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Abstract: Ambient particulate matter (PM) can increase airway inflammation and induce broncho-
constriction in asthma. This study aimed to investigate the effect of tiotropium bromide, a long-acting
muscarinic antagonist, on airway inflammation and bronchoconstriction induced by ambient PM in a
mouse model of asthma. We compared the effect of tiotropium bromide to that of fluticasone propionate
and formoterol fumarate. BALB/c mice were sensitized to ovalbumin (OVA) via the airways and
then administered tiotropium bromide, fluticasone propionate, or formoterol fumarate. Mice were also
sensitized to ambient PM via intranasal instillation. Differential leukocyte counts and the concentrations
of interferon (IFN)-γ, interleukin (IL)-5, IL-6, IL-13, and keratinocyte-derived chemokine (KC/CXCL1)
were measured in bronchoalveolar lavage fluid (BALF). Diacron-reactive oxygen metabolites (dROMs)
were measured in the serum. Airway resistance and airway inflammation were evaluated in lung tissue
24 h after the OVA challenge. Ambient PM markedly increased neutrophilic airway inflammation in
mice with OVA-induced asthma. Tiotropium bromide improved bronchoconstriction, and reduced
neutrophil numbers, decreased the concentrations of IL-5, IL-6, IL-13, and KC/CXCL1 in BALF. However,
tiotropium bromide did not decrease the levels of dROMs increased by ambient PM. Though eosinophilic
airway inflammation was reduced with fluticasone propionate, neutrophilic airway inflammation was
unaffected. Bronchoconstriction was improved with formoterol fumarate, but not with fluticasone
propionate. In conclusion, tiotropium bromide reduced bronchoconstriction, subsequently leading to
reduced neutrophilic airway inflammation induced by ambient PM.

Keywords: airway inflammation; asthma; muscarinic antagonists; ovalbumin mouse model;
particulate matter

1. Introduction

Numerous studies have elucidated the relationship between outdoor air pollution and the
morbidity and mortality of cardiovascular and respiratory diseases [1,2]. It is also well established
that short-term exposure to outdoor air pollution is associated with poor respiratory health, such as
hospital admissions and emergency visits [3–8]. Similarly, outdoor air pollution is an important risk
factor of exacerbation in asthma [9–11]. Thus, outdoor air pollution is a major environmental health
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problem affecting the majority of the population. This issue is aggravated by the inefficient combustion
of fuels for transport and power generation.

Particulate matter (PM), also known as particle pollution, is a complex mixture of extremely
small particles and liquid droplets, which are released into the air. Ambient PM is an important
source of outdoor air pollution that has been associated with asthma exacerbations. The mechanisms of
ambient PM-induced asthma exacerbations are increasingly being clarified. Several studies have clearly
shown that ambient PM can increase airway inflammation in a mouse model of asthma by increasing
the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) and the concentrations
of various chemokines and inflammatory mediators in lung tissue [12,13]. Neutrophils migrate to
the lung during acute inflammation induced by exposure to ambient PM in humans [14]. Ambient
PM also increases the concentration of IL-8 in BALF and IL-8 mRNA expression in bronchial biopsy
tissue obtained from healthy subjects [15]. Similarly, our previous study revealed that ambient PM
strongly induces neutrophilic airway inflammation through macrophage inflammatory protein (MIP)-2
(MIP-2/CXCL2), which is a murine homologue of IL-8, and IL-6 in a mouse model of asthma [12].
In another mouse model of asthma, exposure to ambient PM also induced neutrophilic airway
inflammation accompanied by an increase in Th1 and Th17 cells [16]. Thus, neutrophilic airway
inflammation may play an important role in the exacerbation of asthma induced by exposure to
ambient PM.

The link between asthma and eosinophilic airway inflammation is well established [17].
Therefore, eosinophilic airway inflammation in asthma is strongly suppressed by corticosteroids. However,
in some patients with asthma, neutrophilic airway inflammation dominates over eosinophilic airway
inflammation [18]. Consequently, corticosteroids are only partially effective in these patients. In contrast,
some researchers have reported that β2-agonists, which are also widely used in the treatment of asthma,
can inhibit neutrophilic airway inflammation. For example, Bosmann et al. demonstrated that β2-agonists
are able to reduce neutrophil recruitment to the lungs and inhibit the release of pro-inflammatory
mediators [19]. Several studies have shown that muscarinic antagonists may attenuate eosinophilic
airway inflammation and inhibit airway remodeling and hyperresponsiveness in vivo and in vitro [20–22].
However, it is largely unknown whether muscarinic antagonists have the potential to inhibit neutrophilic
airway inflammation in asthma.

