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Abstract: The 5-year survival rate for oral squamous cell carcinoma (OSCC), one of the most common
head and neck cancers, has not improved in the last 20 years. Poor prognosis of OSCC is the result
of failure in early and precise diagnosis. Metabolic reprogramming, including the alteration of the
uptake and utilisation of glucose, amino acids and lipids, is an important feature of OSCC and can be
used to identify its biomarkers for early and precise diagnosis. In this review, we summarise how
recent findings of rewired metabolic networks in OSCC have facilitated early and precise diagnosis
of OSCC.

Keywords: oral squamous cell carcinoma; metabolic reprogramming; biomarker; early diagnosis;
precise diagnosis

1. Introduction

Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy,
and its incidence has been increasing in several countries [1]. Treatment is mainly based on
surgery, with radiotherapy and/or chemotherapy as adjuncts. Frustratingly, treatments
have not significantly prolonged the survival of such patients [2,3], and the 5-year survival
rate has remained at approximately 60% for the last 20 years [4]. The poor prognosis
of OSCC patients is partly because of delayed diagnosis. Early screening and timely
therapeutic intervention can effectively arrest OSCC progression, thereby increasing patient
survival by 80% [5,6]. OSCC diagnosis relies on clinician examination. However, some
symptoms of OSCC appear similar to those of oral ulcers or precancerous lesions, leading
to confusion. This phenomenon suggests that early screening for OSCC requires extensive
experience. The gold standard for definitive diagnosis of OSCC is pathological diagnosis,
which is invasive and leads to pain and poor wound healing [7]. In addition to the
cumbersome histopathology procedures, sampling at different sites may result in different
pathological diagnoses, and the complex procedures of pathological diagnosis cause a
certain lag in obtaining clinical results [8,9]. Therefore, in clinical practice, there is an
urgent demand for diagnostic tools with high specificity, manipulability and non-invasive
or minimally invasive techniques to assist clinicians in OSCC screening. Once patients are
suspected of having OSCC, a precise diagnosis that assists surgeons in planning surgery
and predicting patient therapy responses is urgently required. For example, the difficulty
in determining a ‘clear’ surgical margin is an important factor that influences the prognosis
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of OSCC. We previously reported that OSCC patients with mild dysplasia margins had a
worse prognosis than those with negative margins [10]. Moreover, excess resection seriously
affects the quality of life of patients. Hence, only a precise diagnosis can help characterise
every patient based on molecular signatures and provide personalised treatments with
predictable outcomes.

Metabolic rewiring is one of the six hallmarks of cancer, manifesting mainly as al-
terations in glucose, lipid and amino acid metabolism. Tumour cells experience complex
stresses, including hypoxia, energy deprivation and an acidic environment, and must
adapt to environmental pressures through metabolic reprogramming, which can be used to
design metabolism-targeted diagnostic tools. For example, positron emission tomography,
which records energy utilisation, is recommended for patients with head and neck cancer at
clinical stages III and IV, and exhibits diagnostic advantages for detecting lymph node and
distant metastasis [11]. Metabolic features vary across tumours of different tissue origins,
genetic backgrounds and stages of the disease. Therefore, nuclear magnetic resonance
(NMR) spectroscopy, mass spectrometry (MS), ambient ionisation MS and conductive
polymer spray ionisation MS (CPSI-MS) have been performed to compare the metabolic
variation among OSCC patients with different clinical stages and genetic backgrounds of
the disease to identify novel metabolic landscapes of OSCC. Using these findings, early
and precise diagnosis of OSCC should soon be realised.

In the last few years, many promising, innovative diagnostic techniques, such as
narrow-band imaging, high-frequency ultrasounds, optical coherence tomography and
in vivo confocal microscopy, have been applied as adjunctive non-invasive techniques to
help diagnose OSCC [12]. Owing to detailed studies on metabolic pathways and tremen-
dous advancements in techniques, the application of metabolite-targeted diagnosis in
clinical settings has drawn great attention and shows promise. In this review, we analyse
93 papers and present an overview of how OSCC induces metabolic changes to adapt to a
nutrient-poor environment and confer growth advantages to tumour cells. Unlike other
reviews that focus on the metabolic characteristics of OSCC [13,14], this review classifies the
identified metabolites according to sample types and their diagnostic values and discusses
how these metabolites can be potentially applied for early and precise OSCC diagnosis.

