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Abstract 

A large number of methods have been developed and continue to evolve for detecting the signatures of selective sweeps in genomes. 
Significant advances have been made, including the combination of different statistical strategies and the incorporation of artificial 
intelligence (machine learning) methods. Despite these advances, several common problems persist, such as the unknown null dis
tribution of the statistics used, necessitating simulations and resampling to assign significance to the statistics. Additionally, it is not 
always clear how deviations from the specific assumptions of each method might affect the results. In this work, allelic classes of 
haplotypes are used along with the informational interpretation of the Price equation to design a statistic with a known distribution 
that can detect genomic patterns caused by selective sweeps. The statistic consists of Jeffreys divergence, also known as the popula
tion stability index, applied to the distribution of allelic classes of haplotypes in two samples. Results with simulated data show opti
mal performance of the statistic in detecting divergent selection. Analysis of real severe acute respiratory syndrome coronavirus 2 
genome data also shows that some of the sites playing key roles in the virus’s fitness and immune escape capability are detected by 
the method. The new statistic, called JHAC, is incorporated into the iHDSel (informed HacDivSel) software available at https://acraaj. 
webs.uvigo.es/iHDSel.html.
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Introduction
Evolutionary biology studies the factors that affect genetic vari
ability in populations and species. The main processes that influ
ence the evolution of this variability include mutation and 
recombination, genetic drift, migration, and natural selection. 
Natural selection, in addition to affecting the allele carrying a 
beneficial mutation, impacts the neutral alleles of loci linked to 
the selective one, producing what is known as genetic hitchhik
ing [1, 2], which leads to a selective sweep [3, 4], meaning a loss 
of diversity around the selected site. These sweeps can be com
plete or incomplete, strong or soft, and they can even overlap [5]. 
Regarding the detection of the footprint left by selective sweeps 
in genomes, from the earliest methods that explored haplotype 
patterns, whether by studying homozygosity [6], its diversity [7], 
or interpopulation differentiation [8], among others, a great num
ber of methods have been developed and continue to be devel
oped. Significant advancements have been made, including the 
use of summary statistics, the combination of different statistical 
strategies, and the incorporation of artificial intelligence-based 
methods [4, 9–14].

Most methods for detecting selective sweeps require the exis
tence of haplotypic data, although, as discussed in [15], summary 

statistics calculated from unphased genotypes are used, which, 

in a supervised machine learning context, allows the classifica

tion of genomic windows subject to selection. However, super

vised methods are computationally expensive and are highly 

dependent on training data, and their performance with data 
from other species, genome types, and in general, outside the 

scenarios for which they have been trained is unclear [16].
Despite improvements in the efficiency and accuracy of meth

ods for estimating haplotypes [17–19], in non-model species (un

derstood as those in which, whether or not a genome has been 

sequenced, it is poorly annotated and has not traditionally been 
a model species in the pre-genomic era), haplotype-based detec

tion methods are still not widely used. Instead, it is more com

mon to use interpopulation methods based on detecting 

molecular markers with excessively high differentiation values, 
known as “outliers.” But even in the case of model species, the 

use of haplotype-based methods to detect selective sweeps 

presents the problem that the same genomic pattern that could 

be produced by a selective sweep could also be explained under 
different scenarios related to factors as diverse as the quality and 

characteristics of the sampled data, biological characteristics re

lated to mutation and recombination rates, as well as 
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demographic history and the effects of purifying and background 
selection [20–22].

Part of this problem arises from the lack of knowledge of the 
null distribution of the statistics used, which requires simulating 
the neutral biological scenario. But overall, it is clear that al
though a statistical tool can detect a specific genomic pattern in 
the data, it is unlikely that that pattern could be due solely to the 
effect of a selective scan. It may do so in some scenarios, but not 
in others. Therefore, to validate a candidate single nucleotide 
polymorphism (SNP) or region as a result of a selective process, it 
is first necessary to prove that the statistic does not generate 
false positives in realistic scenarios in terms of demography and 
other evolutionary parameters of interest. Subsequently, func
tional validation of these candidate loci will always be necessary 
[20]. This does not preclude that the development of statistical 
tools to detect genomic patterns that may be related to selective 
sweeps remains of great interest. It would also be interesting if 
that statistic had a known null distribution.

When studying a selective sweep, we can trace its effect over 
time (directional selection) or across space (divergent selection). 
Therefore, if we use two samples to compare the effect of the 
sweep, they can be separated by time or space. Detecting the 
footprint of natural selection in genomes, in general, and specifi
cally divergent selection, is important for studying speciation 
processes [23] and climate adaptation [24], but also for more im
mediate effects, such as resistance to infections in commercially 
important marine species [25, 26].

In this work, I propose a statistic that uses the population sta
bility index, also known as Jeffreys divergence, to compare the 
distribution of allelic classes of haplotypes [27, 28] between two 
populations or samples. To develop the statistic, I use the infor
mational interpretation of the Price equation [29, 30] defined for 
the haplotype allelic class (HAC) trait. The advantage of this sta
tistic is that it follows a chi-square distribution when the null hy
pothesis (equal distribution of HACs among samples) is true. This 
not only increases computational efficiency by several orders of 
magnitude but also allows for the testing of biological models 
expected to deviate from this hypothesis, including the presence 
of local selection and its corresponding selective sweep. Below, I 
will present the development of the statistic and then demon
strate its behavior with both simulated and real genomic data 
from various samples of the severe acute respiratory syndrome 
(SARS) coronavirus 2 (SARS-CoV-2) virus.

The Price equation and the population 
stability index for comparing 
population genomes
Price equation
The Price equation in its most general formulation describes the 
change between two populations at any scale, spatial or tempo
ral [30, 31]. The equation partitions the change into a part due to 
natural selection and another part due to other effects. We com
pare two populations or frequency distributions which can be 
separated by space and/or time. Natural selection causes popula
tions to accumulate information, which is measured in relation 
to the logarithm of biological fitness m¼ log(ω), where ω is the rel
ative fitness [30, 32].

Therefore, let z be a character that takes different values zi 

with associated frequency pi in population P and with frequency 
qi in population Q. If we consider the logarithm of fitness as the 
character, z¼m, we have that the mean change in m due to the 
effect of natural selection in one or the other population is [30] 

Δs �m ¼ J p; qð Þ ¼ βmw
Vw

�w
(1) 

where J is the Jeffreys divergence or population stability index, p 

and q the frequency of the different values of m in the popula

tions P and Q, respectively, and βmw is the regression of m on the 

absolute fitness w.
However, it is possible to use scales other than the fitness log

arithm to measure information, with the key element being the 

regression of values in the new scale on fitness [33]. Therefore, to 

detect the effect of natural selection from genomic data, it will be 

necessary to measure those genomic patterns with high regres

sion values on biological fitness. In this work, I propose using 

HACs as a suitable pattern to capture the increase in information 

generated by natural selection, whether in temporal compari

sons (directional selection) or spatial comparisons (diver

gent selection).

HAC
HACs were initially introduced in Labuda et al. [27] and later used 

to detect genomic patterns caused by selective sweeps [28] and 

divergent selection [34].
Consider a sample of sequences and compute the reference 

haplotype R as the one formed by the major allele of each site. 

Now, consider for the same or another sample of sequences, the 

haplotypes of length Lþ1 centered in a given candidate SNP c 

and define the mutational distance between any haplotype and 

the reference R as the Hamming distance between the haplotype 

and the reference, that is, the number h of sites in the haplotype 

carrying an allele different to the one in R (i.e. a minor allele if 

the system is biallelic). Each group of haplotypes having the 

same h will constitute an HAC [27, 28]. The HAC distribution is 

estimated from the distribution of the h values in a sample.
Thus, in a given haplotype with the candidate SNP position c 

in the middle, for each position other than c we count the out

come Xk ¼ I(sk 6¼ rk) where sk is the allele in the position k of the 

haplotype, rk is the allele in the reference, and I(A) is the indicator 

variable taking 1 if A is true and 0 otherwise. Therefore, the h 

value of a haplotype of length Lþ 1 is 

h ¼
XLþ 1

k¼1
Xk where k 6¼ c;Xk ¼ I sk 6¼ rkð Þand h 2 0; L½ � (2) 

The idea behind using h-values to detect selective sweeps is 

that if one allele increases in frequency due to the effect of selec

tion, the higher frequency alleles from adjacent sites will be 

swept along with the selected allele so that these haplotypes will 

have many common alleles with the reference configuration, 

that is an h-value close to zero.

Information for HACs: the population 
stability index
Let hi be the HAC value that satisfies h¼ i with i 2 0;L½ � then for a 

sample of n1 sequences in P, the frequency of hi is 

Pi ¼ #hi=n1 with
X

Pi ¼ 1 

where #hi is the number of occurrences of hi.
Similarly, for a sample of n2 sequences in Q, the frequency of 

hi is 
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Qi ¼ #hi=n2 with
X

Qi ¼ 1 

In previous works, studying the distribution of alleles around a 

candidate site in both samples P and Q, has been performed by 

comparing, in several ways, the HAC variances of the partitions 

that have the reference allele or not in the different samples [34, 

35]. There are some problems with this type of approach as the un

known distribution of the defined statistics or a loss of power when 

using homogeneity variance tests. Here, I rely on the abstract model 

of the Price equation as proposed by Frank [30, 31, 33, 36] to calcu

late, using Jeffreys divergence, the change caused by selection in 

the distribution of HAC values between two populations.

Number of classes and smoothing
For a total of Lþ 1 different classes, the Jeffreys divergence is [37] 

JHAC ¼
n1n2

n1þ n2

XL

i¼0
Pi � Qið Þln

Pi

Qi 

However, computing JHac in this way could suffer from the 

curse of dimensionality [38] if eventually L > n1þn2, which will 

cause the presence of the different classes to be scarce. To allevi

ate this problem, we will group the values in K (K ≤ Lþ 1) HAC 

classes. The number of classes K is an important parameter be

cause too many classes have the dimensionality issue but too 

few classes will have low power for the distribution comparison. 

