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Location-specific co-benefits of carbon emissions
reduction from coal-fired power plants in China

Pu Wang 12 Cheng-Kuan Lin34, Yi Wang 128 Dachuan Liu® 2, Dunjiang Song1 & Tong Wu?

Climate policies that achieve air quality co-benefits can better align developing countries’
national interests with global climate mitigation. Since the effects of air pollutants are highly
dependent on source locations, spatially nuanced policies are crucial to maximizing the
achievement of co-benefits. Using the coal power industry as a case study, this study pre-
sents an interdisciplinary approach to assessing facility level co-benefits at every specific
source location in China. We find that co-benefits range from US$51-$278 per ton CO,
reduction nationwide and are highly heterogeneous spatially, with “hotspot” regions that
should be the priority of emissions reduction policies, and that provinces should use different
techno-economic strategies to reduce emissions. The location-specific co-benefit value plus a
carbon price serves as a unified environmental indicator that enables policy makers to more
accurately understand the social costs of electricity generation from coal burning and pro-
vides a scientific framework for geographically nuanced policymaking.
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eveloping countries, such as China and India, face the

dual challenge of climate change and air pollution, with

the latter usually more urgent and directly associated with
domestic welfarel:2. Therefore, integrating air pollution control
into climate governance can be a highly effective means to
motivate developing countries to accelerate climate change
mitigation3. Reducing CO, emissions from electric power gen-
eration will simultaneously reduce the emissions of sulfur dioxide
(SO,), nitrogen oxides (NO,), and primary PM,s. While the
effects of carbon emissions are independent of source locations,
the effects of air pollutant emissions are highly dependent on
source locations, population distribution, climate, and other
factors®>. Thus, spatially nuanced policies are key to maximizing
the co-benefit of climate policy in air-quality improvement and
the related health gains.

The electric power sector is the largest source of carbon
emissions in China, accounting for roughly half of the country’s
total carbon emissions®’. There were over 2000 coal-fired power
plants in Mainland China’s 31 provinces in 2017, with generation
capacity of 980 GW and electricity generation of 4.1 trillion kWh,
accounting for 55% of total capacity and 65% of total generation,
respectively’. Meanwhile, coal-fired plants have been a major
cause of the country’s serious air pollution in recent years>10,
contributing to 17%, 19%, and 8% of China’s total SO,, NO,, and
primary PM, s emissions, respectively, in 2017!1. In response,
China has adopted three major strategies to reduce the environ-
mental impacts of power plants: eliminating plants with outdated
technologies, ultralow emissions retrofitting, and optimizing the
siting of plants, and substantial financial and administrative
resources have been invested by plant owners and the
government!2-14, When these resources are constrained, all three
strategies need to prioritize certain regions, and this prioritization
requires location-specific social and economic justifications.

In the past several years researchers have made significant pro-
gress in estimating the social costs of air pollution, particularly in
terms of the impacts on human health. Most of these studies used
atmospheric chemical transport models and exposure-response
functions with different assumptions. For example, Anenberg
et al.1> and Lelieveld et al.2 estimated the global burden of mortality
due to air pollution, and found anthropogenic O; and PM, 5 were
associated with more than four million premature deaths annually.
Other researchers combined the above methodologies with climate
mitigation scenarios, and then assessed the co-benefits of climate
policies in air pollution reduction and other environmental
issues!®21. For instance, Shindell et al.!® investigated methane
reduction measures that can reduce global mean warming by 0.5 °C,
and estimated that the co-benefit in avoiding premature death was
between US$700 to 5000 per ton of methane emissions. West
et al.20 calculated the co-benefits of climate policies under the
Representative Concentration Pathway 4.5 (RCP4.5) scenario, and
estimated the value to be US$50-380 per ton of CO, reduction. For
China-focused studies, Li et al.1” applied global models to the latest
Chinese data and estimated that a 4% annual reduction in energy
intensity would lead to a 24% reduction in CO, emissions in 2030
relative to the no policy case; such a reduction would require a
carbon price of $72 per ton and lead to $340 billion in avoided
health costs in 2030; Cai et al.!® estimated that in 2050 the overall
health co-benefits would be 3-9 times of the implementation costs
if China fulfills its Paris commitments. One common feature of the
existing studies is that they present only aggregated global or
national effects of air pollution and the corresponding co-benefit
valuations, and lack facility level, location-specific information?2.
Although informative at a macro-level, aggregated results are dif-
ficult to translate into implementable policies, which often requires
differentiated treatments based on locations and technology types.