2. Altered Cellular Metabolism in OSCC
2.1. Glucose Metabolism
2.1.1. Glycolysis

One of the earliest findings in cancer metabolic reprogramming was that tumour cells
prefer glycolysis even in the presence of adequate oxygen. Glycolysis addiction in OSCC is
evidenced by enhanced glucose uptake, which is mainly reflected by the upregulation of
glucose transporter protein (GLUT) [15]. Higher GLUT1 and GLUT3 expression correlates
with poor prognosis in OSCC patients [16–21]. In addition, when glucose is transported
into the cytoplasm, it is catalysed by many glycolytic enzymes, among which hexokinase
2 (HK2), pyruvate kinase M2 (PKM2), phosphofructokinase (PFK) and glucose-6-phosphate
dehydrogenase (G6PD) have also been shown to be upregulated in OSCC and associated
with OSCC patient prognosis [22–26] (Figure 1). These results demonstrate that OSCC is
characterised by enhanced glycolysis activity.

Enhanced glycolysis is accompanied by increased lactate production. LDH, which
converts pyruvate to lactate, has been monitored in serum and saliva to detect and diagnose
OSCC [27–30] (Figure 1). Analysis of LDH expression in tumour tissues can also be used to
predict patient prognosis and chemotherapy responses [31–33]. Notably, abundant lactate
in OSCC is produced not only by malignant cells but also by other cells in the tumour
microenvironment, such as CAF. Lactate in the tumour microenvironment can be employed
by tumour cells as a nutrient to promote cell proliferation and invasion [34–37]. Lactate
is also a signalling metabolite, which lactylates histones to regulate gene expression [38].
The high levels and multiple functions of lactate in OSCC suggest that it is a promising
glycolytic metabolite for OSCC detection and diagnosis.
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Figure 1. Screening altered cellular metabolism to diagnose OSCC. OSCC undergoes metabolic
reprogramming of glucose, lipids and amino acids in response to complex pressures. Identifying
metabolism-associated biomarkers facilitates early and precision diagnosis. CAF, cancer-associated
fibroblast; LDH, lactate dehydrogenase; Gln, glutamine; ASNS, asparagine synthetase; Gls, glutam-
inase; GDH, glutamate dehydrogenase; TCA, tricarboxylic acid; ATP, adenosine triphosphate; FA,
fatty acid; FASN, fatty acid synthase. Figure created with biorender.com.

2.1.2. Pentose Phosphate Pathway (PPP)

When glucose enters the cytoplasm and is phosphorylated by HK to glucose-6-
phosphate, it enters the PPP in addition to glycolysis (Figure 1). PPP contributes to OSCC
progression by maintaining intracellular redox homeostasis, FA synthesis, and the produc-
tion of ribose 5-phosphate for RNA and DNA synthesis [39]. The rate-limiting enzyme of
PPP, G6PD, is regulated by NRF2 and associated with poor prognosis of OSCC [25], hence,
G6PD-targeting limits cancer growth and metastasis by increasing reactive oxygen species
(ROS) levels and endoplasmic reticulum stress [40,41]. Although few studies have further
confirmed that PPP is enhanced in OSCC, three independent studies have demonstrated
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that transketolase (another PPP enzyme) is overexpressed in head and neck squamous cell
carcinoma (HNSCC) cell lines and tissues [42–44]. Additionally, radiosensitive HNSCC
cells display higher PPP activity than radioresistant cells [45]. Therefore, further research is
required to confirm enhanced PPP activity in OSCC and to identify the key metabolites.

2.2. Amino Acid Metabolism—Gln and Methionine

It is now widely appreciated that tumour cells are characterised by not only dysregu-
lated glucose metabolism but also enhanced requirements for amino acids [46]. Normal
cells cannot synthesise essential amino acids (histidine, isoleucine, leucine, lysine, methio-
nine, phenylalanine, threonine, tryptophan and valine) and obtain them exogenously. In
contrast, tumour cells have an increased dependence on exogenous non-essential amino
acids and display enhanced activity of amino acid synthesis, breakdown, and transport
because amino acids can provide energy, regulate redox balance, and support protein and
lipid synthesis [47].

