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Commensal microflora engages in a 
symbiotic relationship with their 

host, and plays an important role in the 
development of colorectal cancer (CRC). 
Pathogenic bacteria promote chronic 
intestinal inflammation and accelerate 
tumorigenesis. In sporadic CRC, loss of 
an effective epithelial barrier occurs at 
early stage of CRC development. As a 
result, non-pathogenic bacteria and/or 
their products infiltrate tumor stroma, 
drive “tumor-elicited inflammation” and 
promote CRC progression by activating 
tumor-associated myeloid and immune 
cells that produce IL-23 and IL-17. In 
this article we will summarize the recent 
advances in understanding the relation-
ship between gut flora and CRC.

Commensal bacteria reside on the epithe-
lial surfaces of the gastro-intestinal tract, 
lung and skin and engage in a symbiotic 
relationship with their host.1 Commensal 
microflora assist host metabolism, protect 
from infection by pathogenic bacteria and 
fungi, and serve as guides and educators 
for development of host immune system.2-5 
However, the seemingly happy marriage 
(symbiosis) between the commensal 
microflora and the host also carries the 
risk of household dispute. Dysregulated 
interaction between commensal and their 
host is a critical driving factor in the devel-
opment of chronic inflammation, meta-
bolic disorder, cardiovascular disease, and 
cancer.2,6-8

The link between chronic inflam-
mation and cancer has long been sus-
pected since Rudolf Virchow discovered 
immune cell infiltration in tumors in 
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the mid-1800s.9 It is estimated that 20% 
of human cancers are linked to chronic 
inflammation and persistent infection. 
Examples of such association include 
Helicobacter pylori infection with gastric 
cancer, HBV and HCV infections with 
hepatocellular carcinoma (HCC), and 
chronic inflammatory bowel diseases 
(IBD) with colorectal cancer (CRC).10-12 
Yet the majority of cancers that are not 
associated with preceding inflammation 
contain inflammatory infiltrates. The eti-
ology of such “tumor-elicited inflamma-
tion,” and its role in cancer development, 
had remained largely elusive.

We recently reported a novel mecha-
nism for the induction of tumor-elicited 
inflammation. Using a mouse model of 
sporadic CRC, we observed a striking loss 
of barrier function in transformed epithe-
lial cells of colonic adenomas.13 Loss of 
epithelial barrier function results in infil-
tration of bacterial products that activate 
tumor-associated macrophages to induce 
the production of inflammatory cyto-
kines including IL-23 and promote tumor 
growth and progression. Immune and 
myeloid cells in the tumor stoma that pro-
duce IL-17, IL-6, IL-22, and IL-23 play 
key roles in this process (Fig. 1).13

Mucosal layers and epithelial junc-
tional structures serve as strong barri-
ers that prevent translocation of bacteria 
and their products into intestinal tissue. 
Goblet cells produce mucus and secrete it 
into the lumen of intestinal tract. Highly 
glycosylated MUC2 protein forms a 
net-like polymer that spreads into lay-
ers above epithelial lining, and prevents 
close contact between the epithelial cells 
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and commensal bacteria.14 Mice lack-
ing MUC2 develop spontaneous colitis 
and colitis-associated CRC (CAC).15,16 
Ablation of MUC2 in ApcMin mice 
resulted in significantly increased intes-
tinal tumorigenesis, especially in the 
colon.17 Mice lacking the enzyme for 
mucin glycosylation also showed increased 
colonic permeability, and are highly sus-
ceptible to induction of colitis and CAC.18 
These data indicate that the mucus layer 
protects the host from colitis and CAC 
by keeping commensal microflora at a 
distance from the intestinal epithelium. 
Using a model of spontaneous CRC, we 
found that colonic adenomas are devoid 
of goblet cells that produce and secrete 
mucus.13 MUC2 mRNA levels are signifi-
cantly downregulated in both mouse and 
human colorectal adenomas, indicating 
defective mucus production and/or goblet 
cell differentiation already in early tumor-
igenesis.13 The relationship between the 
mucus layer and CRC therefore becomes 

significant already at early stages of CRC 
development. Loss of mucin layer either 
before or early during CRC development 
serves as a driver of colonic tumorigen-
esis by augmenting tumor-promoting 
inflammation.

The intestinal epithelial barrier also 
depends on tight junction and adhesion 
junction proteins. These junctional struc-
tures define the apical and baso-lateral sur-
face of polarized epithelial cells. Junctional 
structures also control paracellular traffic 
of ions and molecules, and prevent inva-
sion of the epithelium by microorgan-
isms.19 Dysregulated junctional function 
and translocation of microbes is seen 
in multiple human diseases, including 
IBD, HIV infection, and alcohol abuse.6 
Ablation of JAM-A, a component of tight 
junction complex, resulted in enhanced 
colonic permeability and inflammation in 
mice.20 Altered expression of tight junc-
tion proteins was also reported in human 
colorectal cancer tissues.21 The change in 

junctional proteins was mostly speculated 
to be important in malignant progression 
of cancers. We found that the expression 
and localization of multiple junctional 
proteins, including claudins and junc-
tion–adhesion molecules (JAMs), are 
dysregulated in colonic adenomas com-
pared with adjacent normal colon tissue.13 
Importantly, loss of barrier proteins was 
also observed in early human adenomas 
and in acutely induced aberrant foci in the 
mouse colon, suggesting that barrier defect 
is an early event during colon tumorigen-
esis.13 Loss of the APC tumor suppressor 
gene and activation of b-catenin confers 
a proliferative state on enterocytes and 
blocks their differentiation.22 Loss of bar-
rier function may therefore come as a con-
sequence of b-catenin activation and/or 
APC loss, in part due to loss of membrane 
localized, intact b-catenin, which controls 
cytoskeleton dynamics.23