To address this gap, we establish an interdisciplinary approach
to assess facility-level co-benefits at specific locations. Our model
takes advantage of a complete coal plants dataset, the latest fine-
scale demographic and health data, and air pollution exposure
estimations calibrated specifically for coal plants in China. Our
analyses capture technological features, fuel quality, and the
specific location of each individual power plant, as well as the
relevant demographic, economic, weather, and epidemiological
information of affected regions. We find that co-benefits in
“hotspot” locations can be up to five times higher than those in
more distant locations, and that provinces should use different
techno-economic strategies to reduce pollutant emissions. The
co-benefit value of per ton CO, reduction plus a carbon price can
serve as a unified indicator that integrates the environmental
costs of CO, and air pollutants, which has straight-forward policy
interpretations, and can significantly improve the design of
China’s emissions trading system, environmental pollution taxes,
and other policies aimed at changing the country’s fossil-fuel-
dominant energy structure.

Results

Spatial distribution of co-benefits. We obtained the locational
health co-benefits of per ton carbon emissions reduction in four
major steps (see details in “Methods” and Supplementary Fig. 1): (1)
using an intake fractions (IFs) model to estimate population expo-
sure to air pollutants from power plants; an IF is defined as the
fraction of material or its precursor released from a source that is
eventually inhaled by a population; (2) estimating mortality due to
increase in exposure to air pollution; (3) economic valuation of air
pollution-related mortality based on value of statistical life (VSL)
method; (4) calculating co-benefits based on emitting ratios of CO,
and air pollutants. Figure 1 presents the health co-benefits of
reducing one ton CO, emissions from a power plant at each specific
location in China. Higher values indicate that phasing out or ret-
rofitting existing plants, or prohibiting the construction of new
plants in these areas, will achieve greater co-benefits.

There are four major factors that influence the location-specific
health co-benefits: (1) the technological specifications of a power
plant, including coal use per unit electricity generation, whether
or not it has SO,—, NO,—, and PM-removal facilities, coal
quality, etc; (2) population density and GDP per capita within
different ranges from a plant, which affects the value of economic
loss caused by air pollutants; (3) baseline mortality rates of
diseases related to air pollution, including ischaemic heart disease
(IHD), chronic obstructive pulmonary disease (COPD), and lung
cancer, which have different relative risk factors corresponding to
PM, 5 concentration levels; and (4) local climatic conditions, most
importantly precipitation levels. For each specific plant, the
relative importance of the four factors can vary significantly. We
conduct multiple simulations to assess the relative importance of
each factor on average (Supplementary Note 1). Overall,
population density has the dominant impact on co-benefit values,
and precipitation and technology specifications (represented by
emission factors) have modest impacts, while baseline mortality
rate change has a relatively small impact.

With regional-grid average technology specifications, the building
of a power plant at different locations will yield vastly different co-
benefit values, ranging from US $51 to 278 per ton CO, nationwide
(Fig. 1). The most prominent “hotspot” region with the highest co-
benefit values is around Henan province in central China. The
primary reason for this is that air pollutants can be transported across
vast distances, affecting populations more than 1000 km away—and
Henan is the geographic centre of China’s population distribution.
Therefore, plants in Henan have maximal influence on air quality of
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Fig. 1 Health co-benefits of per ton CO, emission reduction from coal-fired power plants in different locations. The unit is in U.S. dollar (USD). Higher
values indicate that phasing out or retrofitting existing plants, or prohibiting the construction of new plants in these areas, will achieve greater co-benefits.

the entire country. Besides Henan and adjacent regions, the
Beijing-Tianjin-Hebei and Chengdu-Chongging metropolitan areas
also have high co-benefits values, mostly due to their highest
population densities in the country. The Shanghai and Hong
Kong-Guangzhou-Shenzhen metropolitan areas have the highest
population density and GDP per capita in the country, but their
values are relatively low, due to a combination of four factors:
advanced electricity generators, high quality coal with lower sulfur
and ash content, low baseline mortality rates of diseases related to air
pollution, and a higher level of precipitation. China’s western and
northeastern provinces have relatively low values, primarily because
of their much lower population densities. The southeastern provinces,
such as Zhejiang and Fujian, while populous and economically
advanced, have the lowest values, for the same reasons as Shanghai.
Overall, Fig. 1 provides a basis for China to set the order of priority
for regional energy planning and transitioning away from coal.