Gln, the second primary nutrient for tumours, is a non-essential amino acid that is most
abundant in circulation. Some tumour cells, including neuroblastoma [48], clear cell renal
cell carcinoma [49], and breast cancer [50] cells, are addicted to Gln; hence, Gln depletion
undermines their cell proliferation. As tumours consume more Gln than that required for
biosynthesis, it must be transported from outside by Gln transporters. Fourteen amino
acid transporters are responsible for the influx/efflux of Gln into/out of cells [51]. Among
these transporters, ASCT2 (SLC1A5) exhibits higher affinity for Gln and is upregulated
in OSCC [52,53]. Luo et al. found that depleting Gln by inhibiting ASCT2 impairs OSCC
proliferation and tumour growth; this indicates the importance of Gln in OSCC [53].

Gln plays multiple roles in OSCC progression (Figure 1). Firstly, Gln replenishes
the TCA cycle via α-ketoglutarate (α-KG) to synthesise citrate and FA. Specifically, Gln
is catalysed by Gls to glutamate, which is then converted to α-KG by GDH. Multiple
research teams have confirmed that Gls is highly expressed in OSCC and that its expression
correlates with poor prognosis in OSCC patients [54–56]. Moreover, Gls regulates the
radiosensitivity of HNSCC cells [57,58]. Chang et al. found that the use of Gln by p53-
regulated Gls confers ROS resistance onto tumour cells [57]. GLUD expression in OSCC
has not been observed. Only Cetindis et al. found weak expression of GLUD in OSCC [52],
suggesting that Gln in OSCC may not participate in the TCA cycle to generate ATP. Sec-
ondly, Gln serves as a nitrogen donor to generate nucleotides and non-essential amino
acids. Glutamate can be converted to asparagine by ASNS (Figure 1). Our group found that
higher ASNS expression in OSCC positively correlated with lymph node metastasis and
perineural invasion [59]. This implies that ASNS has the potential to be a significant factor
for predicting the prognosis of OSCC patients. In addition, glutamate is a precursor of glu-
tathione, which exerts antioxidant effects. Moreover, Gln contributes to the import of some
essential amino acids. Furthermore, mitochondrial Gln is a precursor of 2-hydroxyglutarate,
which increases stem cell marker expression [60].

Methionine, a methyl donor, contributes to the initiation and progression of OSCC via
epigenetic modifications. Methionine adenosyltransferase generates S-adenosyl methionine
using methionine as a substrate. DNA methyltransferases and histone methyltransferases
then transfer a methyl group to cytosine or histones, respectively, to activate or repress
gene expression. Owing to its importance, C-11-methionine positron emission tomography
positron emission tomography (MET-PET) is clinically applied for some tumours to assist
in diagnosis. Chowdhury et al. compared fluorodeoxyglucose-PET (FDG-PET) and MET-
PET for oral cancer and showed that the uptake values of methionine and glucose are
similar. Both uptakes increase in patients at a higher clinical stage [61]. More notably,
Saleha et al. found that D-methionine protected normal oral tissue from radiation-induced
cell death [62]. Therefore, MET-PET can be further applied to assess patient responses to
radio therapy.

In addition to the aforementioned amino acids, OSCC may also rely on other amino
acids, such as arginine [63,64]. All these studies confirmed that compared with normal
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cells, OSCC cells have different amino acid preferences and utilisation rates. Therefore,
the levels of amino acids and their metabolising enzymes are promising diagnostic values;
these are discussed below.

2.3. Lipid Metabolism

Lipid is a general term for various organic compounds, including glycerolipids, glyc-
erophospholipids, sphingolipids and cholesterol [65]. Lipids are an outstanding medium
for energy storage [66,67] and are essential components of biological membranes [68,69].
They also transmit signals as vehicles [70], act as activators [71], or enzyme carriers in-
volved in signal recognition, and participate in immunity responses [72]. A wide variety
of lipids with diverse functions have constructed a massive, flexible network to fulfil the
requirements of malignant cells.

