration, i.e., 30 s.

The basin size is computed as follows: For the mth pair of
initial position and velocity Xm =(x0, v0)m , we set B(Xm)=
1 if the agent succeeds in staying on the ridge [−0.1, 0.1].
Otherwise, B(Xm)= 0. We define the basin rate Sb as Sb =
1
M

∑M
m=1 B(Xm), where M is the total number of Xm . Fig. 7

A1 and A2 represents the basin B(Xm) obtained with γ=0.5,
γ=0.1, respectively. (Note that we set the pixel to 1 if the cor-
responding initial state (x0, v0)m is a part of the basin.) Fig. 7
B1 and B2 indicates the basin area rate Sb computed using sev-
eral bias input values for b, which determines the mean-firing
rate of an sSNN. We observed the tendency of the basin size
to decrease with respect to N for most of the b and γ. How-
ever, if the friction is low, γ=0.1, and if the bias is as small as
b≤ 0 and the sSNN is in the subthreshold regime (i.e., the sSNN
does not generate spikes near x =0), the small N reduces the
basin size.

The basin-enlargement phenomenon implies that sSNNs can
induce an inhomogeneous noise effect. We speculate that this
inhomogeneous noise effect is based on the interaction of the
nonlinear firing function r(z ) and noise of the sSNNs: In the
sSNN suprathreshold regime b> 0 (i.e., an sSNN emits spikes
without any input I ), 〈y〉 can be approximated as 〈y(x )〉≈
6x +0.3 for x ∼ 0, and 〈y(x )〉≈ 1.2x +1.7 for x� 0, as shown
in Fig. 6B. This implies that the diffusive motion of an agent
induced by noise is less suppressed if the agent is far from
the goal state; x� 0 but more suppressed near the goal state
xg =0. In the subthreshold regime such as b≤ 0, on the other
hand, 〈y(x )〉≈ 0 for x ∼ 0. Therefore, the diffusive motion of
an agent is rather uncontrolled near the goal state in the sub-
threshold regime b≤ 0. This would lead to the result where
the small N degrades the basin rate with b=0 as shown in
Fig. 7 B2.

Rapid Complexity Reduction and Rhythm Formation. In gait
(re)initialization, a bipedal system must transit from a rigidized
posture (that is induced by the muscle coactivations to improve
the balance stability) to a dynamical, periodic motion regime.
This transition is analogous to escaping from a quasi-stable state
and forming a dynamic motion pattern in a multistable poten-
tial (note that in such dynamic motion, the quasi-stable state will
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Fig. 6. Stabilization in the goal state by the sSNN controller in a double-well potential. (A) Potential landscape and controller setup used in the experiment.
See Enlarging the Basin of a Goal State for details. (B) Time-averaged PSP in response to x. We fixed the particle position and observed the stationary value
of 〈y〉. (C1) Superimposed particle trajectories obtained with the initial position x0 =−1 with several v0 values such that −0.5≤ v0≤ 1. We used Kp = 0.75.
The other parameters are listed within the panels. Note that linear feedback controllers cannot stabilize the particle around xg = 0 even if noise intensity
is Df > 0. (C2) Typical particle trajectory obtained with γ= 0.5 (Top) and with γ= 0.1 (Bottom). In the low-friction environment γ= 0.1, the particle often
overshoots the goal position; the starting agent x0 =−1 overshot the goal and reached x = 1, and then it rebounded to reach the goal state. For γ= 0.5,
we used v0 = 0.35, b = 3, D = 10, gs = 10, and gA = 0.3. Likewise, for γ= 0.1, we used v0 = 0.4, b = 4, D = 15, gs = 15, and gA = 0.21.
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Fig. 7. Basin area rate decreases with respect to N. (A1 and A2) The basin plot for the initial state Xi = (x0, v0)i and with γ= 0.5 (A1) and 0.1 (A2). Note that
the basin size decreases as N increases. The several stripes in A2 reflect the overshooting behavior of the particle (in the low-friction environment, the agent
cannot stop at the goal state if v0 is very large; see Fig. 6 C2). (B1 and B2) The basin area rate exhibits monotonic decreases with respect to N for γ= 0.5. If
the sSNN bias is small and in the subthreshold regime (e.g., b≤ 0), the basin size decreases with small N, particularly in the low-friction environment γ= 0.1
because the spike frequency of sSNN is low and therefore the agent is rather uncontrolled near x = 0. See text for further analysis. The parameters used
in the simulations are listed in the corresponding panels. For the other sSNN parameters, we used τs = 1 ms, D = 10, gs = 10, and gA = 0.3 for γ= 0.5 and
τs = 1 ms, D = 15, gs = 15, and gA = 0.21 for γ= 0.1.

be destabilized because of the large motion velocity). Here, we
considered a particle system in a triple-well potential V3(x )=
x6− 6x4 +8x2, as shown in Fig. 8A.

