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Abstract 

Fibroproliferative diseases of organs are poorly understood and generally lack effective anti-fibrotic treatments. 

Our goal was to identify the key regulatory factors in pathologic fibrosis, common between organ-based fibrotic 

disease. We analyzed 9 microarray datasets publicly available in the GEO datasets from lung, heart, liver and 

kidney fibrotic disease tissue (489 microarrays total, disease and control). We identified a set of 90 genes 

differentially expressed in at least five microarray datasets. We used IPA and DAVID analysis to identify gene 

networks and their molecular functions. A mutual information based network work activity analysis showed that a 

connective tissue disorders network was the most active for all types of fibrosis included in this analysis. 

Conclusion: Our analysis indicates that despite different disease manifestation, organ fibrosis share a specific set of 

genes suggesting the potential for a common origin. 

Introduction 

Fibrotic diseases are responsible for 45% of deaths
1
 in the developed world, hence interventions targeting excessive 

fibrosis are a major therapeutic goal. The concept of 'core' and 'regulatory' pathways in focused on the fundamental 

regulatory pathways involved in multi-organ fibrosis, specific for human fibrotic disease rather than mouse models, 

is still an enigma as recently reviewed in Nature Medicine
2
. Fibrosis is a degenerative process that can lead to end-

stage disease and loss of function in the lung
3,4

, heart
5
, liver

6
 or kidney

7
 (top 15 causes of deaths in U.S.)

8
. Organ 

fibrosis is marked by fibroblast activation and abundant extracellular matrix (ECM) deposition, suggesting abnormal 

wound healing. Fibroblasts are the main contributor to ECM remodeling and excessive collagen deposition in 

fibrosis. Fibroblast transition to myofibroblast is a common denominator for pathologic fibrosis
1
 and tumor stroma

9-

11
. In addition, pathological organ fibrosis share several common pathways and biological processes, like TGF-β, 

MAPK, and PDGF activation; epithelial-to-mesenchymal transition (EMT); metalloproteinase (MMP) activation; 

mechanical tension; oxidative stress; and inflammation
5,6,12-18

.  

Despite extensive efforts, there are still large gaps in understanding the fundamental molecular pathways in fibrotic 

diseases across multiple organs. To date, predictive gene signatures have been interrogated for liver or kidney 

fibrotic disease, but this approach exists more as separate organ-based disease, as opposed for a connected 

pathological syndrome. For example, a seven-gene
19

 predictive signature has been outlined for hepatitis C viral 

infection-induced liver fibrosis. For kidney fibrosis,  comparative analysis of four independent microarray datasets 

generated the  “molecular Banff” signature, a 70-genes signature for acute rejection transcript set and a molecular 

diagnostic approach for early rejection in renal transplant
20

. Recently, one study using a cross-organ classifier of 

fibrotic conditions identified a set of markers of human solid organ fibrosis, applicable for renal post-transplant 

outcome
21

. Since fibrotic disorders share similar pathological characteristics, including increased collagen 

deposition and myofibroblast activation, we hypothesized that common genes and pathways regulating these 

processes are perturbed in fibrosis and we selected gene expression data from fibrosis in multiple organs. 

Identifying common differentially expressed genes in multiple datasets is an effective way to increase the power of 

discovering genes related to key disease phenotypes regardless of different etiology and tissue specificity. Similar 

methods have been applied on other diseases such as diabetes
22

, multiple types of cancers
23

 and neural diseases
24

. In 

this study, we extend this method for fibrotic diseases. However, it has become increasingly accepted that for 

complicated diseases, genes and their protein products act in networks with orchestrated activities. Therefore it is 

critical to identify the protein-protein interaction (PPI) networks which are involved in the disease development 

processes. In this study, we use the common differentially expressed genes as “baits” to fish out relevant PPI 

networks. Starting with these genes, we adopt a commonly used network analysis software Ingenuity Pathway 

Analysis (IPA, http://www.ingenuity.com) to infer potential relevant PPI networks. The IPA KnowledgeBase has a 
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large collection of known PPI relationships and thus can serve as a adequate resource for our study. The relevance of 

the networks with individual fibrotic conditions is determined using a mutual information based network activity 

score
25

 which has been applied to many diseases studies such as colon cancers 
26,27

.  