Multiple studies have shown that the genes related to lipid metabolism are dysregu-
lated in OSCC and that some of them are associated with patient prognosis and clinical
features. Hu et al. found that obesity is an independent risk factor for early OSCC and
that three genes responsible for lipid metabolism are predictors of prognosis [73]. Simi-
larly, Gao et al. identified a 24-gene set related to lipid metabolism that could be used to
predict OSCC prognosis, assist in diagnosis and choose rational treatments [74]. In addi-
tion, lipid metabolism-related proteins are differentially expressed in OSCC with variable
differentiation [75]. All these results prove that lipid metabolism is dysregulated in OSCC.

FA uptake and synthesis are active in cancer cells. FA uptake is aided by low-density
lipoprotein receptor, CD36, FA transporter proteins and FA binding proteins (Figure 1).
CD36 in OSCC has been extensively studied and found to correlate with OSCC prolifer-
ation, migration and lymph-node metastasis [76–78]. Downregulating CD36 expression
inhibits OSCC progression [77,79]. In addition, fatty-acid-binding protein 5 promotes OSCC
migration [80]. Endogenous FA are synthesised from acetyl-CoA, which is then converted
to malonyl-CoA by acetyl-CoA carboxylases. FASN then elongates acetyl-CoA to yield
palmitate. FASN is upregulated in OSCC, and higher FASN expression in OSCC is associ-
ated with advanced disease and poor prognosis [81–83]. FASN not only promotes OSCC
proliferation and migration but also enhances cell resistance to chemotherapy [84–86]. The
de novo synthesised FA further connect via different backbones to form various lipids. For
example, phospholipids consist of two FA, a glycerol unit and a phosphate group which is
esterified to an organic molecule such as choline, glycerol or inositol. Hilvo et al. showed
that de novo synthesised FA are incorporated into membrane phospholipids of breast
cancer cells, and hence have diagnostic value [87].

Cholesterol also plays essential roles in tumorigenesis and cancer progression by
forming membranes, modulating signals, and contributing to bile acid and steroid hormone
synthesis. Cholesterol metabolism is altered in OSCC, and high cholesterol levels promote
oral carcinogenesis [88,89]. Shutting down cholesterol efflux by silencing apolipoprotein
E expression impairs OSCC invasion [90]. Multiple studies have shown that cholesterol
synthesis is important for cancer cells. However, the function of cholesterol synthesis in
OSCC remains undiscovered.

Saliva prostaglandin E2 (PGE2) is another potential marker for OSCC diagnosis [91].
Li et al. found that PGE2 promotes OSCC proliferation. In addition to the direct detection
of PGE2, cyclooxygenase (COX)-2, which is responsible for PGE2 production, has also been
widely studied [92]. COX-2 expression is elevated in OSCC [93]. COX-2 promotes OSCC
invasion and proliferation, which is partially dependent on PGE2 [94].

Owing to the close correlation between reprogrammed lipid metabolism and tumour
progression, lipid metabolism enzymes and lipodomics have diagnostic potential. Al-
though numerous studies have been conducted to identify markers for tumour diagnosis,
no reliable markers have been found, and few are currently applied in clinical settings.
The difficulty lies in technology insensitivity and various confounders (including patient
fasting status and metabolic medications) [95]. However, owing to great advances in tech-
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nology and a more detailed stratification of patients, reliable markers will be identified in
the future.

3. Clinical Applications of Metabolism-Targeted Diagnosis

Since OSCC metabolic reprogramming is recognised and altered metabolites have
many effects on OSCC cell phenotypes, OSCC can potentially be screened by detecting
changes in metabolites to determine disease malignancy and formulate appropriate treat-
ment plans. The association between metabolites in liquid samples (saliva, serum and
urine) of patients with OSCC or premalignant lesions and healthy individuals is one re-
search focus. The correlation between metabolite levels in tumour tissues and clinical
characteristics or prognosis has also been extensively studied. Herein, we summarise the
recent developments.