The present study investigated the effects of tiotropium bromide on airway inflammation and
bronchoconstriction induced by ambient PM. For this purpose, we determined differential leukocyte
counts and concentrations of IFN-γ, IL-5, IL-6, IL-13, and KC/CXCL1 in BALF in a mouse model of
OVA-induced asthma. We also examined the histopathological findings and the mechanisms involved
in the attenuation of tiotropium bromide airway inflammation. We hypothesized that tiotropium
bromide would reduce bronchoconstriction and lead to reduced neutrophilic airway inflammation
induced by ambient PM.

2. Materials and Methods

2.1. Animals

Specific pathogen-free 7-week-old male BALB/c mice were purchased from Charles River
Laboratories Japan Inc. (Kanagawa, Japan) and acclimatized for 7 days before the start of the study.
Animals were kept in a storage room at a constant temperature of 22 ◦C and illumination with 12-h
light/dark cycles. Animals were fed standard animal chow daily and had ad libitum access to drinking
water. The experimental protocols were approved by the Institutional Animal Care and Use Committee,
Faculty of Medicine, Tottori University (protocol number 14-Y-46).

2.2. Preparation of Ambient PM

From 9 October 2015 to 30 October 2015, ambient PM was collected in Matsue city, the capital
city of the Shimane Prefecture in southwest Japan. Total suspended particles were collected on a
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20 × 25 cm quartz filter (2500QAT-UP; Tokyo Dylec, Tokyo, Japan) at a flow rate of 1000 L/min
using a high-volume air sampler (HV-1000R; Shibata, Tokyo, Japan) for 23 h from 7 a.m. to 6 a.m.
the following day. Before sampling, in order to remove endotoxins from filters, the filters were
sterilized by dry heat at 240 ◦C for 30 min. After sampling, the 4-cm2 filter was detached and
extracted with 4 mL of distilled deionized water and stored in a freezer at −20 ◦C to prevent growth of
bacteria and fungi. For administration to mice, ambient PM was diluted with normal saline (NS) at an
adequate concentration.

2.3. Experimental Protocol

Mice were sensitized to 20 µg of OVA (Sigma-Aldrich, St. Louis, MO, USA) emulsified in 2.25 mg
of alum (Cosmo Bio Co., Ltd., Tokyo, Japan) by intraperitoneal injection or they received NS in a total
volume of 100 µL on day 0 and day 14. On days 16 to 20, mice were also exposed to ambient PM
(0.1 mg/25 µL of NS) or NS by intranasal instillation. Next, on days 21 to 26, mice were challenged
with OVA (1% in NS) for 20 min via the airways by ultrasonic nebulization (Omron Healthcare Co.,
Ltd., Kyoto, Japan), followed by ambient PM exposure or NS exposure in the same manner on days 16
to 20.