A conservative heuristic guess is K¼ (Lþ1)/2 when L ≥ 15 or K¼ L 

otherwise, since we have empirically verified that less than 15 

classes implies a low detection power, possibly because a smaller 

number of classes implies very few SNPs, which may be due to 

very short sequences, and/or very low sample size, and/or very 

homogeneous samples.
Given K, we will group uniformly the h values into K groups so 

that the first group indicates classes with equal or less than (100/ 

K)% of minor (non-major) alleles, the next corresponds to classes 

with more than (100/K)% but equal or less than 2 × (100/K)%, until 

the last group with more than (K − 1) × (100/K)% but equal or less 

than 100%. If necessary (Lþ1 not divisible by K), the class with 

100% of minor alleles is included in this last group. For simplicity, 

we consider K as a divisor of Lþ 1.
Thus, for population P, the frequency P0i of each group of classes is 

P0 i ¼
XU

j¼u
#hj=n1 where i 2 0;K − 1½ �; u ¼

Lþ1
K

i and U

¼
Lþ 1

K
iþ 1ð Þ � 1 (3) 

However, note that the Jeffreys divergence is defined only if P 

and Q have no zeros. To avoid zeros, we use additive smoothing 

[39] with a pseudocount α¼ 0.5 for each possible outcome so that 

P0i in Equation (3) becomes 

P0 i ¼
XU

j¼u
#hjþ α
� �

= n1þ αKð Þ

So, for K groups of HAC classes, the Jeffreys divergence for 

comparing the HAC distribution between populations P and Q 

finally is [c.f. Equation (5.10) in [37] p. 130] 

JHAC ¼
n1n2

n1þ n2

XK − 1

i¼0
P0 i � Q0 ið Þln

P0 i
Q0 i

(4) 

with values in [0, þ1)

Figure 1 shows an example of a JHAC calculation for two sam
ples with eight haplotypes each (n1¼n2¼ 8). Haplotypes have a 
length of 9, so discounting the candidate site, we have eight sites 
and nine possible HAC classes (from 0 to 8). Note that if a class 
does not appear in either of the two samples, the contribution 
value to JHAC for that class is 0. When the class is present only in 
one sample, to correct the problem of zeros, pseudocounting is 
applied with α¼0.5, so that the frequency value of the class that 
does not appear will be 0.5/(8þ 9/2) ¼ 0.5/12.5¼ 1/25 in that sam
ple. If the count in a class is 2, the corrected frequency value will 
be 2.5/12.5¼ 5/25 (Fig. 1).

The advantage of using Equation (4) in the context of studying 
the genomic footprint of selection is that, contrary to other statis
tics, it can be approached by a chi-square distribution providing 
a faster approach as we can avoid performing computationally 
expensive simulations or resampling.

Phenotypic scale, linkage disequilibrium, 
and window size
Phenotypic scale
The gain in information caused by the effect of natural selection 
as expressed in Equation (1) depends on the log-fitness m and if 
we measure the frequency of the hi classes instead of fitness clas
ses, the relationship between the average change in the h distri
bution and the gain in information will depend on the regression 
of h-values on fitness as follows [33] 

Δs
�h ¼ βhw

Vw

�w 

thus, if we use the HAC values to compute J we obtain JHAC 

JHAC ¼ βhwDw ¼
βhw

βmw
J 

The quantity βhw/βmw is the change in phenotype (HAC values) 
relative to the change in information [33]. Therefore, if there is a 
perfect fit between ln(P/Q) and m, then JHAC¼ J.

The regression of h on w will be high when it is fitness that is 
distributing the classes of h, which requires that there are indeed 
one or more sites under selection within the haplotype window. 
However, this is a necessary but not sufficient condition. Price’s 
equation for total change indicates that the average variation in 
phenotype h has two components: one due to selection and the 
other due to other causes, including changes in the components 
of the phenotype that are transmitted (Δh) 

Δ�h ¼ Δs
�h þ q0Δh 

In our context, the change in h not caused by selection may be 
due to, besides mutation, the effect of recombination on haplo
types, which in turn will depend on the window size. Therefore, 
we are interested in using window sizes that correspond to haplo
type blocks in order to minimize Δh.

Window size
The program computes haplotype blocks and sets the candidate 
position c in the middle of each block. A haplotype block is com
puted as a sequence of reference SNPs with length W that satis
fies r2(c − W/2, c − W/2þ 1), … , r2(c − 1, c), r2(c, cþ1), r2(cþ x − 1, 
cþ x), … , r2(cþW/2 − 1, cþW/2), … where r is the correlation co
efficient calculated from the sample of size n, so that Pr(nr2) ≤ α, 
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and nr2 has a chi-square distribution. Furthermore, for a given 
SNP cþ 1 to be included in the block, it is also required that D'(c, 
cþ1) ≥ 0.4, where D' is the normalized linkage disequilibrium 
[40]. The block is extended until any of both conditions is rejected 
that is, Pr(nr2

cþx-1, cþx) > α or D'(cþx − 1, cþx) <0.4.
Optionally, the program can use an outlier as the putative 

center of a block and build the block around it. In this case, the 
condition for defining a block is more liberal, allowing blocks that 
have a mean normalized linkage disequilibrium value greater 
than zero. The reason is that the outliers may have been part of 
older blocks, so we use the minimum condition that the average 
linkage of reference alleles is greater than zero assuming that, if 
they are not the product of selective sweep, the distribution of 
HACs will not be affected, the latter will be checked in the next 
section by simulation.

The windows used by the program do not overlap when calcu
lating automatic blocks, but may overlap if the outlier option is 
used or if the user passes specific candidate sites to the program.

Simulations
To check the performance of the method, its power, and its con
trol of false positives, we will perform two types of simulations, 
namely, with diploid and haploid genomes. Simulations were 
carried out with the GenomePop2 program [41].

Diploid genomes
For diploid genomes, the same simulated data as in [34, 35] were 
used. Two populations of N¼1000 facultative hermaphrodites 
were simulated under divergent selection and different condi
tions about mutation, recombination, migration, and selection. 
Each individual consisted of a diploid chromosome of length 
1 Mb. In Tables 1–4, we can appreciate the different cases with 
the corresponding parameter values. The population migration 
rate was Nm¼10 in all cases. The number of generations was 104 

or 5 × 103, the population mutation rate θ¼ 4Nµ was f12, 60g

where µ is the mutation rate per haploid genome, which implies 

mutation rates per site and per generation of f3 × 10−9, 

1.5 × 10−8g, the population recombination rate ρ¼ 4Nr was f0, 4, 

12, 60g where r is the recombination rate per haploid genome, 

which implies recombination rates per pair of sites per genera

tion of f0, 10−9, 3 × 10−9, 1.5 × 10−8g or noted as infinite when the 

segregation was independent. The selection coefficient s was ± 

0.15 depending on if the mutant allele is deleterious (þ0.15) or 

beneficial (−0.15). This implies that 4Ns¼ 600, which can be con

sidered a moderate selection associated with a locus with large 

effect as expected for the model that resembles the most favor

able conditions for the formation of ecotypes under local adapta

tion, which is the context for which these data were 

generated [34].

iHDSel input settings for analyzing diploid 
simulation data
A minor allele frequency (MAF) value of 0.01 was used. As we 

have already seen, the program allows defining the window or 

haplotypic block size automatically, using the correlation be

tween pairs of sites to define the block size and placing the cen

tral SNP as a candidate or, alternatively, it uses the detected 

outliers as candidate SNPs and then calculates the window size. 

Both methods were used. All other parameters were as defined 

by default (maximum window size 1000, minimum window size 

11, significance level 0.05, etc., see the program manual). An ex

ample of the command line to launch case C1 (Table 1) and ana

lyze the 1000 files located in subfolder C1 and using the 

automatic calculation of blocks (-useblocks 1) is: 

./iHDSel0.5.2 -path/home/data/C1/-runs 1000 -input Om_SNPFile_Run  

-format ms -sample 50 -minwin 11 -output JHAC_C1_ -maf 0.01  

-useblocks 1 -doEOS 1 &

Figure 1. Reference configuration and the distribution of HAC values in two samples and calculation of the JHAC statistic. The haplotype length is 9 and 
the number of haplotypes is 8 in each sample. White circles represent major alleles and gray circles represent any other allele (usually the minor). Note 
that JHAC is also known as the population stability index and is asymptotically distributed as chi-square with K-1 degrees of freedom.
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The -doEOS tag indicates whether we want (1, default) or not 
(0) to run in addition to the EOS outlier test [34]. If the calculation 
without blocks is used (-useblocks 0) the doEOS tag must neces
sarily be set to 1.

Diploid simulation results
In the following tables, the results of power (Tables 1–3) and 
false-positive rate (Table 4) after analyzing 1000 replicates of 
each scenario are presented. In summary, for haplotypes with 
linkage and the selective site in the center of the chromosome, 
when using the automatic blocks system, the power is equal to or 
greater than 95%, regardless of mutation and recombination 
rates. As expected, if the sites are not linked, the method does 
not work because there is no selective sweep (Table 1). When the 
position of the selective site moves away from the center of the 
chromosome (Table 2), the power remains high. Localization 
improves as recombination increases and as the marker is lo
cated closer to the center. In the case of multiple selective sites 
(Table 3), the power to detect at least three is above 75% when 
using automatic blocks but only detects one (97% power) in the 
case of blocks centered on outliers. In general, for blocks cen
tered on outliers, the power is slightly lower, but in some cases, 
the localization was considerably more accurate.

Finally, in the neutral simulations where there was no selec
tive site (Table 4), the false-positive rate conservatively remains 
below the expected 5%, both using automatic blocks and those 
centered on outliers, with one exception corresponding to the ef
fect of bottlenecks. When a bottleneck occurs, it can generate 
linkage disequilibrium that could resemble the effect of a selec
tive sweep, thus increasing the possibility of false positives [42– 
44]. In our case, we observed that JHac becomes liberal with 13% 
when the blocks are centered around the outliers, which means 
an 8% excess over the expectation. The explanation for this hap
pening with blocks centered on outliers but not with automatic 
ones is that, as previously indicated, the construction of blocks 
centered on outliers is somewhat more liberal, validating as 
blocks those regions that have an average disequilibrium greater 
than 0. A conservative option available for the above exception is 

Table 1. Percent power for detecting divergent selection by JHac in 
simulated data with the selective site in the middle.

Case T θ ρ s % power Dist Kb W

C1 104 12 0 ±0.15 100 (98) – 14 (13)
C2 104 12 4 ±0.15 100 (98) 42 (38) 14 (13)
C3 104 12 12 ±0.15 100 (96) 4 (10) 13 (12)
C7 5 × 103 60 0 ±0.15 100 (94) – 13 (12)
C8 5 × 103 60 4 ±0.15 100 (85) 37 (14) 13 (12)
C9 5 × 103 60 60 ±0.15 98 (80) 14 (2) 12 (11)
C13 104 60 0 ±0.15 100 (100) – 14 (=)
C14 104 60 4 ±0.15 99 (100) 126 (15) 14 (13)
C15 104 60 60 ±0.15 95 (91) 19 (2) 13 (12)
C15Indep 104 60 1 ±0.15 0 (2a) − (-) − (11)

The power was computed as 100× the number of replicates where selection 
was detected/1000. In parentheses, the corresponding value when the blocks 
were built around outliers instead of finding the blocks automatically, if the 
value is equal the ¼ symbol appears. Genome size is 1 Mb. Population size 
N¼1000. T: number of generations. Population mutation rate θ ¼ 4Nµ. 
Population recombination rate ρ ¼ 4Nr. s: selection coefficient. Dist: average 
distance in Kb from the detected position to the actual effect, given only when 
ρ>0. W: average size, in number of SNPs, of the haplotypes analyzed. 
Significance level α ¼ 0.05. Each case was replicated 1,000 times.

a Note that this 2% results from using the outlier-centered haplotype 
method. When directly inspecting outliers with the EOS method, the power 
was 78%.