The motion equation of an agent is given by ẍ =−γẋ −
∂xV3(x )+ (F0 +F1)+H (x , t), where γ=0.5 is a friction coef-
ficient, and ∂x denotes differentiation with respect to x . The
sSNN controllers S0 and S1 were designed to mimic the func-
tion of antagonist muscles; S0 and S1 generate forces driving
toward two different goal states x g

0 =−1 and x g
1 =1, respectively.

In particular, we assumed that S0 received I0(t)= gs [x − x g
0 ]+

and generated F0(t)=−A0(t) toward x g
0 . Likewise, S1 received

I1(t)= gs [x
g
1 − x ]+ and generated F1(t)=A1(t) toward x g

1 .
The stochastic feedback controller to mimic the function of
antagonist muscles was introduced for the sake of compari-
son, as H (x , t)= (B1 +B0)+DF ξF (t), where Bi =Kp(x

g
i − x )

(see SI Appendix, section S5 for the detailed controller design).
H (x , t) simply increases the stability of the quasi-stable state
if x g

0 =−x g
1 as we can see that H (x , t) is reduced to a sim-

ple spring-like controller as H (x , t)=−2Kpx +DF ξF (t). Note
that this would be corresponding to the increased joint rigid-
ity by muscle coactivation (32, 33). Basically, H (x , t) prevents
the smooth transition from the stabilized posture regime to a
periodic motion regime without the help of noise, as shown
in Fig. 8B. In contrast, sSNNs with small N have enhanced
escaping from the quasi-stable well x =0 and generate a peri-
odic motion among x± as shown in Fig. 8C. Fig. 8D indi-
cates that the time required to obtain an oscillatory motion
pattern, Tr tends to increase with N , where Tr is obtained
by observing the time when the particle finishes passing both
of x l

±. For relatively small actuator gains such as gA =100,
escaping from x =0 is realized only with a small N such as
N < 50.

Furthermore, escaping from the quasi-stable well where two
controllers generate conflicting forces leads to the complexity
reduction. In fact, Fig. 8 B and C demonstrates that the approx-
imate entropy (ApEn) (39), a measure to quantify complexity,
is drastically reduced by escaping from the quasi-stable well.

This is because the agent outside the quasi-stable well is influ-
enced more by the deterministic large force generated by the
potential V3(x ). (Intuitively, ApEn quantifies the infrequency
of the same data pattern in a time series, and therefore regu-
lar and periodic time series give small ApEn. See SI Appendix,
section S6 for the detailed definition of ApEn.) Fig. 8E shows
a result that smaller neuron sizes N (particularly N < 100) can
more effectively reduce ApEn than larger neuron size such as
N ≥ 500.

The ability of stochastic spikes to form patterns is similar to
the well-established coherence resonance induced by noise (see
ref. 6 for review) and noise-induced posture transition (40), and,
therefore, similar to sSNNs, a linear controller can achieve a
periodic motion if there is the help of noise DF ξ(t), as shown
in Fig. 8E.

Discussion
Adaptability Improvement by Spikiness. It is well known that walk-
ing requires the zero-moment point (ZMP) (41) to be within
a certain range, which (in our framework) mainly corresponds
to upper-body control toward and within a certain range. Note
that this upper-body control is analogous with the problem for-
mulation introduced in Enlarging the Basin of a Goal State.
Furthermore, finding and transitioning to a new stable walking
pattern upon perturbation must be analogous to rapid pat-
tern formation discussed in Rapid Complexity Reduction and
Rhythm Formation. Because these functions are enhanced by
large spikiness (Figs. 6 and 8), it would be reasonable to
say that the fall-prevention ability in response to the slip-
ping, that is maximized by large spikiness, would be largely
dependent on the basin-enlargement and complexity-reduction
ability.