To investigate the effect of drugs on airway inflammation and respiratory function, mice were
treated with fluticasone propionate (Toronto Research Chemicals Inc., North York, ON, Canada),
formoterol fumarate (Toronto Research Chemicals Inc.), or tiotropium bromide (Tokyo Chemical
Industry Co., Ltd., Tokyo, Japan) on days 21 to 26. Mice in six groups, group (iv), (v), (vi), (vii), (viii),
and (ix) as shown in Figure 1, received treatments with these drugs respectively as treatment groups.
Other mice in three groups, group (i), (ii), and (iii), did not receive treatments as control groups.
In the treatment groups, fluticasone propionate, a representative inhaled corticosteroid, was dissolved
in 2% dimethyl sulfoxide in NS and administered intranasally at a volume of 50 µL (0.5 mg/mL)
after OVA challenge exposure, followed by ambient PM exposure or NS exposure as previously
described [23]. Formoterol fumarate, a representative long-acting β2-agonist, was dissolved in NS
and administered intranasally at a volume of 50 µL (0.4 mg/kg) in the same order as furuticasone
propionate [24].
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Ohta et al. reported the anti-inflammatory effect of tiotropium bromide, a representative long-
acting muscarinic antagonist, on airway inflammation in a mouse model of OVA-induced asthma
at a concentration of 50 µg/mL via inhalation [22]. Therefore, tiotropium bromide was dissolved
in NS and administered via the airways by ultrasonic nebulization at a concentration of 50 µg/mL
for 3 min in the same order as furuticasone propionate and formoterol fumarate. Finally, the nine
experimental groups were as follows: (i) NS/NS mice: sensitized to NS and challenged with NS;
(ii) OVA/OVA mice: sensitized to OVA and challenged with OVA; (iii) OVA/OVA/PM mice: sensitized
to OVA, challenged with OVA, and exposed to ambient PM; (iv) OVA/OVA+FP mice: sensitized to
OVA, challenged with OVA, and treated with fluticasone propionate; (v) OVA/OVA/PM+FP mice:
sensitized to OVA, challenged with OVA, exposed to ambient PM, and treated with fluticasone
propionate; (vi) OVA/OVA+FORM mice: sensitized to OVA, challenged with OVA, and treated with
formoterol fumarate; (vii) OVA/OVA/PM+FORM mice: sensitized to OVA, challenged with OVA,
exposed to ambient PM, and treated with formoterol fumarate; (viii) OVA/OVA+TIO mice: sensitized
to OVA, challenged with OVA, and treated with tiotropium bromide; and (ix) OVA/OVA/PM+TIO
mice: sensitized to OVA, challenged with OVA, exposed to ambient PM, and treated with tiotropium
bromide.Before sacrificing the animals on day 27, lung function was monitored in terms of specific
airway resistance (sRaw) by plethysmography, followed by collection of BALF from the airways as
well as whole blood and lung tissue.

2.4. BALF Procedure

After the mice were anesthetized with isoflurane, their tracheas were cannulated. BALF was
obtained following instillation of 5 × 1.0 mL of NS into the lungs, along with gentle handling to
maximize BALF recovery. BALF from each mouse was centrifuged at 300× g for 5 min at 4 ◦C. The cell
pellets were used for cell counts and the supernatants were used for cytokine analysis. Total cells
diluted in Turk’s fluid were counted using a hemocytometer. The differential leukocyte count was
obtained by microscopic evaluation and quantitative analysis of methanol-fixed cytospin preparations
stained with Diff Quick (Fisher Scientific, Pittsburgh, PA, USA).

2.5. Quantitative Determination of Cytokine Concentrations

The concentrations of IFN-γ, IL-5, IL-6, IL-13, and keratinocyte-derived chemokine (KC/CXCL1)
in BALF were measured by using enzyme immunoassay (EIA) kits (R&D Systems Europe,
Abingdon, UK). BALF was diluted 1/5 to determine the concentrations of IL-5, IL-6, IL-13,
and KC/CXCL1. For IFN-γ, it was used undiluted. All EIA assays were performed according to
the manufacturer’s instructions.

2.6. Histological Examination

Mice were euthanized by injection of pentobarbital. Lungs were inflation-fixed at 25 cm of water
pressure with 10% formalin for 5 min and immersed in the same fixative. Tissues were fixed for 24 h at
4 ◦C and processed using standard methods for paraffin-embedded blocks. Fixed lung tissues were
embedded in paraffin and each section was stained with hematoxylin and eosin (H&E).

2.7. Measurement of Airway Resistance

Airway resistance measurements were acquired at FinePointe™ Non-Invasive Airway Mechanics
(NAM) sites (Buxco Electronics, Inc., Wilmington, NC, USA) using conscious mice [25]. Prior to
measurement, mice were acclimated for 15 min to the chambers. The chambers were also calibrated
each time before data collection. Briefly, the nasal chamber in combination with the thoracic chamber
allowed computation of sRaw. FinePointe™ software computed sRaw values with all other ventilatory
parameters such as frequency of breath, tidal volume, minute volume, inspiratory time, and expiratory
time derived by the NAM analyzer.
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2.8. Oxidative Stress Measurements