We analyse how the pattern in Fig. 1 changes under different
assumptions in Supplementary Notes 2 and 3. First, we re-
estimate co-benefits using VSLs based on GDP per capita at each
city, in contrast to a universal national VSL used in Fig. 1. Second,
a power plant can have many detrimental effects on adjacent
areas other than PM, 5 (e.g., coal ash and heavy metal deposition).
We multiply the economic loss within 100 km by three to take
into account the other negative local impacts (see “Methods”).
Third, we re-estimate co-benefits using different national VSLs
and elasticities based on literature review. The corresponding
results are presented in Supplementary Figs. 2-6.

Co-benefits at provincial level. While results in Fig. 1 enable
precise policy making for each specific location, in practice, many

policies are implemented at municipal or provincial scales. For
instance, China’s carbon emissions trading pilot programmes are
operated at the provincial level, and the national emissions
trading programme needs to decide allowance allocations across
provinces23. Thus, we use capacity-weighted mean of co-benefit
values for all individual plants in a province to represent the co-
benefit value in that province (Fig. 2), and use the same method
to calculate the national co-benefit. The national capacity-
weighted average co-benefit value is $147. Provincially, again,
Henan has the highest co-benefit value at $257, followed by
Hubei at $207 and Shandong at $192. Values in Beijing ($180),
Tianjin ($183), and Hebei ($183) are not among the highest, even
though these provinces had the strictest policies for coal plants
phasing-out or retrofitting: using VSLs based on local GDP per
capita and higher weights for local effects will yield relatively
higher values for these provinces (Supplementary Fig. 4c, d). In
general, co-benefits values in the “hotspot” provinces can be 2-4
times higher than those in other provinces, indicating the
importance of prioritizing coal use reduction in “hotspot” pro-
vinces and using differentiated carbon pricing and environmental
taxes at the provincial level.

While Figs. 1 and 2 present the damage caused by power plants
located in different regions, Supplementary Fig. 7 presents the
economic losses suffered at different locations due to air pollution
from all power plants. The annual national loss added up to 460.1
billion USD in 2017 or around 3.7% of the country’s total GDP in
the same year. Figure 3 illustrates the difference between the
rationales behind Figs. 1 and 2 and Supplementary Fig. 7.
Figure 3a, c shows the co-benefit of per ton CO, emission
reduction and the damage of annual total emissions, respectively,
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Fig. 2 Capacity-weighted average health co-benefits of per ton CO, emission reduction in different provinces. The unit is in U.S. dollar (USD). Darker
colour indicates that a province has a higher capacity-weighted average health co-benefit value.

from coal-fired plants located in each province; Fig. 3b, d presents
the annual per capita loss and the total loss suffered by each
province due to coal-fired power generation nationwide. As Fig. 3
shows, the provinces where the most polluting coal plants
(inducing the highest losses) are located (Fig. 3a, c) are not
necessarily the provinces that suffered the most (Fig. 3b, d). For
instance, power plants in Hubei and Chongqing rank the second
and the fourth in terms of the average damage, but their per
capita losses rank 10th and 14th, respectively. In contrast, power
plants in Anhui cause relatively small damages (ranks 20th
nationally), but per capita loss in Anhui ranks the 6th. The orders
of the total damages and losses in Fig. 3c, d show similar
mismatches. The majority of previous studies on health costs of
air pollution addressed the latter, namely estimating the losses
suffered by affected regions!®17:20. However, from the perspective
of energy policy targeting, it is more important to address the
emission sources that induce the highest costs. Thus, it is arguable
that results in Figs. 1 and 2 have more direct policy interpreta-
tions in energy planning and siting, as well as in carbon pricing
and environmental tax policies.