Adaptability Improvement by SNF and PSP Resonance. Several
studies of animal locomotion have proposed that locomo-
tion frequency is generated near the natural frequency of
the musculoskeletal system (23, 36, 37). The parameter band
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Fig. 8. Rapid complexity reduction due to stochastic spikes. (A) Potential
landscape and controller setups in the experiment. (B) The position trajec-
tories obtained using a stochastic nonspiking controller H(x, t). The noise
intensity DF = 50 (Bottom) generated a more regular oscillatory motion
and resulted in lower ApEn = 0.01, compared with a lower-noise controller
with DF = 0.005 (enlarged view in Top and Bottom in the same scale with
DF = 50) (ApEn = 0.354). We used K = 100. (C) The position trajectories
obtained by using the sSNN controller with N = 1 (Bottom) and N = 500
(enlarged graph in Top and the same scale with N = 1 in Bottom). We used
τs = 5 ms, gA = 100, b = 0.3, D = 15, and gs = 4. (D) Averaged time 〈Tr〉with
respect to N and actuation gain gA. Note that 〈Tr〉= 1,000 indicates that
the agent could not escape the local minimum. (E) ApEn with respect to
N and several actuation gains. ApEn increases with N for a wide variety of
gA values. The ApEn values were calculated using the data obtained during
t = 150 to 1,000 s. D and E were computed by averaging the results of 50 tri-
als of numerical simulations performed using the equations xg

0 =−1, xg
1 = 1,

τs = 5 ms, b = 0.3, D = 15.

τs : [15, 30] that realizes high falling-prevention probability
would correspond with the PSP resonance band shown in
Fig. 5. One interpretation for the parameter band τs : [15, 30]
would be that sSNNs exploited the musculoskeletal natural fre-
quency by SNF and stabilized the rhythmic motion by PSP
resonance.

Why Most Biological Systems Rely on Spiking Neurons. Even the
unicellular Paramecium use the action potential to generate
behavior (42). Although biological organisms contain a few
types of nonspiking interneurons (43–46), sensory information
and motor activation are mainly regulated by spiking action
potentials in biological systems. Recent developments of neuro-
morphic chips have revealed that learning systems using spik-
ing neurons can solve optimization problems with remarkably
higher-power efficiency (47–49). Nevertheless, the merits of bio-
logical spiking neurons remain to be fully elucidated. In fact,
state-of-the-art, biologically inspired engineering frameworks
such as deep learning (50), deep reinforcement learning (51),
and their derivatives still employ nonspiking rate-based neurons
because spiking neurons have not yet been associated with any
remarkable benefits in learning and optimization ability other
than the computational efficiency.

Our findings suggest that the merits of spiking action poten-
tials are beyond the scope of the conventional framework for
learning: We believe that the functions of spiking neurons must
be within the scope of emergent adaptability and instantaneous
behavioral optimization. Moreover, we deduce that the emer-
gent adaptability would increase the chances of success in a

sensorimotor task and therefore enable a smooth and rapid
sensorimotor learning process.

An sSNN to Realize a Brownian Ratchet in Large-Scaled Systems. Our
results imply that the sSNNs can provide the inhomogeneous
noise effect to a musculoskeletal system; the force noise gener-
ated by sSNNs helps an agent overcome the potential barrier to
reach a goal state for a certain task, and simultaneously, a con-
trol signal to prevent the force noise from pushing the agent
from the goal state is provided by the nonlinear firing func-
tion of an sSNN. Similar adaptive and autonomous switching
between exploiting and blocking the noise effect is seen in a
model of neural dendrosomatic interaction (52). An sSNN may
be a key platform to realize a Brownian ratchet-like mechanism
(53, 54) in a large-scaled system such as animal musculoskeletal
systems where the effect of thermal noise is negligible. A theo-
retical analysis must be necessary for further understanding of
this ratchet-like behavior of sSNNs.