To summarize, we developed a translational bioinformatics pipeline for identifying key genes and networks related 

to fibrosis. We use techniques that have been validated in various diseases such as diabetes
22

, cancer
23

, and neural 

diseases
24

 for a novel application to identify common pathways underlying fibrosis of different organs. Our analysis 

provides a novel view to better understanding the common fundamental pathways in organ fibrosis, by using 

bioinformatics approach for screening genes and networks across multiple organ fibrosis. 

Methods 

Data selection 

The GEO database was searched for the following fibrotic disorders: idiopathic pulmonary fibrosis (IPF), liver 

cirrhosis, kidney fibrosis, and heart failure (Figure 1). Our search criteria included: 1) both control and disease 

groups should be present in the datasets, 2) the tissue samples are collected from disease organ (e.g., immortal cell 

lines and blood are excluded), and 3) at least 5 samples in each group are required for robust statistical analysis. 3 

lung datasets, 2 liver, 2 kidney, and 2 heart datasets were downloaded and used for analysis (Table 1).  

Table 1: Components of datasets used for statistical analysis. 

Organ Datasets # of Fibrosis # of Control Fibrosis 

Lung 

GSE10667
28,29 

31 15 IPF 

GDS1252
30,31

 13 11 IPF 

GDS3705
32

 7 8 Sarcoidosis 

Heart 
GSE5406

33
 194 16 Heart failure 

GSE14975
34

 5 5 Atrial fibrillation 

Liver 
GSE6764

35
 13 10 Cirrhosis 

GSE14323
36

 41 19 Cirrhosis 

Kidney 
GSE12682

37
 23 13 Tubulointerstitial fibrosis 

GSE22459
38

 40 23 Interstitial fibrosis/tubular atrophy 

Total  367 122  

 

Data analysis workflow 

Figure 1 gives an overview of our workflow for analyzing genes and PPI networks involved in multiple organ 

fibrosis. The details of the algorithms are given in following sections.  

Select multiple (9) datasets of fibrosis from GEO 

Perform a student's t-test on every gene between fibrosis in control and select genes with p < 0.05, 

mean fold change >|1.5| for each datasets and obtain nine gene lists 

Construct PPI networks with the selected genes using IPA 

Compute mutual information based network activity scores and compare with score threshold 

obtained from random simulation to identify active networks involved in multi-organ fibrosis. 

Perform Gene Ontology analysis on networks using DAVID 

 Select genes consistently up or downregulated in at least FIVE out of the nine gene lists 

Figure 1. Workflow for identifying common genes and networks among multiple types of fibrosis. 
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In general, we first identify genes that are consistently differentially regulated in more than half (5 out of 9) of the 

datasets. Then PPI networks associated with these genes are established using the Ingenuity Pathway Analysis (IPA) 

software with the network building function. These networks are further screened for their association with specific 

fibrotic disease status using a mutual information based network activity score developed by Chuang et al 
25

. In 

order to determine the threshold to select gene networks with high mutual information (and hence high relevance 

with metastasis), 1,000 random sets of genes are selected and the mutual information score is calculated. The 

threshold is set to be the top five percentile of the random simulations. Finally the selected gene networks with high 

mutual information are subject to gene set enrichment analysis using DAVID (http://david.abcc.ncifcrf.gov/). 

Microarray analysis 

All expression values were quantile normalized within each dataset using the MATLAB Bioinformatics Toolbox 

(R2010a). An unpaired two-sample student's t-test was performed on each gene between fibrosis and control 

expression values for each dataset. Genes with p < 0.05 and at least 1.5 mean fold change that were consistently up- 

or downregulated were identified as significantly differentially expressed. A list of genes that satisfied these criteria 

were selected and the number of times each gene was significant in a dataset was counted. Expression values were 

averaged if multiple probes mapped to the same genes. Probes that did not map to a known gene were eliminated 

from further analysis. Mean fold change between fibrosis and control was calculated for each gene and averaged 

across all datasets in which the gene was differentially expressed. 

Network analysis using IPA  

All genes significant in at least 5 datasets were input into Ingenuity Pathway Analysis (IPA) 

(http://www.ingenuity.com) which has a well curated protein-protein interaction knowledgebase. For this analysis 

we chose genes that met the criteria for differential expression (>1.5 fold change, p < 0.05) and were found in more 

than half of the total number of datasets.  