3.1. Metabolism-Targeted Early Diagnosis

The main reason for delayed diagnosis of OSCC is the difficulty in distinguishing
OSCC from other oral premalignant lesions using accurate non-invasive or minimally
invasive strategies that are equivalent to histological diagnosis. Therefore, researchers have
compared metabolites in easily collectible fluids from patients with OSCC or premalignant
lesions and normal individuals to identify typical OSCC metabolites to assist physicians
in diagnosis.

3.1.1. Metabolism-Targeted Early Diagnosis—Saliva

Saliva, which is readily available and can be non-invasively obtained, is the ideal choice
of sample for OSCC diagnosis. Saliva is a mixture of water (93–94%), organic and inorganic
substances (0.2%), proteins, and numerous cellular elements (0.3%) which is produced by
salivary glands located throughout the oral mucosa. In addition to the aforementioned
molecules, saliva contains gingival crevicular fluid, serum transudate, epithelial cells, leuko-
cytes, and many microorganisms. The various contents of saliva maintain oral homeostasis
via lubrication, buffering, taste, digestion, and antibacterial, antiviral, and antifungal pro-
tection [96]. Individuals with different physiological and pathological conditions produce
different saliva [97]. Therefore, many studies have attempted to compare saliva from pa-
tients with OSCC and normal individuals. Recently, capillary electrophoresis time-of-flight
MS (CE-TOF-MS), gas chromatography coupled with MS (GC-MS), and ultraperformance
liquid chromatography-MS (UPLC-MS) were used to profile metabolites in saliva, and
several typical metabolites, including glycolysis metabolites, amino acids and lipids, were
identified [98–101] (Table 1). We further analysed the most differential metabolites among
these studies and found that five metabolites—taurine, valine, choline, cadaverine and
tryptophan—had been simultaneously identified using three independent detection meth-
ods, indicating their application potential [99–101]. Notably, all these metabolites were
hydrophilic because of the limitations of a single chromatographic method. To overcome
this shortcoming, Wang et al. developed an integrated separation approach using reversed-
phase liquid chromatography and hydrophilic interaction chromatography combined with
TOF-MS, and identified five potential markers (propionylcholine, N-acetyl-L-phenylalanine,
sphinganine, phytosphingosine and S-carboxymethyl-L-cysteine) [102].

Early diagnosis of OSCC requires rapid equipment feedback. However, metabolic
analysis of saliva using these types of equipment is time-consuming. Therefore, our group
introduced an ambient-ionisation-based multiplex molecular screening method called
CPSI-MS. The analysis time was reduced to a few seconds from the few weeks or months
required when using traditional methods [103]. We showed that the diagnostic accuracy
could reach 86.7% upon combining CPSI-MS with machine learning.
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Table 1. Metabolites in OSCC.

Comparison Upregulated Metabolites Downregulated Metabolites Metabolite Analysis
Technique References

OSCC patients
versus

healthy individuals

Choline, betaine, pipecolinic acid L-carnitine UPLC-MS [98]
Choline, p-hydroxyphenylacetic acid,

2-hydroxy-4-methylvaleric acid, valine,
3-phenyllactic acid, leucine, hexanoic acid, octanoic

acid, terephthalic acid, γ-butyrobetaine,
3-(4-hydroxyphenyl) propionic acid, isoleucine,

tryptophan, 3-phenylpropionic acid,
2-hydroxyvaleric acid, butyric acid, cadaverine,
2-oxoisovaleric acid, N6,N6,N6-trimethyllysine,

taurine, glycolic acid, 3-hydroxybutyric acid,
heptanoic acid, alanine

Urea Capillary electrophoresis-MS
(CE-MS) [100]

Lactic acid, hydroxyphenyllactic acid,
N-nonanoylglycine, 5-hydroxymethyluracil, succinic
acid, ornithine, hexanoylcarnitine, propionylcholine,

carnitine

4-Hydroxy-L-glutamic acid,
acetylphenylalanine,

sphinganine,
phytosphingosine,

S-carboxymethyl-L-cysteine

Reversed phase liquid
chromatography and

hydrophilic interaction
chromatography

[102]