Impacts of end-of-pipe technologies on co-benefits. The health
co-benefit of per ton CO, emission reduction is calculated
according to a power plant’s emission factors for CO,, SO,, NO,,
and primary PM,s, measured as grams per kWh electricity
generation. These emission factors are determined by coal quality
(e.g. ash and sulfur contents of coal), boiler types, and end-of-
pipe pollutant removal technologies. In this section we analyse
the impacts of four representative technologies that can sig-
nificantly change these emission factors, including (1) flue gas

desulfurization (FGD) that can reduce up to 95% of SO, emis-
sions, (2) selective catalytic reduction (SCR) that can reduce up to
85% of NO, emissions, (3) switching from electrostatic pre-
cipitators to bag filters (or fabric filters, FAB) that increase the
removal efficiency for particulate matters from 93 to 99%, and (4)
switching from high-sulfur coal to coal with the national average
sulfur content. In this analysis we do not consider any end-of-
pipe carbon removal technology, because even though carbon
capturing and storage (CCS) technology can substantially change
CO, emission factors, it is not widely used in coal power sector in
China by far. In the future when CO, sequestration is widely
applied, we would need to take CCS into consideration in our
calculations.

At the level of control actually achieved in 2017, the reduction
of one kWh coal-fired electricity can reduce 309 grams of
standard coal consumption on national average, which simulta-
neously reduces emissions of 840 g CO,, 0.43 g SO,, 0.98 g NO,,
and 0.15 g primary PM, 5. These values vary in each province due
to differences in coal quality, energy efficiency of generators, and
penetration rates of abatement technologies. Figure 4a presents
the air-quality-related health benefit of reducing one kWh coal-
fired electricity generation in each province, first based on
unabated emission factors for SO,, NOy, and primary PM, s, then
based on the ideal operation of FDG, SCR, ESP, and FAB that
have removal efficiency of 95%, 85%, 93%, and 99%, respectively,
and then based on 2017 actual emission factors. Regional-grid-
level CO, emission factors in 2017 are given as well. Based on the
ratio of carbon and air pollutants emitted per kWh electricity
generation, we convert the health benefit values in Fig. 4a to co-
benefits per ton CO, emission reduction in Fig. 4b.
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a b

Health co-benefit per ton CO,
reduction by each province

Per capita health loss suffered
by each province

Total value of health loss caused by

c d

Total value of health loss

plants within each province suffered by each province

unit: USD unit: USD
1 Henan 257 1 Henan 494
2 Hubei 207 2 Shandong 488
3 Shandong 192 3 Hebei 451
4 Chongging 187 4 Shanxi 422
5 Tianjin 183 5 Tianjin 396
6 Hebei 183 6 Anhui 389
7 Beijing 180 7 1. Mongolia 379
8 Hunan 177 8 Ningxia 365
9 Sichuan 176 9 Beijing 344
10 Shanxi 176 10 Hubei 343
11 Shaanxi 165 11 Shaanxi 337
12 Ningxia 151 12 Liaoning 333
13 Liaoning 151 13 Gansu 323
14 Jiangxi 149 14 Chongging 316
15 Guizhou 144 15 Qinghai 314
16 Gansu 135 16 Jiangxi 309
17 1. Mongolia 132 17 Guizhou 308
18 Jilin 131 18 Jiangsu 302
19 Yunnan 130 19 Hunan 290
20 Anhui 124 20 Xinjiang 287
21 Heilongjiang 122 21 Jilin 282
22 Qinghai 122 22 Sichuan 281
23 Jiangsu 111 23 Heilongjiang 280
24 Xinjiang 107 24 Guangxi 275
25 Guangdong 103 25 Guangdong 251
26 Guangxi 101 26 Fujian 240
27 Tibet 96 27 Yunnan 233
28 Shanghai 94 28 Shanghai 217
29 Hainan 85 29 Zhejiang 209
30 Zhejiang 77 30 Hainan 171
31 Fujian 72 31 Tibet 118