Mutual information based network activity analysis 

Given a network with a set of genes, a network activity score over different groups of samples was developed 

previously in 
25

 based on mutual information (MI). While the details of the method are given in 
25

, here we outline 

the steps: 

1. Given a network with � genes across � samples with gene expression levels ���  �� 	 1, 2, … , �; � 	 1,2, … , ��, 

we first transform them into z-scores ���  such that for every gene the mean is 0 and standard deviation is 1.  

2. For each sample �, the total z-score �� over all the � genes is �� 	 ∑ ��� .�
���  

3. Let the sample label vector be � 	  ���, ��, … , ���. For this paper, �� is 0 for non-metastatic patients and is 1 for 

metastatic patients. The network activity score is defined as  

� 	 �����, �� 	 ∑ ∑ �� , !�"#�
$�%,&�

$�%�$�&�&'(%')* , 

where �� , !� is the joint probability distribution of the discretized total z-scores and the sample labels and �� is the 

obtained by distributing the total z-scores into +log� � / 10 evenly spaced levels. 

Comparing to other methods such as t- or Wilcox score, MI does not require assumptions on data distribution. In 

addition, this metric can also accommodate the case when there are subgroups in each group, which is possible 

among patients with complicated diseases such as fibrosis.   

In this study, significant networks identified using IPA were tested using a MATLAB implementation of the mutual 

information approach applied to all 9 datasets 
25

.  

Random simulation to determine the threshold for network activity scores 

Given the network activity scores for all the networks, we need to select the ones with high scores. To find the 

threshold, we carry out random simulations by randomly select a set of �1 genes where �1 is between 5 and 17 and 

compute its network activity score. This range of genes was chosen based on the number of genes from our list that 

IPA used to generate the original networks, called "focus molecules". This is then repeated 1,000 times, the top five-

percentile level is used as the 5% FDR threshold for selecting the networks by Srand. Networks with S > Srand were 

significantly active in that dataset. Each network had a count corresponding to the number of datasets its S > Srand. 

Gene ontology information for the genes of the selected networks was accessed using the NIH DAVID webtool. 
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Results 

Differentially expressed gene identification 

After applying quantile normalization and a t-test for each dataset as described in Methods, the combined list 

contained 17,335 genes that were expressed in at least one dataset, with p < 0.05 regardless of mean fold change 

(Figure 2). There were no genes expressed in all 9 datasets with p < 0.05. COL1A1, ITSN1, RUNX3, SMAD2, and 

WIPF1 were the only genes expressed in 8 out of 9 datasets, with p < 0.05 without considering the fold difference 

vs. control. These genes have important implications for fibrosis, particularly COL1A1
39

, which encodes the pro-

alpha1 chain of type I collagen. SMAD2 is a known to be activated by TGF-β, responsible for the downstream 

effects of TGF-β like fibroblast activation, myofibroblast production, cell apoptosis and proliferation
40,41

.  ITSN1 

(Intersectin 1)
42

 and WIPF1 (WAS/WASL interacting protein family, member 1)
43 are involved in regulating the 

actin cytoskeleton, are novel for fibrosis. RUNX3 (Runt-related transcription factor 3) is a transcription factor 

involved in tumor suppression
44

. WIPF1, an important protein in Wiskott-Aldrich syndrome, was the most 

frequently differentially expressed gene and met the criteria for 1.5 fold change in 8 datasets. TGFBI (Transforming 

growth factor, beta-induced) and RNASET2 (Ribonuclease T2) were the only genes differentially expressed in 7 

datasets.  

Genes in significant networks using mutual information 

Of the 17,335 genes expressed in at least one dataset (p < 0.05), only 839 genes were present in 5 or more datasets, 

over half of the datasets. From these 839 genes, 90 genes were significantly differentially expressed (p < 0.05, 

|MFC| > 1.5) in at least 5 different datasets (Table 2). Of these, 83 genes were consistently upregulated and 7 genes 

were consistently down regulated.  These 90 genes were input to IPA to uncover the biological functions and 

pathways involved. 

IPA generated 9 regulatory networks from this list of 90 genes and ignored the 2 genes that were unmapped. 

Networks 1-7 each contained 35 genes, proteins, other molecules and the regulatory relationships between them, 

while networks 8 and 9 each contained 3 genes. Networks 8 and 9 were excluded from further analysis due to the 

small size of the network. 