Putrescine, cadaverine, thymidine, adenosine,
5-aminopentoate

Hippuric acid,
phosphocholine, glucose,

serine, adrenic acid

Conductive polymer spray
ionization mass spectrometry

(CPSI-MS) and desorption
electrospray ionization MS

imaging (DESI-MSI)

[103]

1-methylhistidine, pseudouridine, inositol
1,3,4-triphosphate, D-glycerate-2-phosphate,

4-nitroquinoline-1-oxide, 2-oxoarginine, norcocaine
nitroxide, sphinganine-1-phosphate

L-homocysteic acid,
ubiquinone, neuraminic acid,

estradiol valerate

Q-TOF-liquid
chromatography-MS

(Q-TOF-LC-MS)
[104]

Glutamate, aspartic acid, proline

GC-MS and
ultrahigh-performance liquid
chromatography-tandem MS

(UHPLC-MS/MS)

[105]

Propionate, acetone, acetate, choline Valine, threonine, Gln,
creatinine

1H NMR [106]

Malic acid, maltose, methionine, inosine GC-MS [107]

Lactic acid, eicosanoic acid Valine, γ-aminobutyric acid
Ultraperformance liquid

chromatography and
Q-TOF-MS

[108]

Estradiol-17-β-3-sulfate, L-carnitine,
5-methylthioadenosine, 8-hydroxyadenine,

2-methylcitric acid, putrescine, estrone-3-sulfate
Q-TOF-LC-MS [109]

PC, DG, sphingosine-1-phosphate, oleamide

LysoPC (18:3), lysoPC (20:4),
lysoPE (20:3/0:0), lysoSM

(d18:1), erythritol,
nonanovlcamitine

CPSI-MS [110]

TC, HDL, LDL Automated biochemistry
analyser [111]

OSCC patients
versus

premalignant lesions
individuals

Putrescine, cadaverine, thymidine, adenosine,
5-aminopentoate

Hippuric acid,
phosphocholine, glucose,

serine, adrenic acid,
CPSI-MS and DESI-MSI [103]

lactic acid valine, phenylalanine UPLC [108]
5,6-Dihydrouridine, 4-hydroxypenbutolol

glucuronide, 8-hydroxyadenine, putrescine Q-TOF-LC-MS [109]

Trimethylamine N-oxide, putrescine, creatinine,
5-aminovalerate, pipecolate, N-acetylputrescine,

γ-butyrobetaine, indole-3-acetate,
N1-acetylspermine, 2’-deoxyinosine, ethanolamine

phosphate, N-acetylglucosamine

N-acetylhistidine,
o-acetylcarnitine CE-MS [112]

Acetone, acetate, choline Valine, Gln, creatinine 1H NMR [106]

OSCC tissue
versus

adjacent normal
tissue

Lactate Glucose Metabolic bioluminescence
imaging [113]

Aspartic, asparagin GC-MS and UHPLC-MS/MS [114]
Carnitine, Alanine, pyruvate NMR [115]

putrescine, glycyl-leucine, phenylalanine, Chemical isotope labeling [116]

stearic acid (18:0), sPLA2 Oleic acid (18:1n-9), linoleic
acid (18:2n-6) Gas liquid chromatograpy [117]

OSCC tissue
versus

margin-2 (0.5–1 cm)
Aspartic acid, glutamate, proline, valine GC-MS and UHPLC-MS/MS [114]

margin-1 (0–0.5 cm)
versus

margin-2

Proline, alanine, serine, aspartic acid, glutamate, Gln,
ornithine, histidine, asparagine GC-MS and UHPLC-MS/MS [114]

Extranodal extension
(ENE)-positive

versus
ENE-negative

Aspartate, butyrate, carnitine, glutamate, glutathione,
glycine, glycolate, guanosine, sucrose

Alanine, choline, glucose,
isoleucine, lactate, leucine,

myo-inositol, O-acetylcholine,
oxypurinol, phenylalanine,

pyruvate, succinate, tyrosine,
valine, xanthine

600-MHz NMR [115]
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In addition, studies have been conducted to compare metabolites in tumours and prema-
lignant lesions. Shigeo et al. found that 14 metabolites were significantly different in OSCC and
oral lichen planus groups [112], confirming that saliva metabolites in oral leukoplakia and OSCC
differed significantly (Table 1). They compared saliva samples using CE-MS and identified a
panel of indole-3-acetate and ethanolamine phosphate to discriminate OSCC from oral lichen
planus [112]. Similarly, Wei et al. used UPLC and identified a panel of valine, lactic acid and
phenylalanine to distinguish OSCC from oral leukoplakia [108].