After the BALF procedure, whole blood was collected from the inferior vena cava. The blood
samples were transferred into 1.5-mL tubes containing serum-separating medium (Bloodsepar; IBL,
Gunma, Japan). After standing at room temperature for 30 min, the samples were centrifuged
(3000 rpm, 10 min) and serum samples were collected. The samples were stored at −80 ◦C and
transported on dry ice. All serum analyses were performed using a free radical analyzer system (FREE
carpe diem, Wismerll Company Ltd., Tokyo, Japan) according to the manufacturer’s instructions.
To analyze the serum levels of reactive oxygen metabolites, the levels of diacron reactive oxygen
metabolites (dROMs) were measured. The results of dROM testing were expressed in arbitrary units
(U. Carr), one unit corresponding to 0.8 mg/L of hydrogen peroxide as previously reported [26].

2.9. Statistical Analysis

Data are expressed as mean and standard deviation (SD). Comparisons between groups were
conducted by one-way analysis of variance (ANOVA) with Turkey’s post-hoc tests. Calculations were
performed with GraphPad Prism ver. 5.02 (GraphPad Software, San Diego, CA, USA). A p-value < 0.05
was considered to be statistically significant.

3. Results

3.1. Cell Counts in BALF

OVA/OVA mice had a significantly higher BALF total cell count than control NS/NS mice
(p < 0.05). OVA/OVA/PM mice had a 1.79-fold higher BALF total cell count than OVA/OVA mice
(OVA/OVA/PM mice: 53.1 × 105/mL; OVA/OVA mice: 29.6 × 105/mL; p < 0.05). The increased cell
count in OVA/OVA/PM mice compared with OVA/OVA mice was consistent for macrophages,
lymphocytes, and neutrophils (Figure 2). In particular, macrophage and neutrophil cell counts
were 9.29-fold (OVA/OVA/PM mice: 31.6 × 105/mL; OVA/OVA mice: 3.43 × 105/mL) and
4.95-fold (OVA/OVA/PM mice: 4.31 × 105/mL; OVA/OVA mice: 0.87 × 105/mL) higher in
OVA/OVA/PM mice than in OVA/OVA mice (p < 0.05). Exposure to ambient PM increased the
percentage of macrophages and neutrophils in total cells, which were 5.19-fold and 2.78-fold higher in
OVA/OVA/PM mice than in OVA/OVA mice, respectively (Supplementary Figure S1).

OVA/OVA+FP mice and OVA/OVA+TIO mice had significantly lower BALF total cell counts
than OVA/OVA mice (p < 0.05; Figure 2). Furthermore, both OVA/OVA/PM+FP mice and OVA/OVA/
PM+TIO mice had significantly lower BALF total cell counts than OVA/OVA/PM mice (p < 0.05;
Figure 2). The total cell count was significantly decreased by 35.1% in OVA/OVA/PM+FP mice and by
64.1% in OVA/OVA/PM+TIO mice (OVA/OVA/PM+TIO mice: 19.2 × 105/mL; OVA/OVA/PM+FP
mice: 34.7 × 105/mL; OVA/OVA/PM mice: 53.1 × 105/mL). The decreased cell counts were consistent
for lymphocytes and eosinophils in OVA/OVA/PM+FP mice, lymphocytes in OVA/OVA/PM+FORM
mice, and macrophages, lymphocytes, eosinophils, and neutrophils in OVA/OVA/PM+TIO mice,
compared with OVA/OVA/PM mice (p < 0.05; Figure 2). Of note, a significantly lower neutrophil
count (by 95.6%) was only observed in OVA/OVA/PM+TIO mice compared with OVA/OVA/PM
mice (OVA/OVA/PM+TIO mice: 0.20 × 105/mL; OVA/OVA/PM mice: 4.31 × 105/mL; p < 0.05).
Treatment with tiotropium bromide significantly reduced the percentage of neutrophils in total cell
counts (p < 0.05; Supplementary Figure S1).
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3.2. Cytokine Profile of BALF 

Cytokine concentrations in BALF were measured to investigate the mechanisms through which 
fluticasone propionate, formoterol fumarate, and tiotropium bromide attenuate the allergic airway 
response to ambient PM in OVA-induced asthma. In parallel with the inflammatory cell recruitment 
in BALF, ambient PM induced the production of several cytokines that are important in the 
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Figure 2. Total and differential leukocyte counts in bronchoalveolar lavage fluid (BALF). The cell counts
in BALF were obtained 24 h after the final allergen challenge on day 26. The differential leukocyte
counts included macrophages, lymphocytes, neutrophils, and eosinophils. The total cell count was
significantly decreased by 35.1% in OVA/OVA/PM+FP mice and by 64.1% in OVA/OVA/PM+TIO
mice, compared with OVA/OVA/PM mice. Data are expressed as the mean ± standard deviation,
with eight mice per group. * p < 0.05.