Table 2. Percent power for detecting divergent selection by JHac in 
simulated data with the selective site in different locations

Case T θ ρ s Loc % power Dist Kb W

C13loc0 104 60 0 ±0.15 0.0 100 (99) – 14 (13)
C13loc10 104 60 0 ±0.15 0.01 100 (99) – 14 (13)
C13loc100 104 60 0 ±0.15 0.1 100 (98) – 14 (13)
C13loc250 104 60 0 ±0.15 0.25 100 (99) – 14 (13)
C14loc0 104 60 4 ±0.15 0.0 98 (93) 300 (262) 14 (13)
C14loc10 104 60 4 ±0.15 0.01 98 (96) 285 (292) 14 (13)
C14loc100 104 60 4 ±0.15 0.1 99 (96) 180 (229) 14 (13)
C14loc250 104 60 4 ±0.15 0.25 99 (98) 62 (114�) 14 (14)
C15loc0 104 60 60 ±0.15 0.0 86 (79) 211 (189) 13 (11)
C15loc10 104 60 60 ±0.15 0.01 87 (80) 198 (170) 13 (11)
C15loc100 104 60 60 ±0.15 0.1 91 (89) 106 (70) 13 (12)
C15loc250 104 60 60 ±0.15 0.25 92 (89) 37 (14) 13 (12)

The power was computed as 100× the number of replicates where selection 
was detected/1000. In parentheses, the corresponding value when the blocks 
were built around outliers instead of finding the blocks automatically, if the 
value is equal the ¼ symbol appears. Genome size is 1 Mb. Population size 
N¼1000. T: number of generations. Population mutation rate θ¼4Nµ. 
Population recombination rate ρ¼ 4Nr. s: selection coefficient. Loc: true 
relative position of the selective site. Dist: average distance in Kb from the 
detected position to the actual effect, given only when ρ>0. W: average size, 
in number of SNPs, of the haplotypes analyzed. Significance level α¼0.05. 
Each case was replicated 1000 times.

a Several runs with average FST>0.5 and no outliers, so the 90th percentile 
was considered.

Table 3. Percent power for detecting divergent selection by JHac in 
simulated data for a polygenic model with five selective sites 
uniformly distributed in the chromosome.

Case Candidate % power W

C15poly 1 99 (97) 15 (18)
C15poly 2 89 (0) 16
C15poly 3 75 (0) 16
C15poly 4 59 (0) 16
C15poly 5 44 (0) 16

The power was computed as the number of replicates where the selection was 
detected. In parentheses the corresponding % power when the blocks were 
built around outliers instead of finding the blocks automatically, if the value is 
equal the ¼ symbol appears. Genome size is 1 Mb. Population size N¼1000. 
Number of generations T¼104. Population mutation rate θ¼4Nµ¼60. 
Population recombination rate ρ¼4Nr¼ 60. Selection coefficient per site s¼± 
0.032. W: average size, in number of SNPs, of the haplotypes analyzed. Each 
case was replicated 100 times.

Table 4. Percent false-positive rate for detecting divergent 
selection in simulated neutral data.

Case T θ ρ % FPR W

C4 104 12 0 0.1 (1) 11 (=)
C5 104 12 4 0.3 (2) 12 (11)
C6 10v4 12 12 0.1 (4) 12 (11)
C10 5 × 103 60 0 0 (0.4) − (11)
C11 5 × 103 60 4 0 (2) − (11)
C12 5 × 103 60 60 0.2 (3) 12 (11)
C16 104 60 0 0.3 (0.4) 12 (11)
C17 104 60 4 1 (2) 12 (11)
C18 104 60 60 1 (4) 13 (=)
C18Indep 104 60 1 0 (0.2) − (11)
C18Bottle 104 60 60 3 (13) 12 (11)
C18Bottle 104 60 60 2 26a

C18Bottle 104 60 60 2 51a

In parentheses the corresponding value when the blocks were built around 
outliers instead of finding the blocks automatically, if the value is equal the ¼
symbol appears. Genome size is 1 Mb. Population size N¼1000. T: number of 
generations. Population mutation rate θ¼4Nµ. Population recombination rate 
ρ¼4Nr. %FPR¼100× number of replicates with significant JHac test/1000. W: 
average size, in number of SNPs, of the haplotypes analyzed. Each case was 
replicated 1000 times.

a Window size set to a specific value.
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to set the window size to a higher value, say 25 or 50, which sol
ves the problem and sets the false-positive rate to just 2%. While 
for the corresponding selective case when we run the program 
with these window sizes the power is 90%. The underlying logic is 
that if the positive is due to an increase in the frequency of a pat
tern randomly generated by the bottleneck, then some increase 
in the window size, say doubling it, will undo the effect. However, 
if the positive is real, it is relatively easy for it to remain unless 
the sweep has already been detected at the limit of its size.

Haploid genomes
For haploid genomes, we consider a scenario related to the SARS- 
CoV-2 virus, which belongs to Severe Acute Respiratory 
Syndrome (SARS)-related viruses and is a positive-sense single- 
stranded RNA virus with a 30 kb genome. The model is based on 
average parameter values associated with the intrapatient evolu
tionary dynamics of the virus [45, 46].

The virus’s generation interval for 1 year corresponds to 
861.64 viral cycles/year [45, 46], and the lower estimate of the 
sampling time per individual after infection onset is approxi
mately 7 days, equivalent to 17 generations.

The simulated scenario corresponds to a genome of 30 000 
nucleotides, an effective population size of 10 000, a mutation 
rate per site of 2 × 10−6, resulting in a mutation rate µ¼ 0.06 per 
genome, and a recombination rate with the same value or ab
sent. The population starts in a mutation-drift equilibrium, 
where the effective number of alleles, ne has been calculated, de
fining a mutant proportion of 1/ne [47].

Two selective sites are defined in the Spike region at nucleo
tide positions 23 403 and 23 604, with a favorable selection coeffi
cient of 0.2 for the mutation. The three nucleotides 
corresponding to the triplets carrying these mutations (23 402– 
23 404 and 23 603–23 605) are set at an initial frequency of 5% at 
the beginning of the simulation, after reaching mutation-drift 
equilibrium.

The populations to be compared consist of two samples: one 
taken after 7 days of infection (17 generations) and another taken 
at the end of the simulation after an additional 7–8 days (genera
tion 35). Each sample size is 1000. We conducted 1000 runs for 
each simulated case.

Two different scenarios are considered. The first scenario, 
without a bottleneck, includes two cases: one with selection on 
the two indicated sites and a neutral one. The second scenario 
simulates a bottleneck that occurs after 7 days and corresponds 
to a new infection, starting with only 1, 2, or 5 viruses. The bottle
neck is modeled as discrete logistic growth [48] with a growth 
rate of 2 and an initial value corresponding to the founder effect 
(1, 2, or 5). For each of these situations, we simulate a neutral 
and a selective case. Simulations were carried out with a modi
fied version of the GenomePop2 program [41].

Tables 5 and 6 present a summary of the parameter values 
used, along with the results of the detection power and false- 
positive rate of the JHac statistic.

iHDSel input settings for analyzing haploid 
simulation data
An MAF value of 0.01 was used. For the haploid scenario, the pro
gram was not able to automatically detect blocks, possibly due to 
short evolutionary time and therefore we used the outliers as 
candidate SNPs to calculate the window size. All other parame
ters were as defined by default (see the program manual). An ex
ample of the command line to launch the base case and analyze 

the 1000 files located in subfolder Serial_M1_sites2 and using the 
outlier-based windows (-useblocks 0) is:

./iHDSel0.5.2 -path/home/data/Serial_M1_sites2/-runs 1000  
-input GP2msout_Run -format ms -sample 1000 -minwin 11  
-output simSARSCv2_ -maf 0.01 -useblocks 0.

Haploid simulation results
With the simulation of haploid genomes, the power is lower due 
to the shorter evolutionary time but it is still around 65%. The 
impact of bottlenecks in this short period is to reduce the power, 
which is logical because it produces the loss of the selection sig
nal. However, in the presence of recombination and with bottle
necks of two or more individuals, the power remains at 56% 
while the false-positive rate remains between 4 and 6% (Tables 5 
and 6).

Real data analysis: SARS-CoV-2
SARS-CoV-2 virus genomes stored in the GISAID database [49] 
are indexed by both locality and the time period in which they 
were sampled, thus presenting a unique opportunity to apply 
iHDSel to time or spatially separated samples. Therefore, as an 
example of application, we are going to compare SARS-CoV-2 
genomes sampled in Spain (SP), England (EN), and South Africa 
(SA) in periods corresponding to different waves. The findings of 
this section are based on data associated with 30 274 SARS-CoV-2 
genomes available on GISAID up to 12 February 2024, gisaid.org/ 
EN1, gisaid.org/EN2, gisaid.org/EN3, gisaid.org/EN4, gisaid.org/ 
SP1, gisaid.org/SP2, and gisaid.org/SA.

The downloaded genomes were complete (>29 000 bp) and of 
high quality (<1% undefined bases and <0.05% unique amino 
acid mutations). These datasets were then processed using the 

Table 5. Percent power for detecting directional selection by JHac 

in simulated data for haploid genomes.

θ ρ s Bottleneck % power

1200 0 −0.2 – 66
1200 1200 −0.2 – 64
1200 0 −0.2 1 3
1200 1200 −0.2 1 4
1200 0 −0.2 2 38
1200 1200 −0.2 2 56
1200 0 −0.2 5 53
1200 1200 −0.2 5 56

The number of generations was 35. Population size N¼30 000. Population 
mutation rate θ¼2Nµ. Population recombination rate ρ¼2Nr. s: selection 
coefficient. Bottleneck: initial bottleneck at generation 17, a dash implies that 
there is no bottleneck. Each case was replicated 1000 times.

Table 6. Percent false-positive rate for detecting directional 
selection in simulated neutral data for haploid genomes.