3.1.2. Metabolism-Targeted Early Diagnosis—Serum and Urine

In addition to saliva, serum and urine have been studied using metabolomics for early
OSCC diagnosis. Q-TOF-LC-MS, GC-MS and 1H NMR have been applied to discriminate
OSCC from normal or oral leukoplakia [109,118]. However, we found that the number of
patients in some of the aforementioned studies was small, which may have led to poor
generalisability and stability of the results. This indicates that increasing the amount of
patient data is necessary for validation. Therefore, we further compared the metabolites
of serum from healthy individuals and 578 patients with OSCC using CPSI-MS [110].
Sixty-five metabolites were identified as potential markers. The accuracy of distinguishing
individuals with OSCC from normal individuals was 98% in the discovery cohort and
89.6% in the validation cohort. This study is the largest metabolic study on serum for early
OSCC diagnosis to date.

3.2. Metabolism-Targeted Precision Diagnosis

In addition to early diagnosis, a precise diagnosis to guide surgeons in operating
and formulating treatment strategies is indispensable for improving OSCC prognosis and
quality of life of patients. Some equipment targeting altered metabolism has been applied
to precision diagnosis. For example, FDG-PET is recommended for patients with HNSCC.
This technique displayed high sensitivity and accuracy for screening distant metastases
and altered the management of 13.7% of patients [119–121]. In the following subsections,
we summarise recent findings in metabolism-targeted precision diagnosis.

3.2.1. Metabolism-Targeted Precision Diagnosis—Body Fluids

Fluids, including saliva, serum and urine, are not only assayed to discriminate patients
with OSCC from healthy individuals or individuals with oral premalignant lesions but
also have precise diagnostic values. Since some metabolites in fluids reflect reprogrammed
tumour metabolism, they are associated with clinical characteristics or histopathological
grades. For example, glycolysis-related metabolites (pyruvate and lactate) in serum corre-
late with patients with OSCC at higher clinical stages or of more advanced histopathological
grades [122]. Abnormal metabolic amino acid levels can also be used to determine OSCC
prognosis. Notably, 600 MHz NMR has been used to successfully analyse amino acid
metabolomics in plasma, and a panel of amino acids to determine lymph node metastasis
has been found [115]. Similarly, serum lipid levels, including those of cholesterol, high-
density lipoprotein and low-density lipoprotein, have been reported to gradually decrease
with the development and progression of OSCC [111].

In addition to being indicators of clinical characteristics, metabolites in fluids have also been
used to predict recurrence and therapy efficacy. Zuo et al. used UPLC-quadrupole/Orbitrap
high-resolution MS to compare OSCC metabolites before and after operation and found that
OSCC was less likely to recur in patients with low succinic acid and high hypoxanthine
levels [123]. Furthermore, Ye et al. found that the metabolites related to glycolysis, redox home-
ostasis and anabolic progress could be used to predict chemotherapy efficacy with an accuracy
of 100%, 81.25% and 100.0% in the training, test and external validation sets, respectively [124].

3.2.2. Metabolism-Targeted Precision Diagnosis—Tissue Specimens

Instead of measuring metabolites in fluids to indirectly reflect the characteristics of
OSCC, many studies have focused on metabolic variations in tumour tissue. Traditional
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pathological diagnosis has proven that many metabolic-related enzymes are associated with
patient prognosis and therapy sensitivity. However, these enzyme-dependent tests are not
sufficient to accurately describe the metabolic signatures of OSCC. Therefore, researchers
have detected metabolites in tissue specimens. Their findings show that the metabolites
in tumours are associated with tumour invasion, neuropathic pain, and lymph-node
metastasis [116,119,125]. Metabolic shifts have diagnostic value, similar to metabolite levels.
Mignion analysed the relationship between lactate and pyruvate levels by adding isotopic
markers to metabolites and created pyruvate–lactate dynamic metabolic images, which
correlated with epidermal growth factor receptor inhibitor resistance in HNSCC [126].