3.2. Cytokine Profile of BALF

Cytokine concentrations in BALF were measured to investigate the mechanisms through which
fluticasone propionate, formoterol fumarate, and tiotropium bromide attenuate the allergic airway
response to ambient PM in OVA-induced asthma. In parallel with the inflammatory cell recruitment in
BALF, ambient PM induced the production of several cytokines that are important in the development
of asthma-related airway inflammation. The concentrations of IL-5 and IL-13 in OVA/OVA/PM+FP
mice and OVA/OVA/PM+TIO mice were significantly lower than those in OVA/OVA/PM mice
(p < 0.05; Figure 3). Additionally, the concentration of IL-6 was significantly more decreased in
OVA/OVA/PM+TIO mice than in OVA/OVA/PM mice (p < 0.05; Figure 3). The concentration of
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IFN-γ was not affected by any treatment. The concentrations of IL-5, IL-6, IL-13, and IFN-γ were not
affected in OVA/OVA/PM+FORM mice. The concentration of KC/CXCL1 was significantly decreased
in OVA/OVA/PM+FP mice, OVA/OVA/PM+FORM mice, and OVA/OVA/PM+TIO mice compared
to OVA/OVA/PM mice (p < 0.05; Figure 3).
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3.3. Histopathological Changes in the Lung

Lung specimens were stained with H&E to determine the histopathological effects of fluticasone
propionate, formoterol fumarate, and tiotropium bromide on inflammatory cell infiltration. OVA/OVA
mice had greater peribronchiolar and perivascular inflammatory cell infiltration compared with control
NS/NS mice. Greater inflammatory cell infiltration was also apparent in OVA/OVA/PM mice compared
with OVA/OVA mice (Figure 4). OVA/OVA/PM+FP mice and OVA/OVA/PM+TIO mice exhibited
relatively weak inflammatory responses compared with OVA/OVA/PM mice. These histopathological
findings were consistent with the BALF analysis, which revealed significant decreases in lymphocytes and
eosinophils after treatment with fluticasone propionate, and in macrophages, lymphocytes, eosinophils,
and neutrophils after treatment with tiotropium bromide. No anti-inflammatory responses were detected
in OVA/OVA+FORM mice.
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Figure 4. Effects of treatment of tiotropium bromide on histopathological changes in the lungs.
Light photomicrographs of representative lung sections were stained using hematoxylin and eosin
(magnification: ×200). Representative light photomicrographs of NS/NS mice (A); OVA/OVA mice
(B); OVA/OVA/PM mice (C); OVA/OVA+FP mice (D); OVA/OVA/PM+FP mice (E); OVA/OVA+FORM
mice (F); OVA/OVA/PM+FORM mice (G); OVA/OVA+TIO mice (H); and OVA/OVA/PM+TIO mice (I).

3.4. Measurement of Airway Resistance

To assess the effects of fluticasone propionate, formoterol fumarate, and tiotropium bromide treatment
on airway resistance induced by ambient PM in OVA-induced asthma, we measured sRaw on day
27. OVA/OVA mice showed a significant increase of the sRaw value compared with NS/NS mice.
The sRaw value was significantly increased (1.37-fold) in OVA/OVA/PM mice compared with OVA/OVA
mice. In contrast with OVA/OVA+FP mice and OVA/OVA/PM+FP mice, formoterol fumarate-treated
mice challenged with OVA (OVA/OVA+FORM mice and OVA/OVA/PM+FORM mice) and tiotropium
bromide-treated mice challenged with OVA (OVA/OVA+TIO mice and OVA/OVA/PM+TIO mice) had
significantly lower sRaw values even in the presence or absence of ambient PM exposure (p < 0.05;
Figure 5). The sRAW values of OVA/OVA/PM+TIO mice were decreased remarkably by 64.8% compared
to OVA/OVA/PM mice, and the sRAW values of OVA/OVA/PM+FORM mice were decreased by 56.4%
compared to OVA/OVA/PM mice (OVA/OVA/PM+TIO mice: 1.22 cm H2O.s; OVA/OVA/PM+FORM
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mice: 1.52 cm H2O.s; OVA/OVA/PM mice: 3.48 cm H2O.s; p < 0.05; Figure 5). While, the sRAW values of
OVA/OVA/PM+FP were not decreased significantly compared to OVA/OVA/PM mice.
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3.5. Measurement of dROMs in the Serum