θ ρ s Bottleneck %FPR

1200 0 0.0 – 0
1200 1200 0.0 – 0
1200 0 0.0 1 0
1200 1200 0.0 1 0
1200 0 0.0 2 3
1200 1200 0.0 2 6
1200 0 0.0 5 4
1200 1200 0.0 5 5

The number of generations was 35. Population size N¼30 000. Population 
mutation rate θ¼2Nµ. Population recombination rate ρ¼2Nr. s: selection 
coefficient. Bottleneck: initial bottleneck at generation 17, a dash implies that 
there is no bottleneck. %FPR¼100× number of replicates with significant JHac 

test/1000. Each case was replicated 1000 times.
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Nextclade CLI for quality control [50]. Briefly, the Nextclade CLI 
examines the completeness, divergence, and ambiguity of bases 
in each genome. Only genomes considered “good” by Nextclade 
CLI were selected.

The samples from England (EN1, EN2, EN3, and EN4) corre
spond to the period of March 2020, at the beginning of the first 
wave of the pandemic (EN1, 4820 genomes collapsed to 4227 after 
quality control), a second sample taken between 28 March and 31 
March 2021, inclusive (EN2, 5966 genomes collapsed to 4152 after 
quality control), a third from 24 June to 26 June 2021, inclusive 
(EN3, 6886 genomes collapsed to 5844 after quality control), and 
from 1 October 2023, until 31 January 2024, inclusive (EN4, 3928 
genomes collapsed to 3712 after quality control).

The samples from Spain (SP1 and SP2) correspond to the peri
ods 24 June 2021 to 12 July 2021, inclusive (SP1, 6195 genomes 
collapsed to 4627 after quality control) and 1 October 2023 to 31 
January 2024, inclusive (SP2, 1012 genomes collapsed to 221 after 
quality control).

Finally, the sample from South Africa corresponds to the 
same period as SP1, 24 June 2021 to 12 July 2021, inclusive (SA, 
1467 genomes collapsed to 1327 after quality control).

These samples will allow us to compare population changes 
in space or time. We will compare genomes from different 
samples to study if there are genomic patterns that the JHAC test 
identifies as potentially caused by selection (see below).

Rationale of the comparisons
Spatial comparisons: SP1–SA, EN3–SA, EN3–SP1
These comparisons involve samples from different countries 
obtained in the same time period of the pandemic. The interest 
in the comparison with South Africa is that from 24 June 2021 to 
12 July 2021, vaccination rates were high in Spain and England 
but very low in South Africa. Virtually, 100% of the Spanish and 
English population was vaccinated with at least one dose and 
less than 10% of the South African population [51].

Temporal comparisons: EN1–EN2, EN2–EN3, and 
EN3–EN4
These comparisons affect the same country but across different 
periods of the pandemic, from the beginning of the first wave to 
the beginning of 2024 with virtually the entire population already 
vaccinated several times and the majority variant being Omicron 
and its subvariants [52–54].

Spatial comparisons: EN4–SP2
At the end of 2023, the JN.1 subvariant of Omicron, originating from 
the BA.2.86 lineage, began to spread. This subvariant already car
ried more than 30 mutations in the spike protein compared to pre
vious subvariants. JN.1 includes the L455S mutation and, by the 

end of 2023, exhibited a higher reproductive rate than previous sub
lineages in countries, such as Spain, France, and England, with the 
number of detected JN.1 sequences being higher in England than in 
Spain [55]. During this period, DV.7.1, a sublineage of BA.2.75, was 
highly prevalent in Spain, 50% compared to 5% in the UK [56], and 
was considered a variant to monitor, although it was later down
graded. Therefore, the comparison between EN4 and SP2, corre
sponding to October 2023 to January 2024, is of interest to study the 
potential patterns of divergent selection in the evolutionary dynam
ics of Omicron subvariants between these two countries.

Genome alignment and lineage classification
The pooled genomes for each comparison were aligned with the 
MAFFT FFT-NS-2 program [57] with the specific version for SARS- 
CoV-2 accessible online [58].

Sequences that had more than 5% ambiguous sites were re
moved and also, to keep the alignment length the same as the in
put, insertions were deleted. The remaining options were the 
default. After the alignment, and following the protocol recom
mended by NextStrain given the possibility of artifactual SNPs lo
cated at the beginning and end of the alignment [59], sites in the 
first 130 base pairs and the last 50 were removed using the pro
gram Mega X [60]. Lineages were identified with Nextclade 
CLI (Table 7).

Input settings for iHDSel
An MAF value of 0.01 was used. The two methods already men
tioned were used to define the window size (automatic or outlier- 
centered blocks) and the results detected by either of the two 
methods are reported. All other parameters were the ones by de
fault (see program manual). An example of the command line for 
the comparison between EN3 and SP1, where both samples are in 
the file EN3_SP1.fas located in the data folder and using the 
outlier-centered block calculation (-useblocks 0) is: 

-path/home/data/-input EN3_SP1.fas -format fasta  
-output EN3_SP1 -useblocks 0 -tag ENGLAND & 

where -tag is the argument that defines the word included in 
the name from the England sequences and that allows to sepa
rate both samples.

Similarly, for the temporal comparison between EN2 and EN3 

-path/home/data/-input EN2_EN3.fas -runs 1 -format fasta  
-output EN2_EN3 -useblocks 0 -tag 2021-03 -reference2 

where we have added the -reference tag to indicate that the 
EN3 sample should be used as a sample to calculate the blocks 
and the reference haplotype.

Table 7. Percentage of SARS-CoV-2 lineages in the analyzed data.

Data %Alpha %Beta %Delta (%AY.4/AY.45) %Gamma %Omicron  
(%JN.1/FLIP/DV.7.1)

%Other (pre-Alpha,  
Lambda, Mu, recombinants,  

undefined)

SP1 24 2 70 (2/0) 2 0 2
SA 1 3 94 (0/57) 0 0 2
EN1 0 0 0 0 0 100 (pre-Alpha)
EN2 98 1 0.1 0.1 0 0.8
EN3 1 0.02 98.9 (72/0) 0 0 0.08
EN4 0 0 0 0 96 (39/6/1) 4 (recombinants)
SP2 0 0 0 0 97 (26/12/28) 3 (recombinants)
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The imprint of selection in the  
SARS-CoV-2 genomes
Spatial comparisons: SP1–SA (summer 2021)
The SP1 sample has a majority Delta (70%) and Alpha (24%) com
position, while SA is mostly (94%) Delta (Table 7). The pooled 
SP1–SA sample consists of 247 SNPs with a frequency greater 
than 1%. After genome-wide analysis, iHDSel did not find any 
significant haplotypic blocks in the automatic search nor when 
focusing on outliers.

Spatial comparisons: EN3–SA (summer 2021)
Both samples are mostly Delta (99% EN3 and 94% SA, Table 7). 
The pooled EN3–SA sample consists of 107 SNPs with a frequency 
higher than 1%. After the whole-genome analysis, iHDSel found 
one site with the automatic block method (28282) and five sites 
centered on outliers (sites 7,851; 13,812; 21,846; 21,987 and 25 413 
in Table 8).

The first site is 7851, which corresponds to ORF1a 2529. In the 
SA sample, 100% of the sequences have the amino acid A, while 
in EN3, there is 27%A and 73%V, indicating the change A2529V. It 
is noteworthy that A2529V is one of the main SARS-CoV-2 muta
tions associated with virus fitness [61]. Moreover, in a recent 
study [62], analyzing the evolution of different lineages in rela
tion to the progress of vaccination, the A2529V mutation in 
ORF1a showed a significant positive correlation between the 
prevalence of the mutation and vaccination in Norway during 
the first 9 months of 2021 (including the sampling period of EN3 
and SA).

The second site is 13 812, which, after identifying the slippery 
region [63] and the start of ORF1b at 13 468, corresponds to amino 
acid 115 in ORF1b (NSP12). This site has 100%M in EN3 but 42%M 
and 58%I in SA. The change M115I is a characteristic mutation of 
the AY.45 lineage [64], which is present in SA with a frequency of 
57% but is absent in EN3.

The third and fourth sites are mutations corresponding to 
amino acid changes in the Spike protein. Specifically, T95I repre
sents the change observed between SA and EN3, with I at a fre
quency of only 8% in SA but 72% in EN3. The other mutation in 
Spike is G142D, with D present at 62% in SA and 97% in EN3 
(Table 8). Both mutations are characteristic of the Delta variants 
and increase in frequency in Delta Plus [65–68].

The fifth site is position 25 413 of the genome, corresponding 
to amino acid 7 in ORF3a, with amino acid I in both samples be
ing EN3 (ATC) and SA (ATTj50%C). Therefore, the existence of a 
significant signal due to different HAC distributions must be 
caused by accumulated variation in the surrounding sites. 
Similarly, the sixth and final site corresponds to amino acid 3 of 
the N protein, with the amino acid being D (GAT) in 99% of the 
cases in both samples, with practically 1% being L (CTA). Again, 
the existence of a significant signal due to different HAC 

distributions is caused by accumulated variation in the sur

rounding sites.

Spatial comparisons: EN3–SP1 (summer 2021)
We already saw that the EN3 genomes are predominantly Delta 

(99%), while SP1 has 70% Delta genomes and 24% Alpha (Table 7). 

The combined EN3–SP1 sample consists of 154 SNPs with a fre

quency greater than 1%. After the whole-genome analysis, 

iHDSel found one significant site. The nucleotide site 7851 corre

sponds to amino acid 2529 in ORF1a, which was also significant 

in the EN3–SA comparison, and we saw that A2529V is one of the 

main SARS-CoV-2 mutations associated with virus fitness. In this 

comparison, the change is from 98%A in SP1 to 73%V (27%A) 

in EN3.
Therefore, regarding the spatial comparisons in the summer 

of 2021, we see that in the SA and SP1 samples, amino acid 2529 

of ORF1a was still A in virtually 100% of the sequences analyzed, 

while in EN3, only 27% had A and the remaining 73% were al

ready V. This mutation is associated with an advantage for the vi

rus and in relation to vaccination, and indeed, the JHAC statistic 

detects it as a site with a selective pattern.

Temporal comparisons: EN1–EN2 (March 2020 versus 
March 2021)
The comparison between the English genomes is between sam

ples separated in time (different waves). These comparisons 

should be considered with caution as the differentiation between 

samples is very large. Indeed, the mean FST in all three compari

sons (EN1–EN2, EN2–EN3, and EN3–EN4) is above 0.5. However, 

the sites detected in the three comparisons correspond to sites 

with a recognized impact on virus fitness.
The genomes in EN1 belong to pre-alpha variants, while the 

genomes in EN2 are Alpha. The combined EN1–EN2 sample con

sists of 77 SNPs with a frequency greater than 1%. After the 

whole-genome analysis, iHDSel found six significant sites for the 

JHAC test. These sites correspond to six Spike mutations, namely 

amino acids 501, 570, 681, 716, 982, and 1118 (Table 9). All of 

them correspond to the characteristic Spike mutations of Alpha 

[64]. The only one missing is D614G, although it is included in the 

detected haplotypic regions. The fact that it does not come out as 

directly significant may be because the program did not use that 

position as the center of a haplotypic block, as it detected the 

other sites as more extreme outliers since 614G has a presence of 

61%G in EN1 and 99.9% in EN2. However, when the program is 

run proposing the nucleotide positions corresponding to the 

amino acid 614 as candidates, the result is significant. Therefore, 

it seems that the haplotypic region including all these mutations 

has been detected.