The seven resulting networks shared several genes. Network 5 shared CTSK and the molecule P38 MAPK with 

Network 1, CCL23 and IL32 with Network 3, and SERPINB3 with Network 6. Network 6 also shared LUM with 

Network 3 and PLC with Network 7. Networks 4 and 7 had CXCL12 in common. 

To test the association of the activity of these networks in the fibrosis datasets, we sought to find the networks that 

were most relevant to multi-organ fibrosis
25

. Applying the mutual information approach to the IPA networks 

returned the activity score (S) for each network, repeated for every dataset (Table 3). It revealed Network 2 as 

having the highest average score, S = 0.399. A random permutation test of 1000 iterations was performed for each of 

the 9 datasets, as described in methods. Networks were deemed significantly active for that dataset if S > Srand. 

Network 1 was significantly active in the greatest number of datasets (4), with the mean of S = 0.3740. Our analysis 

focused on these two networks because they were most active based on the mutual information scores (Figure 3). 

# of Microarray Datasets 

# of 

Genes 

Figure 2: Histogram showing the number of microarray datasets in which a gene shows differential 

expression (p < 0.05 and mean fold change > 1.5). 
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Table 2: Top 10 genes differentially expressed genes in at least five microarrays with p < 0.05 and |MFC| > 1.5.  

Gene Symbol Dataset Count Mean P-value Mean Fold Change Molecular Functions 

MMP7 5 1.22E-02 3.76 
Metalloendopeptidase activity, 

calcium and zinc ion binding  

LUM 5 4.45E-03 3.60 
Extracellular matrix structural 

constituent, collagen binding 

CXCR4 5 5.26E-03 3.51 

Chemokine receptor activity, 

cytoskeletal protein binding, myosin 

light chain binding 

GPNMB 5 1.41E-02 3.44 

Binding of: integrin, 

glycosaminoglycan, heparin, 

carbohydrate, protein complex 

ASPN 5 4.98E-03 3.20 Protein binding 

MT1M 5 2.46E-02 -2.46 
Copper, zinc and cadmium ion 

binding 

AQP3 5 5.79E-03 -1.59 
Glycerol transmembrane transporter 

activity 

FZD5 5 2.94E-03 -1.58 G-protein coupled receptor activity 

ST3GAL6 5 1.21E-02 -1.58 Sialyltransferase activity 

SLC1A1 5 1.71E-02 -1.58 Glutamate:sodium symporter activity 

 

 
Table 3: Results of application of mutual information algorithm to each dataset for all seven networks. 

Network 1 2 3 4 5 6 7 Srand 

# of Datasets S > Srand 4 3 3 3 1 3 2  

GSE10667 0.4307 0.2149 0.3213 0.2513 0.0871 0.3300 0.1419 0.3030 

GDS1252 0.1855 0.0561 0.0572 0.2969 0.4584 0.5291 0.4967 0.4215 

GDS3705 0.2052 0.4131 0.3695 0.2964 0.2267 0.6295 0.5641 0.4458 

GSE5406 0.1463 0.0907 0.0700 0.0715 0.1108 0.0357 0.0948 0.1212 

GSE14975 0.4490 0.3635 0.2000 0.1145 0.2755 0.1245 0.5145 0.7245 

GSE12682 0.1689 0.1443 0.0892 0.1211 0.0846 0.0579 0.1384 0.2371 

GSE22459 0.1579 0.3899 0.2717 0.3814 0.2635 0.1972 0.1976 0.2911 

GSE6764 0.8365 1.0591 0.8163 1.0519 0.4327 0.6597 0.2936 0.7246 

GSE14323 0.7861 0.8674 0.7416 0.8357 0.6618 0.6435 0.1249 0.6790 

Average 0.3740 0.3999 0.3263 0.3801 0.2890 0.3563 0.2852 0.4386 

 

Using DAVID
45,46

 we identified the molecular functions of the genes belonging to Networks 1 and 2 (Table 4). 

Proteins and other molecules that were not explicitly genes were ignored by DAVID. DAVID calculated the 

significance of the molecular functions for the gene list. The molecular functions identified for these genes relate to 

the top overall functions of their network. The molecular functions of integrin binding and platelet-derived growth 

factor (PDGF) binding relate the genes of Network 1 to their overall role in connective tissue disorders and tissue 

development and function. Likewise for Network II, the broad function of genetic disorders could include 

dysregulation of MHC I binding and MHC II receptor activity. 
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Table 4: Top 5 Gene Ontology molecular functions for the components of the most active networks (Networks 1 

and 2) using DAVID. 