From the Perspective of Spike-Induced Ordering. Animal skeletal
muscle groups are controlled by a limited number of motor neu-
rons. For example, the motor axons of a human skeletal muscle
group (such as the tibialis anterior muscle [TA], which consists
of more than 250,000 muscle fibers) are controlled by at most
500 neurons (55). This indicates that the PSP signals induced
in a muscle group are principally not smooth and are very far
from the perfect rate-coding scheme. Our experimental results
suggest that jerking and spiking MTU control signals lead to ade-
quate complexity reduction and basin enlargement, as shown in
Figs. 3A, 6, and 8. These results provide insight into why most
animal skeletal muscles are innervated by a limited number of
neurons: Motion control by a limited number of neurons may
extend beyond the economical purpose of minimizing the con-
trol cost and act to exploit the effect of spike-induced ordering.
Furthermore, we expect that the target function of spike-induced
ordering is not limited to musculoskeletal motion control and
may be applicable to the homeostatic regulation of endocrine
systems, ordered peristalsis motions of digestive organs, and
ordered respiratory dynamics.

From the Perspective of SNF and PSP Resonance. In biological sys-
tems, the duration of an action potential (AP) is tightly coupled
to the PSP duration and amplitude (56, 57). Therefore, we spec-
ulate that the effects induced by modulating the PSP timescale
as demonstrated in this paper may be applicable to the effects
induced by modulating AP duration. In particular, we hope that
our results provide a theoretical basis as to why the AP duration
in biological systems differs, depending on the neuron type and
target function (56). Furthermore, we speculate that one of the
functionalities of neuromodulators such as noradrenaline (NA),
acetylcholine, and serotonin (5-HT) may be in the controlling
AP waveform and duration, and PSP time constant (58–61), to
synchronize with the system’s intrinsic dynamics. In fact, it is
known that NA in a respiratory CPG modulates the respiration
frequency (62). Likewise, 5-HT in the spinal central pattern gen-
erators (CPGs) is required to generate stable locomotion pattern
(63). We further expect that the effects of PSP resonance must
not be limited to the generation of rhythmic motion and may play
a certain role in the formation of rhythmic brain activity, e.g., α,
β, γ, and δ oscillations.

Note that an sSNN described in this paper does not contain
any synaptic connection among the neurons in an ensemble.
We point out that several computational models for spinal
and respiratory CPG circuits (64, 65) are based on the same
assumption: A neuron population consisting of 50 to 100 spiking
neurons does not involve any synaptic connection within a pop-
ulation and has synaptic interconnection only with other neuron
populations.
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Conclusion
In this study, we investigated the function of stochastic spikes
with respect to the spikiness and PSP timescale. We reported
four findings (F1 to F4) regarding the benefits of stochastic
spikes: F1) synchronization to an intrinsic frequency, F2) ampli-
fication of the resonant motion in a natural frequency by PSP
timescale, F3) basin enlargement, and F4) rapid complexity
reduction and pattern formation. We demonstrated that the inte-
gration of these four functions leads to the on-site adaptability
of a sensorimotor agent. We further observed that F3 and F4 are
roughly correlated with the level of spikiness, while F1 and F2
are correlated with PSP timescale. Artificial intelligence systems
developed using stochastic spikes may exhibit substantial differ-
ences in adaptability when compared with conventional systems
engineered using nonspiking neuron models.

Data Availability. The source codes used to generate the results
in this paper are available at http://www.isi.imi.i.u-tokyo.ac.jp/
public/spike induced order/.

Materials and Methods
A Model of Stochastic LIF Neuron Ensemble. The membrane voltage of the
jth neuron (in the ith sSNN) is represented by vij , and when vij reaches
the threshold vθ (vθ = 20 throughout this paper), the neuron emits a spike
represented by the Dirac delta function δ and enters a refractory period
described by τref . Simultaneously, the membrane voltage is reset to vR

ij .
Formally, the full dynamics of an LIF neuron can be described as (66)

τ v̇ij =−γvij + bij + Ii(t) +
√

2Diξij(t), [3a]

vij = vθ⇒ tijk := t, vijk (t + τref ) = vR
ij , [3b]

Tij = {.., tijk−1, tijk, tijk+1, ..}, [3c]

where bij is the bias current, Di is the noise intensity of the ith sSNN, τref is
the refractory period, τref = 2 ms, ξ is the Gaussian noise of the unit inten-
sity, and τ is the membrane time constant and τ = 10 ms unless otherwise
stated. ξ represents the noisy synaptic background activity (6, 66, 67) and
is the source for the stochasticity of an sSNN. Note that we use the suf-
fixes i, j, and k to represent the sSNN index, the neuron index, and the
spike index, respectively. The spike train of the jth LIF neuron is formally
described as σij(t) =