Table 8. Significant JHac tests (p-val< 0.05) for EN3–SA comparison (with 107 SNPs and sample sizes nEN3¼5844, nSA¼1327).

EN3–SA Gene (protein) AA %

Block size Site (þ1þ130) (AA in EN3) (AA in SA) (p1 j p2 j… EN3) : (p1 jp2 j… SA)

41 7851 ORF1a (NSP3) (VjA) 2529 (A) (73 j 27):(− j 100)
11 13 812 ORF1b (NSP12) (M) 115 (Mj I) (100):(42 j 58)
30 21 846 ORF2 (S) (IjT) 95 (IjT) (76 j 24):(8 j 92)
14 21 987 ORF2 (S) (DjG) 142 (DjG) (97 j 3): (62 j 38)
11 25 413 ORF3a (I) 7 (I) (100):(100)
14 28 282 ORF9 (N) (DjL) 3 (DjL) (99 j 1):(99 j 1)

(þ1þ130): added to the program output position, the þ1 to correct the program indexing to 0 and the þ130 to correct the eliminated initial positions.
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Temporal comparisons: EN2–EN3 (March 2021 versus 
June 2021)
This is a comparison of Alpha (EN2) with Delta (EN3) genomes. 

The pooled EN2–EN3 sample consists of 105 SNPs with a fre

quency greater than 1%. After whole-genome analysis, iHDSel 

found seven significant sites using blocks centered on out

liers (Table 10).
These included the substitution of relevant Spike amino acids 

at sites such as 452, 478, 681, and 950 [69]. For example, the 

L452R substitution appears to be associated with evasion of the 

immune response [70]. As well as three sites in the N protein, 63, 

203, and 377, which correspond to significant mutations of the 

delta variant, namely, D63G, R203M, and D377Y [71].

Temporal comparisons: EN3–EN4 (June 2021 versus 
January 2024)
This is a comparison of Delta genomes (EN3) with Omicron 

genomes (EN4). The pooled EN3–EN4 sample consists of 239 SNPs 

with a frequency greater than 1%. After whole-genome analysis, 

iHDSel identified several sites with FST greater than 0.99 and 14 of 

them were in the center of significant blocks (Table 11).
The first site occurs in ORF1a (NSP5) and corresponds to the 

amino acid change P132H, which is a mutation in a functionally 

important domain and characteristic of Omicron [72]. The 

remaining sites presented in Table 11 correspond to core 

Omicron mutations in Spike [73, 74] including some like S371F, 

S373P, and S375F, which are related to alterations in binding and 

entry preference [75, 76] and also the “Kraken” subvariant im

mune escape F486P [77]. Finally, the synonymous change L18L in 

ORF7b is within the same haplotypic block as the reversions 

A82V and I120T in ORF7a, which, when directly contrasted as 

candidates, were significant.

Spatial comparisons: EN4–SP2
The genomes of both samples are Omicrom but the subvariant 
composition is different (Table 7). The pooled EN4–SP2 sample 
consists of 218 SNPs with a frequency greater than 1%. After 
whole-genome analysis, iHDSel identified four significant 
sites (Table 12).

The change A427V in ORF1a is characteristic mutation of the 
DV.7.1 Omicron sublineage [64] which is virtually absent in EN4 
(0.6%) but has a 28% in SP2 (Table 7) which explains the absence 
of 427 V in EN4 and the 29%V in SP2. The same scenario applies 
to A520V in ORF1b. The other two significant sites belong to 
Spike. The mutation at 445 would be related to the V445H and 
V445P changes that seem to favor immune evasion of the virus 
[74, 78] with the presence of 445 V being 30% in SP2 but only 1% 
in EN4 (Table 12). Finally, L858I is also a characteristic mutation 
of DV.7.1.

Discussion
In this work, a new statistic called JHac is proposed to detect geno
mic patterns compatible with selective sweeps. The statistic is 
constructed from the interpretation in terms of information from 
the Price equation [29, 30] and consists of the population stability 
index applied to the distribution of HACs in two samples. The 
iHDSel program incorporates the statistic, along with the calcula
tion of haplotype blocks in such a way that each candidate site is 
located at the center of a block. JHac appears to work optimally 
with simulated data, where two diploid populations are sub
jected to divergent selection under different mutation and re
combination conditions. However, if using the program mode 
that places the outlier sites at the center of the blocks, care must 
be taken because the false-positive rate increases in bottleneck 
scenarios. A possible correction in these scenarios is to repeat the 
calculation with a slightly larger window size.

Real SARS-CoV-2 data have also been used to test JHac in both 
spatial and temporal comparisons. Some sites known to impact 
virus fitness and its ability to promote immune escape have 
been detected.

The Price equation for comparing 
genomic patterns
The general formulation of the Price equation describes a change 
between two populations at any scale, spatial or temporal [31]. 
The Price equation has been proposed as a unifying principle in 
evolutionary biology, allowing the formulation and systematiza
tion of different evolutionary models and motivating the devel
opment of equations and models that reveal invariances and 
general principles [79, 80]. Here, we have used the selective com
ponent of the Price equation, specifically its interpretation in 

Table 9. Significant JHac tests (p-val< 0.05) for EN1–EN2 comparison (with 77 SNPs and sample sizes nEN1¼4224, nEN2¼ 4152).

EN1–EN2 Gene (protein) AA %

Block size Site (þ1þ130) (AA in EN1) position (AA 
in EN2)

(p1 j p2 j… EN1) : (p1 jp2 j… EN2)

11 23 063 ORF2 (S) N501Y (100):(1 j 99)
11 23 271 ORF2 (S) A570D (100):(2 j 98)
11 23 604 ORF2 (S) P681H (100):(1 j 99)
11 23 709 ORF2 (S) T716I (100):(1j 99)
11 24 506 ORF2 (S) S982A (100):(2j 98)
11 24 914 ORF2 (S) D1118H (100):(1j 99)

(þ1þ130): added to the program output position, the þ1 to correct the program indexing to 0 and the þ130 to correct the eliminated initial positions.

Table 10. Significant JHac tests (p-val<0.05) for EN2–EN3 
comparison (with 105 SNPs and sample sizes 
nEN2¼ 4152, nEN2¼5844).

EN2–EN3 Gene  
(protein)

AA

Block size Site (þ1þ130) (AA in EN2) position (AA in EN3)

18 22 917 ORF2 (S) L452R
18 22 995 ORF2 (S) T478K
13 23 604 ORF2 (S) H681R
12 24 410 ORF2 (S) D950N
12 28 461 ORF9 (N) D63G
11 28 881 ORF9 (N) K203M
13 29 402 ORF9 (N) D377Y

(þ1þ130): added to the program output position, the þ1 to correct the 
program indexing to 0 and the þ130 to correct the eliminated initial positions.
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terms of information theory [30], which allows the expression of 
the covariance between fitness and the trait under study in terms 
of Jeffreys divergence or population stability index. We have de
fined as a trait the HAC and used Jeffreys divergence to compare 
the distribution of the trait between two populations. The change 
in trait distribution would be compatible with the effect of selec
tive sweeps, whether due to divergent or directional selection, 
depending on whether we are comparing populations in space 
or time.

Limitations of the JHac method
The detection of selective sweeps is affected by different evolu
tionary and demographic scenarios. Throughout the space of the 
various parameters (mutation, recombination, background and 
deleterious selection, etc.), it is not difficult to find scenarios that 
generate an excess of false positives [20, 21]. In our case, we have 
seen that some evolutionary scenarios, such as bottlenecks, can 
generate interpopulation genomic patterns that increase the 
false-positive rate when using automatic window sizes centered 
on outliers. Although increasing the window size restores control 
over the false-positive rate, it is possible that other scenarios 
without positive selection could also alter the HAC patterns. 
Furthermore, an excessively large window size will cause the re
combination effect to dilute the swept signal.

Moreover, as we have already indicated, the method proposed 
here arises from the informational interpretation of the selective 
component of the Price equation. However, it is a statistical de
composition based on covariance, and we know that correlation 
does not imply causation. There is also no a priori guarantee that 
the partition between selection and transmission is additive [81]. 
Therefore, JHac is an indirect method that detects a genomic 

pattern possibly related to selection but which can also be gener
ated under other circumstances. Hence, the detected sites should 
be verified through direct methods such as the study of gene 
function, fitness, etc.

Finally, some genomic patterns of selection correlate with en
vironmental variables, making it difficult to separate both effects 
[24]. The method proposed here could be combined with other 
methods that take this correlation into account.

Concluding remarks
There are many statistics for identifying regions of selective 
sweeps in genomes, see for example [4, 9, 10, 13, 82]. The use of 
machine learning-based methods to detect selection patterns 
has been increasing due to their accuracy and ability to handle 
large amounts of complex data. The underlying idea of all these 
methods is to use classification algorithms trained with known 
response data (simulations). That is, if we aim to detect a selec
tion pattern, we train the algorithm with data that we know con
tains that pattern and with other data without the pattern. 
Different types of algorithms have been applied: neural net
works, extremely randomized trees, and boosting algorithms [9, 
13]. A major advantage of these methods is their power and flexi
bility, partly due to the ease of incorporating new statistics with 
minimal changes to the structure of the method. Two recent ma
chine learning methods have been designed to detect genomic 
signatures caused by natural selection, using a supervised multi- 
statistic machine learning approach [12, 83]. In this work, we 
have developed a new statistic, JHac, which, due to its known null 
distribution, allows us to efficiently and quite accurately test for 
the existence of genomic patterns compatible with selective 
sweeps. Therefore, JHac could be an additional measure to 

Table 11. Significant JHac tests (p-val<0.05) for the EN3–EN4 comparison (with 239 SNPs and sample sizes nEN3¼ 5844, nEN4¼ 3712).

EN3–EN4 Gene (protein) AA

Block size Site (þ1þ130) (AA in EN3) position (AA in SP2)

11 10 447 ORF1a (NSP5) P132H
11 22 674 ORF2 (S) S371F
11 22 679 ORF2 (S) S373P
11 22 686 ORF2 (S) S375F
11 22 775 ORF2 (S) D405N
11 22 786 ORF2 (S) R408S
11 22 813 ORF2 (S) K417N
11 22 898 ORF2 (S) G446S
11 22 992 ORF2 (S) S477N
11 23 019 ORF2 (S) F486P
11 23 055 ORF2 (S) Q498R
11 23 075 ORF2 (S) Y505H
11 25 000 ORF2 (S) D1146D
11 27 807 ORF7b L18L (ORF7a A82V, ORF7a I120T)

(þ1þ130): added to the program output position, the þ1 to correct the program indexing to 0 and the þ130 to correct the eliminated initial positions.