With the loss of barrier function at 
the adenoma surface during early CRC 

Figure 1. iL-23/iL-17 axis in tumor-elicited inflammation induced by barrier loss. normal intestinal epithelium is covered by a mucus layer produced by 
goblet cells. enterocytes also form tight junctions that control paracellular translocation of ions and molecules, and prevent translocation of commen-
sal bacteria and their products into the lamina propria. Loss of Apc and activation of b-catenin induce adenoma formation in the intestine. Adenoma 
cells fail to produce mucus and form an effective intercellular junctional structure. As a consequence, gut bacteria and/or their products translocate 
into tumor stroma and activate tumor associated macrophages to produce iL-23, which in turn signals to th17 cells and other iL-17 producing cells. 
iL-17 signals on adenoma cells and activates StAt3 indirectly to promote their proliferation.
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development, bacteria and/or their prod-
ucts come into close contact with trans-
formed enterocytes and breach into the 
tumor stoma. Indeed, when injected 
into clamped mouse colon, fluorescent-
labeled LPS was detected within tumors 
but not within adjacent normal tissue, 
and co-localized with the macrophage 
marker F4/80.13 By using fluorescent in 
situ hybridization against bacterial 16S 
RNA, we also detected presence of bacte-
ria in colorectal tumors and close to tumor 
epithelial cells of mouse and human early 
adenomas.13 Infiltration of bacterial prod-
ucts serves as a driving force for tumor-
elicited inflammation. The invading 
bacteria or bacterial products activate toll-
like receptor (TLR)/MyD88 signaling in 
tumor associated macrophages, leading to 
the production of IL-23.

IL-23 belongs to the IL-12 family of 
heterodimeric cytokines that includes 
IL-12, IL-23, IL-27, and IL-35.24,25 IL-23 
is composed of a unique p19 subunit, and a 
p40 subunit which it shares with IL-12.24-

26 IL-23 is a major cytokine that promotes 
inflammation in a variety of autoimmune 
diseases. Ablation of the p19 subunit of 
IL-23 resulted in diminished experimen-
tal autoimmune encephalomyelitis (EAE) 
induction, similar to the effect of IL-12p40 
deletion.27 IL-23 was also found critical 
for other autoimmune diseases including 
rheumatoid arthritis,28 psoriasis,29 and 
IBD.30-32 IL-23 is upregulated in multiple 
human cancers and ablation of the Il23p19 
gene resulted in reduced tumorigenesis in 
a mouse model of skin cancer.33

In colonic adenomas, IL-23 signals to 
hematopoietic cells and upregulates the 
expression of other cytokines including 
IL-6, IL-17, and IL-22. By doing so IL-23 
indirectly activates STAT3 in tumor cells 
and promotes tumor growth.13 It is note-
worthy that in human patients with stage 
I/II colorectal cancer, a high “Th17 signa-
ture” confers drastically reduced disease-
free survival after resection of primary 
tumors.34 Screening of early CRC cases 
for IL-17 expression and adjuvant treat-
ment of patients showing a high “Th17-
signature” with IL-23 or IL-17 antagonists 
may prove beneficial in extending disease-
free survival in early stage CRC.

Over 1000 species of mostly uncul-
turable bacteria, at a sum total of 100 

trillion, reside in the human colon and 
form a normally symbiotic relationship 
with their host. However, a dysregulated 
relationship between the host and flora 
bacteria also causes multiple human dis-
eases, including infections, obesity, IBD, 
and CRC.1,3,35 Translocation of bacte-
ria into mesenteric lymph nodes signals 
poor prognosis in human CRC patients.36 
Entertoxigenic Bacteroides fragilis (ETBF) 
causes inflammatory diarrhea in some 
humans. Colonization of the mouse 
intestine with ETBF triggered colitis and 
strongly increased tumorigenesis in the 
APCMin model of CRC, with a robust 
IL-17 response and STAT3 activation 
in mouse colon.37 ETBF also promotes 
colonic tumorigenesis by inducing the 
production of reactive oxygen species and 
DNA damage.38 Infection of APCMin mice 
with Citrobacter rodentium also resulted in 
elevated tumor formation in the colon.39 
In a model of CAC driven by loss of IL-10, 
chronic inflammation disturbs microbiota 
composition and enriches the percent-
age of E. coli in mice reconstituted from 
a germ-free facility.40 Polyketide synthase 
(pks) genotoxic island from E. coli is more 
prevalent in patients with IBD and CRC, 
and promotes colonic tumorigenesis and 
malignant progression in mice.40 On the 
contrary, delivery of Lactobacillus aci-
dophilus that is deficient in the production 
of lipoteichoic acid (LTA) protected mice 
against colitis, and caused regression of 
colonic adenomas.41 LTA is a component 
of the cell wall of several gram-positive 
bacteria and is recognized by TLR2 to 
stimulate cytokine production by den-
dritic cells and possibly other immune 
and myeloid cells.42 Use of LTA-deficient 
L. acidophilus as probiotics ameliorated 
detrimental inflammation in mice and 
protected them from colonic tumorigen-
esis.41 Such an effect remains to be dem-
onstrated in humans.

The discovery of barrier breach dur-
ing adenoma formation as a driving force 
behind “tumor-elicited inflammation” 
and cancer progression adds to our cur-
rent knowledge of the involvement of bac-
teria in CRC. In this case the otherwise 
“benign” bacteria in our microbiota can 
turn into an oncogenic factor due to altered 
host defense mechanism, suggesting the 
uniqueness of the mucosal environment in 

prevention of cancer development. Similar 
mechanism may exist in cancers of other 
bacteria-rich epithelial surfaces, including 
lung, skin, and other sections of the gas-
trointestinal tract.
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