Network Components 

Top overall 

network 

functions 

Molecular function of 

component genes 

(identified by 

DAVID) 

P-

value 

1 

CCL5, COL16A1, COL3A1, COL5A1, 

COL5A2, collagen, Collagen Alpha1, 

Collagen type I, Collagen type IV, 

Collagen(s), CSF1R, CTSB, CTSK, 

Elastase, ENTPD1, ERK1/2, Fibrinogen, 

FLI1, GRN, IL1, Laminin, Laminin1, LDL, 

Mek, Mmp, MMP2, MMP7, P38 MAPK, 

Pdgf (complex), PDGF BB, PLA2G5, 

SLC1A1, Tgf beta, TGFBI, THY1  

Connective Tissue 

Disorders, 

Genetic Disorder, 

Connective Tissue 

Development and 

Function 

Integrin binding 6.7E-7 

Protein complex 

binding 
8.0E-5 

Extracellular matrix 

structural constituent 
4.9E-3 

Endopeptidase activity 1.0E-2 

Platelet-derived 

growth factor binding 1.3E-2 

2 

ANXA4, BCL11B, CD3, CD8, CD3G, 

CD8A, CLEC7A, CORO1A, HLA-B, HLA-

DMA, HLA-DMB, HLA-DPB1, HLA-

DQB1 (includes others), HLA-DR, HLA-

DRA, Hla-Drb, HLA-DRB1, IFN Beta, Ifn 

gamma, IgG, IL-2R, IL12 (complex), 

IL2RG, Interferon alpha, LCK, MHC, MHC 

Class I (complex), Mhc class ii, MHC Class 

II (complex), MHC II-β, Mhc2 Alpha, 

NFAT (complex), NFkB (complex), TCR, 

TNFAIP2  

Genetic Disorder, 

Skeletal and 

Muscular 

Disorders, Cell-

To-Cell Signaling 

and Interaction 

MHC class II receptor 

activity 

7.5E-

12 

MHC protein binding 1.1E-8 

MHC class I protein 

binding 
5.5E-7 

Phosphoinositide 3-

kinase binding 
1.1E-2 

Peptide binding 

2.0E-2 

 

Discussion 

Since fibrotic disorders are often associated with common syndromes such as chronic inflammation, the goal of our 

research was to observe foundational gene and network perturbations in multiple types of organ-based fibrosis. The 
bioinformatic analysis of microarray datasets publicly available for lung, heart, liver and kidney fibrosis has 

provided an opportunity to investigate the hypothesis that there are foundational molecular mechanisms for all types 

B) A) 

Figure 3: A) Network graph for Network 1, involved in connective tissue disorders. B) Network graph for 

Network 2, involved in genetic and skeletal and muscular disorders. 
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of organ-based fibrosis. This approach is vital to understanding the core genes involved in fibrosis that mark 

potential targets for therapy. 

The results paint a picture of the development of fibrosis characterized by a core set of genes and molecular 

pathways. ~17,000 genes were identified as being expressed in at least one dataset with p < 0.05, but only 0.52% of 

these genes (83 genes up-regulated and 7 genes down-regulated) were significantly differentially expressed across 

these datasets and were used for further analysis.   

Numerous observations indicate that fibrosis, aging and abnormal wound healing may be linked, as both may 

represent loss of cellular reserve pathways
47,48

. This would explain the abnormal expression of genes implicated in 

stem cells biology, wound repair and epithelial damage beside the known “myofibroblasts” genes. 

 To understand the function of these core genes, we used two different programs to analyze the genes and identify 

their biological and molecular functions. First, IPA software provided the top biological functions and revealed that  

dermatological diseases as the most disorder that aligned the most significant fit for genes found differentially 

expressed at p < 10
-16

. Other relevant functions identified by this approach included inflammatory disease, 

connective tissue disorders, genetic disorder, and respiratory and cardiac disease, all with p-values < 10
-7

. IPA then 

generated networks using the list of genes as "seed" for these networks, with the activity of these networks scored by 

the mutual information algorithm and confirmed by subjecting each network to a test of significance against a 

random simulation of mutual information. This aided in identifying which processes were most perturbed by 

fibrosis. The network deemed the most active in the greatest number of networks (Network 1) and the network most 

active overall with the highest average mutual information score (Network 2) are involved in critical cellular, 

immune and matrix functions. The genes and molecules of Network 1 play a key role in connective tissue disorders. 