Table 12. Significant JHac tests (p-val<0.05) for the EN4–SP2 comparison (with 218 SNPs and sample sizes nEN4¼ 3712, nSP2¼221). Only 
amino acids with a frequency equal or greater than 1% are indicated.

EN4–SP2 Gene (protein) AA

Block size Site (þ1þ130) (EN4 AA) position (SP2 AA)

11 1545 ORF1a (NSP2) A427(71%Aj29%V)
13 15 026 ORF1b (NSP12) A520(71%Aj29%V)
11 22 895 ORF2 (S) (51%Hj47%Pj1%V) 

445(31%Hj39%Pj30%V)
11 24 134 ORF2 (S) L858(71%Lj29%I)

(þ1þ130): added to the program output position, the þ1 to correct the program indexing to 0 and the þ130 to correct the eliminated initial positions.
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consider for future AI-based selection detection methods. In ad

dition, JHac has been incorporated into the iHDSel program 

(https://acraaj.webs.uvigo.es/iHDSel.html) along with an auto

matic haplotype block detection system, so it can be run inde

pendently or in conjunction with the heuristic EOS outlier 

detection method [34].

Acknowledgements
I gratefully acknowledge all data contributors, that is the 

Authors and their Originating laboratories responsible for obtain

ing the specimens, and their Submitting laboratories for generat

ing the genetic sequence and metadata and sharing via the 

GISAID Initiative, on which the real data example in this article 

is based.

Funding
This work was supported by Xunta de Galicia (Grupo de 

Referencia Competitiva, ED431C 2024/22), Ministerio de Ciencia e 

Innovaci�on (PID2022-137935NB-I00), Centro singular de inves

tigaci�on de Galicia accreditation 2024-2027 (ED431G 2023/07) and 

ERDF A way of making Europe, and the Marine Science 

Programme (ThinkInAzul) supported by the Ministerio de Ciencia 

e Innovaci�on and Xunta de Galicia with funding from the 

European Union NextGenerationEU (PRTR-C17.I1) and European 

Maritime and Fisheries Fund. Funding for open access charge: 

Universidade de Vigo/CISUG.

Data availability
The simulated data underlying this article are available in 

https://zenodo.org/records/14269530?token=eyJhbGciOiJIUzUxMi 

J9.eyJpZCI6ImU2YzU3YmM2LThiZGEtNDQ1My1hZWQ0LTdiZWY 

xZWZiN2EzYSIsImRhdGEiOnt9LCJyYW5kb20iOiIzMmViMjk1Yjc4 

ODllNTFkNjM5MWFjMzMxZWNjNjg2NyJ9.4VSQkfoj-GdPaQ75yK 

hr_Hnoc2LyR5Fl9TpJcUm7HwBJyNXeWTk5s5afca_R5JruikIH16zY 

AadlE3XFlUyWywData associated with 30,274 SARS-CoV-2 

genomes are available on GISAID at the following links: https:// 

gisaid.org/EPI_SET_240212oy, https://gisaid.org/EPI_SET_240213ze, 

https://gisaid.org/EPI_SET_240212vc, https://gisaid.org/EPI_SET_ 

240213oc, https://gisaid.org/EPI_SET_240212xr, https://gisaid.org/ 

EPI_SET_240213br, https://gisaid.org/EPI_SET_240212sa and in the 

links indicated within the article.

References
01. Smith JM, Haigh J. The hitch-hiking effect of a favourable gene. 

Genet Res 1974;23:23–35.
02. Kaplan NL, Hudson RR, Langley CH. The “hitchhiking effect” re

vised. Genetics 1989;123:887–99.
03. Berry AJ, Ajioka J, Kreitman M. Lack of polymorphism on the 

drosophila fourth chromosome resulting from selection. 

Genetics 1991;129:1111–7.
04. Stephan W. Selective sweeps. Genetics 2019;211:5–13. https:// 

doi.org/10.1534/genetics.118.301319.

05. Johri P, Stephan W, Jensen JD. Soft selective sweeps: addressing 

new definitions, evaluating competing models, and interpreting 

empirical o0utliers. PLoS Genet 2022;18:e1010022. https://doi. 

org/10.1371/journal.pgen.1010022.

06. Sabeti PC, Varilly P, Fry B, International HapMap Consortium. 

Genome-wide detection and characterization of positive selec

tion in human populations. Nature 2007;449:913–8.
07. Kimura R, Fujimoto A, Tokunaga K et al. A practical genome 

scan for population-specific strong selective sweeps that have 

reached fixation. PLoS One 2007;2:e286. https://doi.org/10.1371/ 

journal.pone.0000286.

08. Chen H, Patterson N, Reich D. Population differentiation as a 

test for selective sweeps. Genome Res 2010;20:393–402. https:// 

doi.org/10.1101/gr.100545.109.

09. Horscroft C, Ennis S, Pengelly RJ et al. Sequencing era methods 

for identifying signatures of selection in the genome. Brief 

Bioinform 2019;20:1997–2008. https://doi.org/10.1093/bib/ 

bby064.
10. Abondio P, Cilli E, Luiselli D. Inferring signatures of positive se

lection in whole-genome sequencing data: an overview of 

haplotype-based methods. Genes (Basel) 2022;13:926. https://doi. 

org/10.3390/genes13050926.
11. Amin MR, Hasan M, Arnab SP et al. Tensor decomposition-based 

feature extraction and classification to detect natural selection 

from genomic data. Mol Biol Evol 2023;40:msad216. https://doi. 

org/10.1093/molbev/msad216.

12. Arnab SP, Amin MR, DeGiorgio M. Uncovering footprints of natural 

selection through spectral analysis of genomic summary statis

tics. Mol Biol Evol 2023;40:msad157. https://doi.org/10.1093/mol 

bev/msad157.
13. Panigrahi M, Rajawat D, Nayak SS et al. Landmarks in the his

tory of selective sweeps. Anim Genet 2023;54:667–88. https://doi. 

org/10.1111/age.13355.

14. Whitehouse LS, Schrider DR. Timesweeper: accurately identify

ing selective sweeps using population genomic time series. 

Genetics 2023;224:iyad084. https://doi.org/10.1093/genet 

ics/iyad084.
15. Kern AD, Schrider DR. DiploS/HIC: an updated approach to clas

sifying selective sweeps. G3 (Bethesda) 2018;8:1959–70. https:// 

doi.org/10.1534/g3.118.200262.

16. Lourenço VM, Ogutu JO, Rodrigues RAP et al. Genomic prediction 

using machine learning: a comparison of the performance of 

regularized regression, ensemble, instance-based and deep 

learning methods on synthetic and empirical data. BMC 

Genomics 2024;25:152. https://doi.org/10.1186/s12864-023- 

09933-x.
17. Delaneau O, Zagury JF, Robinson MR et al. Accurate, scalable 

and integrative haplotype estimation. Nat Commun 2019;10: 

5436. https://doi.org/10.1038/s41467-019-13225-y.
18. Meier JI, Salazar PA, Ku�cka M. et al. Haplotype tagging reveals par

allel formation of hybrid races in two butterfly species. Proc Natl 

Acad Sci USA 2021;118:e2015005118. https://doi.org/10.1073/ 

pnas.2015005118.
19. Shipilina D, Pal A, Stankowski S et al. On the origin and structure 

of haplotype blocks. Mol Ecol 2023;32:1441–57. https://doi.org/ 

10.1111/mec.16793.
20. Johri P, Aquadro CF, Beaumont M et al. Recommendations for 

improving statistical inference in population genomics. PLoS Biol 

2022;20:e3001669. https://doi.org/10.1371/journal.pbio.300 

1669.
21. Soni V, Johri P, Jensen JD. Evaluating power to detect recurrent 

selective sweeps under increasingly realistic evolutionary null 

models. Evolution 2023;77:2113–27. https://doi.org/10.1093/evo 

lut/qpad120.

22. Soni V, Jensen JD. Temporal challenges in detecting balancing 

selection from population genomic data. G3 (Bethesda) 2024;14: 

jkae069.  https://doi.org/10.1093/g3journal/jkae069.