We measured dROMs in the serum to evaluate the implications of oxidative stress in airway
inflammation increased by ambient PM exposure. Ambient PM exposure markedly increased the
levels of dROMs in OVA/OVA/PM mice compared with control NS/NS mice (p < 0.05; Figure 6).
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Figure 6. The levels of reactive oxygen metabolites after the administration of fluticasone propionate,
formoterol fumarate, and tiotropium bromide. The levels of reactive oxygen metabolites (dROMs) in
serum samples obtained on day 27. Fluticasone propionate and tiotropium bromide had no effect on
dROM levels compared with the control group, but formoterol fumarate increased dROM levels. Data
for each group are expressed as the mean ± standard deviation, with eight mice per group. * p < 0.05.
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However, fluticasone propionate and tiotropium bromide had no effect on dROMs compared
with OVA/OVA/PM mice. By contrast, both OVA/OVA+FORM mice and OVA/OVA/PM+FORM
mice showed significantly increased dROM levels, raising the possibility that formoterol fumarate may
increase rather than decrease oxidative stress (p < 0.05; Figure 6).

4. Discussion

In this study, ambient PM markedly increased neutrophilic airway inflammation in a mouse model
of OVA-induced asthma. Together with the improvement of bronchoconstriction, tiotropium bromide
attenuated neutrophilic airway inflammation augmented by ambient PM by decreasing the production
of IL-5, IL-6, IL-13, and KC/CXCL1. In contrast, fluticasone propionate reduced eosinophilic airway
inflammation, but not neutrophilic airway inflammation. Bronchoconstriction induced by ambient PM
was improved by formoterol fumarate, but not by fluticasone propionate. These findings suggested
that fluticasone propionate and tiotropium bromide may reduce airway inflammation augmented by
ambient PM. However, only tiotropium bromide was able to inhibit neutrophilic airway inflammation
whilst improving bronchoconstriction.

Tiotropium bromide acts as an antagonist of M3 muscarinic receptors on airway smooth muscles
cells, thereby preventing binding of acetylcholine and subsequent bronchoconstriction [27]. Several
recent studies have suggested that tiotropium bromide has anti-inflammatory effects in a mouse
model of COPD [28,29]. For example, Wollin et al. revealed that tiotropium bromide significantly
reduced the concentration of IL-6 and KC/CXCL1 and neutrophil cell counts in BALF of cigarette
smoke-exposed mice [30]. However, only few published studies have focused on the beneficial effects
of muscarinic antagonists using asthma mouse models [20–22]. To the best of our knowledge, none of
the previously published studies has focused on neutrophilic airway inflammation. In the present study,
we demonstrated that tiotropium bromide improved bronchoconstriction, and that it significantly
reduced the concentrations of IL-5, IL-6, IL-13, and KC/CXCL1 in BALF, and subsequently led to
reduced neutrophilic airway inflammation in a mouse model of OVA-induced asthma. In contrast,
fluticasone propionate significantly reduced eosinophilic airway inflammation but had no effect on
neutrophilic airway inflammation. Formoterol fumarate improved bronchoconstriction but was unable
to reduce airway inflammation. These results suggest that, compared to fluticasone propionate and
formoterol fumarate, tiotropium bromide inhibited neutrophilic airway inflammation augmented by
ambient PM.