Network 2 is important in genetic, skeletal and muscular disorders through several HLA and MHC genes involved 

in antigen presentation and recognition in immune system response. Secondly, DAVID analysis of the selected 

genes identified molecular functions of these genes that are in line with the biological functions of their networks 

and the pathogenesis of fibrosis. Network 1 contained genes important in cell-matrix interactions like integrins are 

significantly dysregulated per our analysis of the microarray datasets and are potentially play important roles in 

fibrosis. 

In addition, there were many genes with p < 0.05 that were expressed in 5 or more datasets, but had mean fold-

changes of smaller magnitude than 1.5 (data not shown). These genes are members of pathways not directly 

involved in fibrosis, and represent other potential targets. The top biological functions of these networks were 

involved in hematopoiesis, tissue morphology, cell cycle and death, and may indicate the important influence of 

stem cells, developmental pathways and repair on organ fibrosis. These functions has p values ranging from 10
-5

 to 

10
-2

, less significant that the functions of the differentially expressed genes. 

Our analysis revealed several genes previously unknown for fibrosis and widely up-regulated in multi-organ 

fibrosis: WIPF1 (the highest expression, 8 microarrys), ITGBL1 (Integrin, beta-like 1 (with EGF-like repeat 

domains)) involved in inflammation
49

, EPHA3 (EPH receptor A3) in mediating developmental processes and 

homing of hematopoietic cells
50,51

, GRN (Granulin) in epithelial development, tissue remodeling and wound 

healing
52,53

. Most of the common down-regulated genes present in our analysis are novel for organ fibrosis: MT1M 

(Metallothionein 1M) linked to progressive degeneration of motoneurons in sporadic amyotrophic lateral sclerosis
54

, 

FZD5 (Frizzled family receptor 5) which is part of WNT signaling and ST3GAL6 (ST3 beta-galactoside alpha-2,3-

sialyltransferase 6) important for stem cell development and regeneration
55,56

, SLC1A1 (Solute carrier family 1 

(neuronal/epithelial high affinity glutamate transporter, system Xag), member 1),  a major epithelial transporter of 

glutamate and aspartate
57

. Chronic inflammation, extracellular matrix remodeling and epithelial development as part 

of abnormal wound healing involved in fibrosis are well represented in our analysis by up-regulated genes like LUM 

(Lumican)
58

, GPNMB (Glycoprotein (transmembrane) nmb
59) or genes downregulated: AQP3 (Aquaporin 3 (Gill 

blood group))
60,61

 and IL6R (Interleukin 6 receptor)
62,63

. It was interesting to see that our analysis has identified a set 

of well known genes for fibrosis such as chemokine CXCR4 ((C-X-C motif) receptor 4), SDF1/CXCL12 

(Chemokine (C-X-C motif) ligand 12), metalloproteinases (MMP7, MMP2, at the level of multi-organ fibrosis. In 

addition, several genes from our analysis have been previously described in gene signatures for organ fibrosis. 14 

genes from our list are present in the molecular Banff signature for acute kidney transplant rejection
20

. In another 

fibrosis study, two genes from our list, MMP2 and COL3A1, were found in fibrotic heart, kidney, lung and pancreas 

tissues, while ADAM28 was found only in lung tissues
21

. 

Our analysis indicates that besides regular fibroblasts-myofibroblast genes, there is a common set of genes 

abnormally expressed, involved in epithelial development, stem cells regeneration and inflammation.  We go beyond 
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the approach of single organ fibrosis to address core genes and molecules involved in fibrosis that are present in 

multiple organs. While these genes may not be the original disease causing genes whose genetic variations leading 

to the onset or predisposition of these diseases, they reflect a set of potential commonly changed phenotypes at the 

gene transcription level which can be experimentally tested and as well as targeted in therapy. Nevertheless, our 

results are only the beginning, as the genes identified give way to experimental research to confirm the role of the 

identified genes in multi-organ fibrosis, and identify therapeutic targets to slow or even reverse fibrotic activity.  
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