unit: Bn USD unit: Bn USD
1 Henan 52.9 1 Shandong 48.3
2 Shandong 45.9 2 Henan 48.2
3 Hebei 39.1 3 Hebei 33.5
4 Shanxi 37.1 4 Guangdong 27.0
5 I. Mongolia 36.2 5 Jiangsu 24.6
6 Jiangsu 32.2 6 Anhui 23.9
7 Guangdong 24.0 7 Sichuan 235
8 Anhui 20.1 8 Hubei 20.3
9 Xinjiang 18.3 9 Hunan 19.7
10 Liaoning 15.0 10 Shanxi 15.6
11 Hubei 14.9 11 Liaoning 15.1
12 Shaanxi 14.9 12 Jiangxi 14.3
13 Guizhou 14.5 13 Guangxi 13.1
14 Hunan 11.9 14 Shaanxi 13.0
15 Zhejiang 11.0 15 Zhejiang 11.7
16 Jiangxi 10.7 16 Yunnan 11.1
17 Ningxia 8.9 17 Heilongjiang 111
18 Gansu 8.6 18 Guizhou 111
19 Jilin 8.3 19 I. Mongolia 9.7
20 Heilongjiang 7.8 20 Chongging 9.4
21 Tianjin 7.5 21 Fujian 9.1
22 Fujian 6.6 22 Gansu 8.6
23 Chongging 5.0 23 Jilin 8.0
24 Shanghai 4.7 24 Beijing 7.0
25 Sichuan 3.6 25 Xinjiang 6.5
26 Guangxi 3.4 26 Tianjin 5.3
27 Yunnan 1.8 27 Shanghai 5.2
28 Qinghai 1.6 28 Ningxia 2.4
29 Hainan 1.5 29 Qinghai 1.8
30 Beijing 0.7 30 Hainan 1.5
31 Tibet 0.0 31 Tibet 0.5

Fig. 3 The difference between health cost valuations based on emission sources vs. the affected regions. a Value of health co-benefit from reducing one
ton CO, emissions from coal-fired power plants located in each province; b Per capita health loss suffered by each province due to air pollution caused by
all coal plants in China in 2017; ¢ total value of health loss caused by coal plants within each province; d total value of health loss suffered by each province
due to air pollution caused by all coal plants in China in 2017. Provinces connected by blue lines have power plants that are relatively more damaging, but
these provinces suffer relatively less; provinces connected by red lines have relatively less damaging power plants, but these provinces suffer more from

coal-fired power generation.

Figure 4a, b shows that the co-benefits patterns in Figs. 1 and 2
are not fixed, and should be updated regularly (e.g. annual
update) based on changes in penetration rates of different
technologies in provinces. From a policy perspective, a province
can deploy more end-of-pipe control technologies to change the
carbon-air pollutants ratio, thus can change its relative priority in
national coal plants phasing out; it can also receive a more
favourable policy in a permit trading system or a tax system (see
our policy discussion in the “Discussion” section). There is no
one-size-fits-all optimal strategy for all the provinces, and detailed
local information is needed to improve policy effectiveness at the
provincial level. Our calculations in Fig. 4 can provide basis for
such updates. First, desulfurization has the biggest impacts on co-
benefit values across the country. In particular, in the central and
southern provinces where coal has a high percentage of sulfur,
desulfurization could reduce up to 80% of pollution costs and
substantially change the co-benefit estimates, as in the case of
Chongging. Second, in the northeastern and eastern provinces
where coal has lower sulfur contents, desulfurization would only
reduce roughly 35-55% of pollution costs. Consequently, in these
areas the application of NO, and dust removal technologies
become important. Third, in provinces where pollution costs are
high, such as in Chongging and Guizhou, switching to coal with
better quality can also have a significant impact on co-benefit
values. Overall, we find the national emissions reduction due to

end-of-pipe control technologies was around 70% on average in
2017, which is consistent with previous studies!!.