∑
tijk∈Tij

δ(tijk − t) (6). The vR
ij and bij are different for

different neurons and are randomly sampled from the range VR
i : [vR

min, vR
max]

and Bi : [bmin, bmax], respectively. Note that the ith sSNN has each indepen-
dent profile for Di , VR

i , and Bi , and I0, I1, . . . are independent of each other.
Furthermore, we used different bij values for different neurons in an ensem-
ble in our numerical simulations of a musculoskeletal bipedal walker, and we
used the same bias signal bij = b in the numerical simulations of simplified
sensorimotor agents.

Main Idea: Parametric Control of the Stochasticity and Discontinuity of sSNN
Output. To simplify the theoretical analysis, we assume that the bij are iden-
tical for all neurons in the same sSNN as bij = bi . Based on the finite-size
mean-field theory developed in refs. 18 and 19 and linear-response the-
ory (6, 20, 21), the averaged spike train can be described using Gaussian
approximation as

1

N

N∑
j=1

σij(t)≈ r (bi + Ii(t))+

√
1

N
ηi(t), [4a]

≈ r0 (bi)+
∑
ω

G (ω)s (ω, t)+

√
1

N
ηi(t), [4b]

where, r(x) is a certain firing function, r0 is the stationary firing rate, and
G (ω) is the linear-response function. Ii(t) consists of several periodic signals
such as Ii(t) =

∑
ω s(ω, t) (21). We used a simplified approximation that the

spike train of a LIF neuron is based on the Poisson process and assumed that
ηi(t) is Gaussian white noise of the variance r0(bi) (6). Note that ηi has a
scaling factor of

√
N rather than N because of the independency of σij and

σij′ ; i.e.,
∫∞

0 σij(t)σij′ (t)dt = 0 (j 6= j′). Note that to be theoretically exact,
however, it is shown that ηi(t) is nonwhite but colored because of the LIF
refractory period and membrane dynamics (18, 19). The plot of r(x) and r0(x)
mostly takes a sigmoidal shape with respect to the input x (6, 20), providing

an activation function similar to that used in conventional nonspiking neural
networks.

Using the abovementioned approximation of σij in Eq. 4, the dynamics of
yi(t) in Eq. 1 are approximated as follows:

τsẏi ≈−yi + r0 (bi)+
∑
ω

G (ω)s (ω, t)+

√
1

N
ηi(t). [5]

Eq. 5, which is obtained by substituting Eq. 4 for Eq. 1, implies that the
PSP signal generated by the output spikes of the sSNN asymptotically
approaches the rate-coded smooth behavior and that this asymptotic scal-
ing is primarily based on

√
N. If the PSP signal y(t) can be expressed similarly

to Eq. 5 as

yi(t) = Y0 (bi)+
∑
ω

F (ω)s (ω, t)+

√
1

N
ζi(t), [6]

where Y0 is the stationary function of y, ζ is a certain stochastic function,
and F is a linear-response function of y against the input s(ω, t), we can
compute the analytical form of Z as

Z =
1

τ2
s

√
N

(
NΦ

2
0 + Var [ζ]+ Var [η]+ τ

2
s Var [η̇]

)1/2
, [7]

where Φ0 = (r0 (bi)−Y0 (bi)) corresponds to the stationary nonspiking
behavior. η̇(t) is a stochastic process obtained from the derivative of η(t)
(if η(t) is a Gaussian white noise, η̇(t) is referred to as purple noise), assum-
ing that the time averages of the stochastic variables η(t), η′(t), and ζ(t) are
0. Furthermore, we assumed s(ω) = 0 for simplicity. Eq. 7 indicates that Z is
modulated by both N and τs.

Configuration of a Musculoskeletal Bipedal Walker. The bipedal body consists
of seven rigid bodies: an upper body along with the left and right thighs,
shanks, and feet. Each leg of the musculoskeletal system has eight MTUs,
resulting in a total of 16 MTUs for the legged system. We used basically
the same parameters as ref. 22 except that we use the maximum contract
velocity of a muscle vc

max = 12lopt s−1, where lopt [m] is the optimal mus-
cle length to generate the maximum force. The numerical simulation of
the rigid bodies, the joint-limiting dynamics, the body-ground contacts, the
ground reaction force, and the MTU forces are integrated by the Open
Dynamics Engine (ODE) (68), using a step size of 1 ms.