The population stability index for the detection of genomic patterns | 11  

https://acraaj.webs.uvigo.es/iHDSel.html
https://zenodo.org/records/14269530?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImU2YzU3YmM2LThiZGEtNDQ1My1hZWQ0LTdiZWYxZWZiN2EzYSIsImRhdGEiOnt9LCJyYW5kb20iOiIzMmViMjk1Yjc4ODllNTFkNjM5MWFjMzMxZWNjNjg2NyJ9.4VSQkfoj-GdPaQ75yKhr_Hnoc2LyR5Fl9TpJcUm7HwBJyNXeWTk5s5afca_R5JruikIH16zYAadlE3XFlUyWywData
https://zenodo.org/records/14269530?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImU2YzU3YmM2LThiZGEtNDQ1My1hZWQ0LTdiZWYxZWZiN2EzYSIsImRhdGEiOnt9LCJyYW5kb20iOiIzMmViMjk1Yjc4ODllNTFkNjM5MWFjMzMxZWNjNjg2NyJ9.4VSQkfoj-GdPaQ75yKhr_Hnoc2LyR5Fl9TpJcUm7HwBJyNXeWTk5s5afca_R5JruikIH16zYAadlE3XFlUyWywData
https://zenodo.org/records/14269530?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImU2YzU3YmM2LThiZGEtNDQ1My1hZWQ0LTdiZWYxZWZiN2EzYSIsImRhdGEiOnt9LCJyYW5kb20iOiIzMmViMjk1Yjc4ODllNTFkNjM5MWFjMzMxZWNjNjg2NyJ9.4VSQkfoj-GdPaQ75yKhr_Hnoc2LyR5Fl9TpJcUm7HwBJyNXeWTk5s5afca_R5JruikIH16zYAadlE3XFlUyWywData
https://zenodo.org/records/14269530?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImU2YzU3YmM2LThiZGEtNDQ1My1hZWQ0LTdiZWYxZWZiN2EzYSIsImRhdGEiOnt9LCJyYW5kb20iOiIzMmViMjk1Yjc4ODllNTFkNjM5MWFjMzMxZWNjNjg2NyJ9.4VSQkfoj-GdPaQ75yKhr_Hnoc2LyR5Fl9TpJcUm7HwBJyNXeWTk5s5afca_R5JruikIH16zYAadlE3XFlUyWywData
https://zenodo.org/records/14269530?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImU2YzU3YmM2LThiZGEtNDQ1My1hZWQ0LTdiZWYxZWZiN2EzYSIsImRhdGEiOnt9LCJyYW5kb20iOiIzMmViMjk1Yjc4ODllNTFkNjM5MWFjMzMxZWNjNjg2NyJ9.4VSQkfoj-GdPaQ75yKhr_Hnoc2LyR5Fl9TpJcUm7HwBJyNXeWTk5s5afca_R5JruikIH16zYAadlE3XFlUyWywData
https://zenodo.org/records/14269530?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImU2YzU3YmM2LThiZGEtNDQ1My1hZWQ0LTdiZWYxZWZiN2EzYSIsImRhdGEiOnt9LCJyYW5kb20iOiIzMmViMjk1Yjc4ODllNTFkNjM5MWFjMzMxZWNjNjg2NyJ9.4VSQkfoj-GdPaQ75yKhr_Hnoc2LyR5Fl9TpJcUm7HwBJyNXeWTk5s5afca_R5JruikIH16zYAadlE3XFlUyWywData
https://gisaid.org/EPI_SET_240212oy
https://gisaid.org/EPI_SET_240212oy
https://gisaid.org/EPI_SET_240213ze
https://gisaid.org/EPI_SET_240212vc
https://gisaid.org/EPI_SET_240213oc
https://gisaid.org/EPI_SET_240213oc
https://gisaid.org/EPI_SET_240212xr
https://gisaid.org/EPI_SET_240213br
https://gisaid.org/EPI_SET_240213br
https://gisaid.org/EPI_SET_240212sa
https://doi.org/10.1534/genetics.118.301319
https://doi.org/10.1534/genetics.118.301319
https://doi.org/10.1371/journal.pgen.1010022
https://doi.org/10.1371/journal.pgen.1010022
https://doi.org/10.1371/journal.pone.0000286
https://doi.org/10.1371/journal.pone.0000286
https://doi.org/10.1101/gr.100545.109
https://doi.org/10.1101/gr.100545.109
https://doi.org/10.1093/bib/bby064
https://doi.org/10.1093/bib/bby064
https://doi.org/10.3390/genes13050926
https://doi.org/10.3390/genes13050926
https://doi.org/10.1093/molbev/msad216
https://doi.org/10.1093/molbev/msad216
https://doi.org/10.1093/molbev/msad157
https://doi.org/10.1093/molbev/msad157
https://doi.org/10.1111/age.13355
https://doi.org/10.1111/age.13355
https://doi.org/10.1093/genetics/iyad084
https://doi.org/10.1093/genetics/iyad084
https://doi.org/10.1534/g3.118.200262
https://doi.org/10.1534/g3.118.200262
https://doi.org/10.1186/s12864-023-09933-x
https://doi.org/10.1186/s12864-023-09933-x
https://doi.org/10.1038/s41467-019-13225-y
https://doi.org/10.1073/pnas.2015005118
https://doi.org/10.1073/pnas.2015005118
https://doi.org/10.1111/mec.16793
https://doi.org/10.1111/mec.16793
https://doi.org/10.1371/journal.pbio.3001669
https://doi.org/10.1371/journal.pbio.3001669
https://doi.org/10.1093/evolut/qpad120
https://doi.org/10.1093/evolut/qpad120
https://doi.org/10.1093/g3journal/jkae069


23. Galindo J, Carvalho J, Sotelo G et al. Genetic and morphological 

divergence between littorina Fabalis ecotypes in Northern 

Europe. J Evol Biol 2021;34:97–113. https://doi.org/10.1111/ 

jeb.13705.
24. Folkertsma R, Charbonnel N, Henttonen H et al. Genomic signa

tures of climate adaptation in bank voles. Ecol Evol 2024;14: 

e10886. https://doi.org/10.1002/ece3.10886.
25. Pamp�ın M, Casanova A, Fern�andez C et al. Genetic markers as

sociated with divergent selection against the parasite Marteilia 

Cochillia in common cockle (Cerastoderma Edule) using tran

scriptomics and population genomics data. Front Mar Sci 2023; 

10:1057106.
26. Vera M, Wilmes SB, Maroso F et al. Heterogeneous microgeo

graphic genetic structure of the common cockle (Cerastoderma 

Edule) in the Northeast Atlantic Ocean: biogeographic Barriers 

and environmental factors. Heredity (Edinb) 2023;131:292–305. 

https://doi.org/10.1038/s41437-023-00646-1.
27. Labuda D, Labb�e C, Langlois S et al. Patterns of variation in DNA 

segments upstream of transcription start sites. Hum Mutat 2007; 

28:441–50. https://doi.org/10.1002/humu.20463.

28. Hussin J, Nadeau P, Lefebvre JF et al. Haplotype allelic classes for 

detecting ongoing positive selection. BMC Bioinformatics 2010; 

11:65.
29. Price GR. Extension of covariance selection mathematics. Ann 

Hum Genet 1972;35:485–90.

30. Frank SA. Natural selection. V. How to read the fundamental 

equations of evolutionary change in terms of information the

ory. J Evol Biol 2012;25:2377–96.
31. Frank SA. Universal expressions of population change by the price 

equation: natural selection, information, and maximum entropy 

production. Ecol Evol 2017;7:3381–96. https://doi.org/10.1002/ 

ece3.2922.
32. Frank SA. Natural selection. IV. The price equation. J Evol Biol 

2012;25:1002–19.

33. Frank SA. Natural selection. VI. Partitioning the information in 

fitness and characters by path analysis. J Evol Biol 2013; 

26:457–71.
34. Carvajal-Rodr�ıguez A. HacDivSel: two new methods (haplotype- 

based and outlier-based) for the detection of divergent selection 

in Pairs of populations. PLoS One 2017;12:e0175944. https://doi. 

org/10.1371/journal.pone.0175944.
35. Gabi�an M, Mor�an P, Saura M et al. Detecting local adaptation be

tween North and South European Atlantic Salmon populations. 

Biology (Basel) 2022;11:933. https://doi.org/10.3390/biology11 

060933.
36. Frank SA. Simple unity among the fundamental equations of 

science. Philos Trans R Soc Lond B Biol Sci 2020;375:20190351. 

https://doi.org/10.1098/rstb.2019.0351.

37. Kullback S. Information Theory and Statistics; New Edition. Mineola, 

NY: Dover Publications, 1997.
38. Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical 

Learning: Data Mining, Inference, and Prediction, 2nd edn. Berlin, 

Germany: Springer Science & Business Media, 2009.

39. Manning CD, Raghavan P, Sch€utze H. Introduction to Information 

Retrieval. Cambridge: Cambridge University Press, 2008.
40. Lewontin RC. The interaction of selection and linkage. I. General 

considerations; heterotic models. Genetics 1964;49:49–67.

41. Carvajal-Rodr�ıguez A. GENOMEPOP: a program to simulate 

genomes in populations. BMC Bioinformatics 2008;9:223.
42. Barton NH. The effect of hitch-hiking on neutral genealogies. 

Genet Res 1998;72:123–33. https://doi.org/10.1017/S0016672 

398003462.

43. Thornton KR, Jensen JD. Controlling the false-positive rate in 

Multilocus genome scans for selection. Genetics 2007; 

175:737–50.
44. Harris RB, Sackman A, Jensen JD. On the unfounded enthusiasm 

for soft selective sweeps II: examining recent evidence from 

humans, flies, and viruses. PLoS Genet 2018;14:e1007859. https:// 

doi.org/10.1371/journal.pgen.1007859.

45. Terbot JW, Johri P, Liphardt SW et al. Developing an appropriate 

evolutionary baseline model for the study of SARS-CoV-2 pa

tient samples. PLoS Pathog 2023;19:e1011265. https://doi.org/10. 

1371/journal.ppat.1011265.

46. Terbot JW, Cooper BS, Good JM et al. A simulation framework for 

modeling the within-patient evolutionary dynamics of SARS-CoV- 

2. Genome Biol Evol 2023;15:evad204. https://doi.org/10.1093/ 

gbe/evad204.
47. Crow JF, Kimura M. An Introduction to Population Genetics Theory. 

New York, NY: Harper & Row, 1970.
48. Roughgarden J. Theory of Population Genetics and Evolutionary 

Ecology: An Introduction. New York, NY: Macmillan, 1996.
49. Khare S, Gurry C, Freitas L et al. GISAID’s role in pandemic response. 

China CDC Wkly 2021;3:1049–51. https://doi.org/10.46234/ 

ccdcw2021.255.
50. Aksamentov I, Roemer C, Hodcroft EB et al. Nextclade: clade as

signment, mutation calling and quality control for viral 

genomes. Joss 2021;6:3773. https://doi.org/10.21105/joss.03773.

51. Mathieu E, Ritchie H, Rod�es-Guirao L et al. Coronavirus pan

demic (COVID-19). Our World in Data. 2020. Published online at 

OurWorldinData.org. Retrieved from: ‘https://ourworldindata. 

org/coronavirus’ [Online Resource]
52. Br€ussow H. COVID-19: omicron—the latest, the least virulent, 

but probably not the last variant of concern of SARS-CoV-2. 

Microb Biotechnol 2022;15:1927–39. https://doi.org/10.1111/1751- 

7915.14064.
53. Wang X, Lu L, Jiang S. SARS-CoV-2 omicron subvariant BA.2.86: 

limited potential for global spread. Signal Transduct Target Ther 

2023;8:439–3. https://doi.org/10.1038/s41392-023-01712-0.

54. Wang X, Lu L, Jiang S. SARS-CoV-2 evolution from the BA.2.86 to 

JN.1 variants: unexpected consequences. Trends Immunol 2024; 

45:81–4. https://doi.org/10.1016/j.it.2024.01.003.
55. Kaku Y, Okumura K, Padilla-Blanco M et al.; Genotype to 

Phenotype Japan (G2P-Japan) Consortium. Virological charac

teristics of the SARS-CoV-2 JN.1 variant. Lancet Infect Dis 2024; 

24:e82. https://doi.org/10.1016/S1473-3099(23)00813-7.

56. O’Toole �A, Hill V, Pybus OG. et al. Tracking the international 

spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2 with 

Grinch [version 2; peer review: 3 approved]. Wellcome Open Res 

2021;6:121. https://doi.org/10.12688/wellcomeopenres.16661.2.

57. Katoh K, Standley DM. MAFFT multiple sequence alignment 

software version 7: improvements in performance and usabil

ity. Mol Biol Evol 2013;30:772–80. https://doi.org/10.1093/mol 

bev/mst010.
58. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple 

sequence alignment, interactive sequence choice and visualiza

tion. Brief Bioinform 2019;20:1160–6. https://doi.org/10.1093/ 

bib/bbx108.
59. van Dorp L, Acman M, Richard D et al. Emergence of genomic di

versity and recurrent mutations in SARS-CoV-2. Infect Genet Evol 

2020;83:104351. https://doi.org/10.1016/j.meegid.2020.104351.