In comparison with those in adjacent normal tissue, metabolites change in
OSCC [14,113–116,127]. However, the metabolic trends in normal tissue and tumours
were unknown until a study was conducted by Young et al., wherein the metabolic pertur-
bation of distance-related surgical margins was analysed and four and six amino acids were
identified as negative margin and dysplastic margin markers, respectively [114]. This work
was particularly important as they tried to identify a panel of metabolites at the junction
of normal and tumour tissues to determine the safe surgical margin. Using a reliable
panel of identified metabolites, rapid evaporative ionisation MS (REIMS), which captures
the gaseous ions generated during the cutting of cancer tissue with an electric knife and
constructs a metabolomic profile of the corresponding tissue, will be translated from the lab-
oratory bench to clinical application [128]. In addition, acquiring a vivid metabolic image of
OSCC is also useful for surgeons, especially during surgery. Uchiyama et al. distinguished
the cancer and stromal regions of OSCC using imaging MS [129]. Young et al. further
applied DESI-MS imaging and developed 14 lipid ion molecular diagnostic models to
measure safe surgical resection distances for OSCC [130]. This attempt was successful in
using OSCC lipid metabolomics to guide the surgical treatment of OSCC and identify small
tumour foci at the surgical margin. It may be possible to determine the ‘cleanliness’ of sur-
gical margins in real-time by surgical margin metabolite detection in the operating room to
eliminate the hidden danger of residual tumour foci. Currently, the assessment of surgical
safety margins using DESI-MS for gastric [131], prostate [132] and breast cancers [133] is
highly compatible with the pathological results. We believe that the clinical application
of REIMS and DESI-MS during surgery has the potential to make individualised surgical
safety margins possible.

4. Future Research Directions of Metabolomics Applied to OSCC Diagnosis

From the perspective of clinical needs, the use of molecular markers to identify signs
of progression of oral premalignant lesions to OSCC in a timely manner, or to accurately
screen OSCC patients at the time of initial diagnosis, can effectively halt OSCC progression.
For patients with a clear diagnosis of OSCC, identifying small tumour foci that remain at
the surgical margins, or predicting therapy responses, will improve the quality of life and
prolong survival (Figure 2). The current screening tools, which are primarily based on imag-
ing to discriminate OSCC, have shortcomings. High false-positive and false-negative rates
limit their clinical application. In addition, the lack of objective evaluation data also limits
their development. OSCC patients undergo significant metabolic reprogramming. The
identification of differential metabolites through easily accessible fluids with non-invasive
or minimally invasive tools will provide a new avenue for the evaluation of OSCC as an
adjunctive diagnostic technique. Although great progress has been made in metabolite-
targeted OSCC diagnosis, there is still a long way to go. Based on this review, we suggest
that researchers (1) develop standardised sample collection procedures; (2) focus on OSCC
patient-specific metabolites, especially differential metabolites in OSCC and pre-cancerous
lesions; (3) explore the association between metabolite signatures and clinical characteristics
or prognosis to develop metabolic grading criteria; (4) develop economical, rapid and tech-
nologically insensitive metabolomics tools; and (5) use a combination of multidisciplinary
tools, such as AI, optical coherence tomography and immune cell infiltration analysis.
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associated biomarkers to assist in early and precise diagnosis of OSCC; (B,C). With the advancement
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OSCC have been screened by testing saliva, serum, body fluid and tissue samples; (D). Constructing
a diagnostic model combined metabolomics with machine learning and pathology testing is valuable.
Figure created with biorender.com.

biorender.com


Biomolecules 2022, 12, 400 11 of 16

5. Conclusions

Since OSCC induces significant metabolic reprogramming, screening for differen-
tial metabolites may assist in the diagnosis of this disease. Progress has been made in
metabolomic diagnosis of OSCC; however, many problems remain unsolved. Further
validation and optimisation of known metabolic diagnostic markers are necessary, and
hence there is still a lot to be done.
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