Base Reflex System. Each leg of a walker has four states: stance, swing
initiation, swing, and stance preparation. In each phase, the nonspiking acti-
vation signals for the corresponding MTUs are determined using reflex rules
proposed in ref. 22. Here, we describe the reflex rules only briefly.

The MTU activation signal is determined by three basic rules: positive
force feedback, MTU length feedback, and proportional-derivative (PD) con-
trol. The MTU activation RF

m generated by the positive force feedback rule is
determined using the gain GF

i as RF
i = GF

i FMTU
i (t), where FMTU

i (t) is the force
generated by the ith MTU. The length feedback rule works to contract the
MTU toward the desired length and contributes to MTU activation by RL

i as
RL

i = GL
i

[
li − Lg

i

]
±, where Lg

i is the desired muscle fiber length, and [z]+ = z
if z is positive and 0 otherwise. Likewise, [z]− = z if z is negative and 0
otherwise. PD control mainly regulates the angle of the upper body and

contributes via Rθi as Rθi = Kp
i

[
θ(t)− θg

i

]
± + Kd

i

[
θ̇
]
±, where θ is the rigid-

body posture (such as upper body) or the joint angle (e.g., knee angle), Kp
i

is the positional feedback gain, and Kd
i is the derivative feedback gain.

A smooth nonspiking activation signal Iri generated by a base reflex sys-
tem is basically composed of a combination of these three reflex rules as
Iri = RF

i + RL
i + Rθi + Rc

i −Ua
i , where Rc

i is the constant activation signal, and
Ua

i is inhibitory input from the correspondent antagonist muscle (e.g., TA
receives the inhibitory input from its antagonist soleus muscle [SOL] as
Ua

i = FMTU
SOL during the stance phase).

A smooth, nonspiking activation signal Iri (although it is highly nonlinear
because of the threshold function [z]±) computed by the base reflex sys-
tem is passed to the corresponding ensemble of N LIF neurons as Ii(t) = gr

i I
r
i ,

where gr
i is the input gain. The MTU activation level is determined by the

EPSP signal induced by the corresponding neuron ensemble, and the gen-
erative force of an MTU is computed based on the dynamics proposed in
ref. 23.

A simple reflex controller activates an MTU simply as Ai(t) = Iri (t), and
a sigmoidal controller activates an MTU using a sigmoid function as Ai =

gs
i (1/ (1 + exp (−cs

i I
r
i ))− 1/2), where gs

i is the actuation gain and cs
i is the

input gain.
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Optimization of Controllers. The cost function J for the real-coded GA with
the BLX-αmethod (24) was designed so that the center-of-mass (CoM) veloc-
ity of the agent was within the range of vg± 0.1, where we used the target
velocity vg = 1.75 m/s that was correspondent to “very fast walking speed”

(22). In particular, we used J = 1
T

∫ t0+T
t0

Jv (|vg− v (t)|)dt + Jp, where vg and

v were the desired and actual CoM velocities, respectively, and Jv (z) = z for
z> 0.1 m/s and = 0 otherwise. We basically used t0 = 5 s and T = 20 s but
applied T = 140 s for 10% individuals to avoid the local minimum. Jp is the
penalty term for falling, jumping, toe striking, or stopping (SI Appendix,
section S2).

A simple reflex controller was obtained by optimizing all parameters of
the base reflex systems such as GF/L

i , Lg
i , and Kp/d

i . Please see ref. 22 for
the full parameters list of the base reflex system that must be optimized.
An sSNN controller was obtained by optimizing all parameters for the base

reflex system and the parameters VR
i , Bi , Di , gA

i , and A0
i of the sSNN. As for

the τ , τs, and N, we used the fixed values τ = 10 ms, τs = 5 ms, and N =

40 during optimization. Likewise, a sigmoidal controller was obtained by
optimizing the base reflex systems and the parameters of sigmoid functions
gs

i and cs
i . Note that the parameters of the base reflex system are different

among reflex, sigmoidal, and sSNN controllers. This is because, in general, a
reflexive signal that is optimal to drive an MTU via an sSNN or via a sigmoid
function is different from the optimal reflexive output required for direct
control of an MTU.
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