Analysis of pollutant-specific co-benefits. The emissions from a
power plant can have health effects in regions both nearby and far
away. Figure 5 presents the spatial distribution of pollutant-
specific co-benefits from plants located in six regional grids. The
affected regions are divided into four ranges: within 100 km,
100-500 km, 500-1000 km, and more than 1000 km. The costs of
primary PM, s represent only around 15% of total costs in all
ranges, much smaller than the proportions of SO, and NO,. In
most grid regions, the majority of costs from NO, (roughly
between 50 and 55%) occurred in the 100km (local) and
100-500 km (mostly within a province) rings, while the majority
of costs from SO, (between 65 and 90%) occurred in the 500 km
and 1000plus km rings, indicating that more benefits from de-
NO, technologies are captured locally and within a province,
while the benefits of desulfurization have greater “spill-over”
effects to other provinces. Comparing the six grid regions, rela-
tively large portions of the co-benefits in the north, east, and
central grids occurred locally and within-province, while in the
other grids, particularly in the northwest, the co-benefits are
mostly captured in the 500-1000 km and 1000plus km rings. This
indicates that in less populated regions (also the less developed
regions) such as the northwest, while the costs of pollutant
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Fig. 4 Potential benefits of emission reduction technologies and the impacts on co-benefit values. a Potential benefits of four emission reduction
methods in reducing health costs per kWh electricity generation. b Impacts of four emission reduction methods on co-benefit values per ton CO, emission.
The four representative methods to reduce emissions are (1) flue gas desulfurization (FGD); (2) selective catalytic reduction (SCR); (3) switching from
electrostatic precipitators to fabric filters (FAB); and (4) switching from high-sulfur coal to coal with the national average sulfur content. “Residue”
represents the value under the ideal situation when all methods are perfectly adopted. The black and yellow diamond-shaped dots represent the actual
provincial values in 2017.
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Fig. 6 Values of provincial health losses in 2017 based on intake fractions (IF) model and GEOS-Chem model. IF model results have higher values in
remote regions, such as Heilongjiang, Inner Mongolia, Yunnan, and Tibet, while the GEOS-Chem model results have higher values in central provinces,

such as Hubei, Hunan, and Sichuan.

removal are usually borne locally, the adoption of such technol-
ogies largely benefit other provinces. Therefore, besides a strict
application of the polluter-pays-principle by imposing a pollution
tax equal to damage, it is necessary to design compensation and
cost-sharing mechanisms to encourage the adoption of pollution
reduction technologies in less developed regions.

Comparison of results based on different models. IF model is
time-efficient to process more than 2000 simulations for all coal-
fired plants in China, and the model parameters are calibrated
specifically for China’s power plants, though it only considers
variables that have the strongest predictive power. We use the
GEOS-Chem model to statistically test the accuracy of the IF
model. GEOS-Chem is a three-dimensional air-quality model that
takes into account fine-scale emissions, atmospheric chemistry,
aerosol microphysics, precipitation, wind speed and direction,
and other input data. Identical national power plants inventories
are used in IF and GEOS-Chem simulations. The simulation
results show that national total health losses due to coal-fired
plants in 2017 was 460.1 billion USD based on the IF model, and
was 426.4 billion USD based on GEOS-Chem (Supplementary
Figs. 7 and 8). We then calculate health losses suffered by each
province in China based on the two models (Fig. 6). IF model
results have higher values in remote regions, such as Hei-
longjiang, Inner Mongolia, Yunnan, and Tibet, while the GEOS-
Chem model results have higher values in central provinces, such
as Hubei, Hunan, and Sichuan. In majority of the other provinces,
the values from the two models are close. We also compare
GEOS-Chem simulation results with the actual observation data
from 1444 air-quality monitoring stations across China (Sup-
plementary Fig. 9). Supplementary Figure 9 indicates that GEOS-
Chem tends to underestimate PM, s concentrations in remote
provinces, while overestimate PM, s concentrations in central
provinces. Thus, the large differences between the two models’
results in the seven provinces mentioned above can be partly
explained by GEOS-Chem’s biases. Next, we calculate health
losses suffered by each of the 2761 Chinese county-level districts
according to the two models, and run linear regressions for
counties within each of the six regional power grids (Fig. 7). All
the six regressions show good correlation between the results
based on the two models (R? range from 0.73 to 0.91). Thus,
overall, we find that the IF model has the advantage of time
efficiency in processing a large number of simulations and its
results are reliable for policy analysis at large geographic scales. If
the government wants to calculate an externality tax for an
individual plant based on more comprehensive variables, then the
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IF model is not sufficiently customized, and a more sophisticated
model, such as GEOS-Chem, should be used.

Discussion

Targeting the co-benefits of carbon emissions reduction in air
pollution control has been an important principle for China’s
climate policy making. China’s key strategies to reduce carbon
and air pollutants emissions from the power sector, such as
phasing out power plants in key regions and/or with outdated
technologies, the adoption of end-of-pipe control facilities, opti-
mizing the siting of plants, and various market-based policy
instruments, will all benefit from location-based calculation of co-
benefits.