60. Kumar S, Stecher G, Li M et al. MEGA X: molecular evolutionary 

genetics analysis across computing platforms. Mol Biol Evol 

2018;35:1547–9. https://doi.org/10.1093/molbev/msy096.
61. Jankowiak M, Obermeyer FH, Lemieux JE. Inferring selection 

effects in SARS-CoV-2 with Bayesian viral allele selection. PLoS 

12 | Carvajal-Rodr�ıguez  

https://doi.org/10.1111/jeb.13705
https://doi.org/10.1111/jeb.13705
https://doi.org/10.1002/ece3.10886
https://doi.org/10.1038/s41437-023-00646-1
https://doi.org/10.1002/humu.20463
https://doi.org/10.1002/ece3.2922
https://doi.org/10.1002/ece3.2922
https://doi.org/10.1371/journal.pone.0175944
https://doi.org/10.1371/journal.pone.0175944
https://doi.org/10.3390/biology11060933
https://doi.org/10.3390/biology11060933
https://doi.org/10.1098/rstb.2019.0351
https://doi.org/10.1017/S0016672398003462
https://doi.org/10.1017/S0016672398003462
https://doi.org/10.1371/journal.pgen.1007859
https://doi.org/10.1371/journal.pgen.1007859
https://doi.org/10.1371/journal.ppat.1011265
https://doi.org/10.1371/journal.ppat.1011265
https://doi.org/10.1093/gbe/evad204
https://doi.org/10.1093/gbe/evad204
https://doi.org/10.46234/ccdcw2021.255
https://doi.org/10.46234/ccdcw2021.255
https://doi.org/10.21105/joss.03773
https://ourworldindata.org/coronavirus
https://ourworldindata.org/coronavirus
https://doi.org/10.1111/1751-7915.14064
https://doi.org/10.1111/1751-7915.14064
https://doi.org/10.1038/s41392-023-01712-0
https://doi.org/10.1016/j.it.2024.01.003
https://doi.org/10.1016/S1473-3099(23)00813-7
https://doi.org/10.12688/wellcomeopenres.16661.2
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/bib/bbx108
https://doi.org/10.1093/bib/bbx108
https://doi.org/10.1016/j.meegid.2020.104351
https://doi.org/10.1093/molbev/msy096


Genet 2022;18:e1010540. https://doi.org/10.1371/journal. 
pgen.1010540.

62. Garcia I, Lee Y, Brynildsrud O et al. Tracing the adaptive evolu

tion of SARS-CoV-2 during vaccine roll-out in Norway. Virus Evol 
2024;10:vead081. https://doi.org/10.1093/ve/vead081.

63. Kelly JA, Woodside MT, Dinman JD. Programmed −1 ribosomal 
frameshifting in coronaviruses: a therapeutic target. Virology 

2021;554:75–82. https://doi.org/10.1016/j.virol.2020.12.010.
64. Gangavarapu K, Latif AA, Mullen JL et al.; GISAID Core and 

Curation Team. Outbreak. Info genomic reports: scalable and 

dynamic surveillance of SARS-CoV-2 variants and mutations. 
Nat Methods 2023;20:512–22. https://doi.org/10.1038/s41592- 
023-01769-3.

65. Cai HY, Cai A. SARS-CoV2 spike protein gene variants with 
N501T and G142D mutation–dominated infections in mink in 
the united States. J Vet Diagn Invest 2021;33:939–42. https://doi. 

org/10.1177/10406387211023481.
66. Dhawan M, Sharma A, Thakur N et al. Delta variant (B.1.617.2) 

of SARS-CoV-2: mutations, impact, challenges and possible sol
utions. Hum Vaccin Immunother 2022;18:2068883. https://doi.org/ 

10.1080/21645515.2022.2068883.
67. Kannan SR, Spratt AN, Sharma K et al. Omicron SARS-CoV-2 vari

ant: unique features and their impact on pre-existing antibodies. J 

Autoimmun 2022;126:102779. https://doi.org/10.1016/j.jaut.2021. 
102779.

68. Mahmood TB, Hossan MI, Mahmud S et al. Missense mutations 

in spike protein of SARS-CoV-2 delta variant contribute to the 
alteration in viral structure and interaction with HACE2 recep
tor. Immun Inflamm Dis 2022;10:e683. https://doi.org/10.1002/ 
iid3.683.

69. Kannan SR, Spratt AN, Cohen AR et al. Evolutionary analysis of 
the delta and delta plus variants of the SARS-CoV-2 viruses. J 
Autoimmun 2021;124:102715. https://doi.org/10.1016/j.jaut. 

2021.102715.
70. He P, Liu B, Gao X et al. SARS-CoV-2 delta and omicron variants evade 

population antibody response by mutations in a single spike epitope. 

Nat Microbiol 2022;7:1635–49. https://doi.org/10.1038/s41564-022- 
01235-4.

71. Bhattacharya M, Chatterjee S, Sharma AR et al. Delta variant 

(B.1.617.2) of SARS-CoV-2: current understanding of infection, 
transmission, immune escape, and mutational landscape. Folia 
Microbiol (Praha) 2023;68:17–28. https://doi.org/10.1007/s12223- 
022-01001-3.

72. Hossain A, Akter S, Rashid AA et al. Unique mutations in SARS- 

CoV-2 omicron subvariants’ non-spike proteins: potential 

impacts on viral pathogenesis and host immune evasion. Microb 

Pathog 2022;170:105699. https://doi.org/10.1016/j.micpath. 

2022.105699.
73. Basheer A, Zahoor I, Yaqub T. Genomic architecture and evolu

tionary relationship of BA.2.75: a Centaurus subvariant of omi

cron SARS-CoV-2. PLoS One 2023;18:e0281159. https://doi.org/ 

10.1371/journal.pone.0281159.
74. Chen S, Huang Z, Guo Y et al. Evolving spike mutations in SARS- 

CoV-2 omicron variants facilitate evasion from breakthrough 

infection-acquired antibodies. Cell Discov 2023;9:86. https://doi. 

org/10.1038/s41421-023-00584-6.
75. Hu B, Chan JF-W, Liu H et al. Spike mutations contributing to the 

altered entry preference of SARS-CoV-2 omicron BA.1 and BA.2. 

Emerg Microbes Infect 2022;11:2275–87.

76. Zheng B, Xiao Y, Tong B et al. S373P mutation stabilizes the 

receptor-binding domain of the spike protein in omicron and 

promotes binding. JACS Au 2023;3:1902–10. https://doi.org/10. 

1021/jacsau.3c00142.
77. Parums DV. Editorial: the XBB.1.5 ('Kraken’) subvariant of omi

cron SARS-CoV-2 and its rapid global spread. Med Sci Monit 2023; 

29:e939580. https://doi.org/10.12659/MSM.939580.
78. Ao D, He X, Hong W et al. The rapid rise of SARS-CoV-2 omicron 

subvariants with immune evasion properties: XBB.1.5 and BQ.1.1 

subvariants. MedComm (2020) 2023;4:e239. https://doi.org/10.1002/ 

mco2.239.

79. Luque VJ. One equation to rule them all: a philosophical analy

sis of the price equation. Biol Philos 2017;32:97–125. https://doi. 

org/10.1007/s10539-016-9538-y.
80. Luque VJ, Baravalle L. The mirror of physics: on how the price 

equation can unify evolutionary biology. Synthese 2021;199: 

12439–62. https://doi.org/10.1007/s11229-021-03339-6.
81. Okasha S, Otsuka J. The price equation and the causal analysis 

of evolutionary change. Philos Trans R Soc Lond B Biol Sci 2020;375: 

20190365. https://doi.org/10.1098/rstb.2019.0365.
82. Horscroft C, Pengelly R, Sluckin TJ et al. Zalpha: an R package for 

the identification of regions of the genome under selection. Joss 

2020;5:2638.
83. Lauterbur ME, Munch K, Enard D. Versatile detection of diverse 

selective sweeps with flex-sweep. Mol Biol Evol 2023;40: 

msad139. https://doi.org/10.1093/molbev/msad139.

© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons. 
org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly 
cited. For commercial re-use, please contact journals.permissions@oup.com
Biology Methods and Protocols, 2024, 9, 1–13
https://doi.org/10.1093/biomethods/bpae089
Methods Article

The population stability index for the detection of genomic patterns | 13  

https://doi.org/10.1371/journal.pgen.1010540
https://doi.org/10.1371/journal.pgen.1010540
https://doi.org/10.1093/ve/vead081
https://doi.org/10.1016/j.virol.2020.12.010
https://doi.org/10.1038/s41592-023-01769-3
https://doi.org/10.1038/s41592-023-01769-3
https://doi.org/10.1177/10406387211023481
https://doi.org/10.1177/10406387211023481
https://doi.org/10.1080/21645515.2022.2068883
https://doi.org/10.1080/21645515.2022.2068883
https://doi.org/10.1016/j.jaut.2021.102779
https://doi.org/10.1016/j.jaut.2021.102779
https://doi.org/10.1002/iid3.683
https://doi.org/10.1002/iid3.683
https://doi.org/10.1016/j.jaut.2021.102715
https://doi.org/10.1016/j.jaut.2021.102715
https://doi.org/10.1038/s41564-022-01235-4
https://doi.org/10.1038/s41564-022-01235-4
https://doi.org/10.1007/s12223-022-01001-3
https://doi.org/10.1007/s12223-022-01001-3
https://doi.org/10.1016/j.micpath.2022.105699
https://doi.org/10.1016/j.micpath.2022.105699
https://doi.org/10.1371/journal.pone.0281159
https://doi.org/10.1371/journal.pone.0281159
https://doi.org/10.1038/s41421-023-00584-6
https://doi.org/10.1038/s41421-023-00584-6
https://doi.org/10.1021/jacsau.3c00142
https://doi.org/10.1021/jacsau.3c00142
https://doi.org/10.12659/MSM.939580
https://doi.org/10.1002/mco2.239
https://doi.org/10.1002/mco2.239
https://doi.org/10.1007/s10539-016-9538-y
https://doi.org/10.1007/s10539-016-9538-y
https://doi.org/10.1007/s11229-021-03339-6
https://doi.org/10.1098/rstb.2019.0365
https://doi.org/10.1093/molbev/msad139

	Active Content List
	Introduction
	The Price equation and the population stability index for comparing population genomes
	Phenotypic scale, linkage disequilibrium, and window size
	Discussion
	Acknowledgements
	Funding
	Data availability
	References