Exposure to air pollutants aggravates asthma symptoms and airway inflammation characterized
by an increase in IL-6 and IL-8 [31–33]. These cytokines have important roles in neutrophilic
inflammation in patients with asthma [34–36]. Our previous reports also showed that ambient PM
increases neutrophilic airway inflammation and production of inflammatory IL-6 and MIP-2/CXCL2 in
a mouse model of asthma [12]. In this study, the increased concentration of KC/CXCL1 by ambient PM
in BALF was significantly decreased by tiotropium bromide, fluticasone propionate, and formoterol
fumarate. However, the increased concentration of IL-6 was significantly decreased by tiotropium
bromide, but not by fluticasone propionate or formoterol fumarate. Thus, tiotropium bromide was
able to inhibit the increase of both IL-6 and KC/CXCL1 by ambient PM. The inhibition of both IL-6
and KC/CXCL1 may be important in decreasing neutrophilic airway inflammation augmented by
ambient PM.

Inflammation and oxidative stress are closely linked to responses to ambient PM and are thought
to be responsible for the majority of its adverse health effects [37,38]. An epidemiological study has
shown that exposure of children to air pollution is associated with an increase in the oxidative stress
markers, thiobarbituric acid-reactive substances [31]. In recent years, several publications have linked
ambient PM exposure to the generation of reactive oxygen species (ROS) in pulmonary epithelial
cells [39–41]. Vacca et al. reported that a muscarinic antagonist could reduce ROS release from human
alveolar macrophages and reduce airway inflammation in vitro [42]. Therefore, we hypothesized that
one mechanism underlying the effects of ambient PM on airway epithelial cells could involve the
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generation of ROS. In our study, ambient PM exposure increased ROS production, as indicated by
the levels of dROMs. However, tiotropium bromide did not suppress ROS production. Therefore,
our hypothesis was not supported. Further studies are needed to provide the mechanism whereby
tiotropium bromide contributes to inhibition of neutrophilic airway inflammation.

It has been suggested that β2-agonists have anti-inflammatory properties against LPS-induced
neutrophilic airway inflammation in addition to their conventional action on respiratory function
improvement [19,43]. In contrast to previous reports, in the present study, we could not demonstrate
the anti-inflammatory effects of formoterol fumarate against neutrophilic airway inflammation,
yet bronchoconstriction was improved. Ambient PM is not a simple substance, such as LPS, but rather
a complex mixture containing geological minerals, biological materials, and fossil fuel combustion
products. Therefore, formoterol fumarate may not have beneficial effects on neutrophilic airway
inflammation augmented by ambient PM.

The number of eosinophils in the BALF of OVA/OVA/PM mice was lower than in that of
OVA/OVA mice. The mechanism underlying this process is not well understood. In contrast to
eosinophils, the number of macrophages in OVA/OVA/PM mice significantly increased compared to
OVA/OVA mice. Macrophages are phagocytes that play a critical role in host defense against foreign
substances such as PM [44]. Therefore, exogenous material can increase the number of macrophages,
for example in smokers or long-term city dwellers. The reason for the lower number of eosinophils
in OVA/OVA/PM than in OVA/OVA mice may be that the robust induction of macrophages by PM
exposure prevents the increase of eosinophils in BALF.

This study has several limitations. First, ambient PM is a complex mixture of various substances,
and the effects of seasonal variation and regional heterogeneity on adverse health effects have been
described [45–48]. Therefore, we should confirm the anti-inflammatory effects of tiotropium bromide by
collecting ambient PM on different days and regions. Second, previous studies have shown significant
increases in AHR to bronchoconstriction agents in a mouse model of OVA-induced asthma [49–51].
However, we did not evaluate AHR in the present study, as we were unable to collect a sufficient
amount of ambient PM. Third, we could not measure the levels of dROMs in BALF to evaluate the
implications of oxidative stress in airway inflammation increased by ambient PM exposure because
we did not have a sufficient amount of BALF samples.

5. Conclusions

Tiotropium bromide, but not fluticasone propionate and formoterol fumarate, reduced broncho-
constriction and subsequently led to reduced neutrophilic airway inflammation augmented by ambient
PM. Our data support the view that the positive effect of tiotropium bromide on asthma-related airway
inflammation augmented by ambient PM can be partly attributed to its anti-inflammatory activity.
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KC/CXCL1 keratinocyte-derived chemokine
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MIP-2/CXCL2 macrophage inflammatory protein
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TIO tiotropium bromide
sRAW specific airway resistance
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