This paper makes two contributions to policymaking that aims
to integrate location-based information. First, our results provide
a technically feasible approach to quantifying the total benefits of
reducing various pollutant emissions from a power plant in any
location. Coal-fired power plants are among the largest sources of
CO,; and air pollutants worldwide, but without policy interven-
tions, they remain the most affordable and accessible electricity
providers in many developing countries. The co-benefit value of
per ton CO, reduction plus a carbon price can serve as a unified
environmental indicator that enable policy makers to more
accurately understand the social costs of electricity generation
from coal burning, and to better address regional energy planning
and environmental policymaking related to power plants. Inter-
national Energy Agency (IEA)’s study estimated that in 2020,
without a carbon price, the levelized cost of electricity (LCOE) for
coal power in China was 5.2 US cents per kWh, while the LCOE
for wind and solar power were 5.8 and 5.1 US cents per kWh,
respectively?4. Thus, adding a carbon price and air pollution costs
to coal power price is important to help enhance the relative
market competitiveness of wind and solar power and reduce coal
power. Moreover, China’s environmental policies in the past have
featured one-size-fits-all designs?’, such as mandating the same
retrofitting technology for coal-fired plants in all provinces. But
such policies have imposed heavy and unsustainable costs to the
government, plants owners, and end users. Our study provides
quantitative basis to support the design of geographically nuanced
policies to phase out or retrofit coal-fired plants in a cost-effective
manner, and develops a scientifically sound framework in which
provinces can choose differentiated mitigation strategies that best
fit their local conditions.

Second, our study can help improve the design of China’s
carbon pricing and pollution tax policies. In recent years China
has been promoting market-based policies in climate and
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Fig. 7 Linear regressions between results based on intake fractions model and GEOS-Chem model. We calculate health losses suffered by each of the
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present the results in six regional power grids, respectively.

environmental fields?%, including national and provincial carbon
emissions trading systems and environmental pollution taxes.
According to previous studies, the global social cost of one ton
CO, emission is around US$20-$5027. The social costs of air
pollution are complicated by the heterogeneous influences of
source locations and socioeconomic surroundings. The results of
our study provide locational health co-benefits and suggest that it
is possible to integrate carbon pricing and pollution taxes into one
unified pricing scheme, which could be either an emissions
trading system or a tax. Muller and Mendelsohn® argue that
setting location-specific trading ratios in SO, and NO, emissions
trading systems can achieve significant economic benefits. In
parallel, our study suggests that similar trading ratios in a carbon
emissions trading system can enhance the achievements in health
co-benefits. For instance, to compensate for one ton CO, emis-
sion from a plant in Henan, the plant owner will need to buy
allowances for two tons of CO, emissions from Ningxia, or three
tons from Qinghai, since the co-benefit value is much higher in
Henan. Similarly, under a unified emissions tax policy, one ton
carbon emission in Henan would be taxed twice as much as one
ton in Ningxia, or three times as much in Qinghai. Since China’s
Ministry of Ecology and Environment is in charge of measuring
and pricing both carbon and air pollutants emissions, and the
carbon and air pollutants charges are imposed on the same power
plants, a unified pricing scheme can streamline the administrative
processes, and send market signals that can more comprehen-
sively reflect the social costs of coal power.

A series of challenges need to be addressed in order to better
integrate our analysis into actual policies. First, the current
models still have large uncertainties in assessing exposure and
health losses, which can undermine the benefits of location-
specific policies?. Even state-of-the-art models such as GEOS-
Chem also show significant discrepancies between predicted and
observed data. Therefore, our results demonstrate the possibility

of precise policy making using plant-specific carbon price and co-
benefits, though with relatively large uncertainties; in the future
when better modelling techniques and real-time monitoring data
are available, such a policy will become realistic. Currently, our
results can be more realistically used in larger scale policy making,
such as in national energy planning, including the approval,
retrofitting, and shutdown of coal-fired power plants in different
locations; and in provincially differentiated carbon pricing poli-
cies, such as emissions trading systems or carbon tax policies.
Second, we recognize that this study, as well as previous studies
on co-benefits, only take into account mortality caused by
increase in PM, s concentration, and does not consider other
types of damages, such as higher morbidity and lower work
productivity. This problem can be addressed by adding more
comprehensive valuation analyses in future models. Third, a
series of practical questions need to be addressed during policy
implementation, including how often the co-benefits valuation
should be updated based on climate, demographic, and epide-
miological changes, how to treat plants close to provincial
boundaries that are charged differently, and how to prevent rent-
seeking in the process of assigning different prices to different
plants. This type of issue is not unique for the policies proposed
in this study, and can be addressed by administrative discretion
and referring to precedents. And fourth, policy makers need to
make various political and ethical decisions about valuation
parameter choices and fairness concerns. Choosing different
benchmark VSLs or elasticities will significantly change the values
of co-benefits, thus affecting the stringency of coal restriction
polices (Supplementary Fig. 4); adjusting VSLs based on income
levels in different regions can generate more precise locational
estimations, but faces significant ethical challenges (Supplemen-
tary Figs. 2 and 3); socio-political considerations can outweigh
climate and environmental concerns; for instance, as the national
capital city, Beijing has the strictest coal control policies, even
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though it does not have the highest estimated co-benefits. Such
social and political decisions are beyond the scope of our analysis,
though our calculation based on environmental benefits can serve
as a benchmark for actual policy making.

Overall, the methods developed in this study represent a sci-
entifically sound approach to connecting facility-level informa-
tion to macro-level policy-making by means of data-intensive
analysis. Going forward, it is possible to modify these methods
and apply them to similar issues, such as assessing the locational
impacts of power systems on water resources and land use,
thereby capacitating more cost-effective environmental policies
with spatial nuances in mind.

Methods

Datasets. The information on geographic coordinates, technology type, and
installed capacity of each individual coal-fired power plant in China was extracted
from the open-source dataset, “Existing coal plants in China” compiled by Global
Energy Monitor’s Global Coal Plant Tracker?$, with each plant’s information
verifiable through online satellite maps and power companies’ official websites. We
also used the Carbon Monitoring for Action (CARMA) dataset?® developed by the
Center for Global Development to complement the Global Energy Monitor dataset.
Our final dataset included 2475 power plants (for some plants each generation unit
is a single entry), with total installed capacity of 914 GW, which represents 93% of
mainland China’s coal fleet in 2017 (Supplementary Fig. 10).

Population distribution data are based on the 1x1 km global population grid
data for 2017 developed by Oak Ridge National Laboratory’s LandScan project,
which is the finest-grain population distribution data to date. China’s national and
prefecture level GDP data were extracted from Chinese statistical yearbooks for the
year 2017. Province-level mortality rates for diseases associated with ambient air
pollution were based on Zhou et al.’s study®’, which was part of the Global Burden
of Disease (GBD) project (Supplementary Table 1). Precipitation data between
2011 and 2016 are based on hourly meteorological monitoring data from
839 stations across China! (Supplementary Fig. 11).

IFs of air pollutants. An IF is defined as the fraction of material or its precursor
released from a source that is eventually inhaled or ingested by a population®2,
which provides a straight-forward summary measure of the impacts of a polluting
source, such as a power plant. Zhou et al. estimated China-specific coefficients for
IF as the dependent variable, and distance from coal-fired power plants, population
density, and climate as independent variables, using 29 coal plants data across the
country? (Supplementary Table 2).

Following Zhou et al.’s study and using a similar method as Parry et al.3, we
calculated IFs of primary and secondary PM, s formed from emissions of SO,,
NO,, and dust from coal plants. For each power plant, the affected regions are
divided into four ranges according to the distance from the power plant: within
100, 100-500, 500-1000, and beyond 1000 km (Supplementary Fig. 10). Then,
Geographic Information System (GIS) modelling was used to calculate the
population covered by each distance range based on the LandScan 1 x 1 km
population distribution data. By definition, IF can be expressed in Eq. (1):

N
E. - Y1 Pop, x AC;;, x BR

. 1
” a M
where the subscripts i, j, g, r represent power plants, pollutant types (i.e., SO,, NO,,
or primary PM,5), 1 x 1 km population grids, and ranges from a power plant,
respectively. Q;; is the emission rate of pollutant j, or in the case of secondary
PM, s, its precursor j, from power plant i; IF;;, is the IF of pollutant j from power
plant i in range r; Pop, is the population in grid g; AC;;, is the change in ambient
concentration of PM, 5(ug per m3) in range r caused by emissions of pollutant j
from power plant i. BR is the population-average breathing rate (m? per day), and
is assumed to be 20 m? per day, following Zhou et al.33.

While many specific climate factors, such as temperature, wind speed and
direction, and relative humidity, can influence the dispersion, deposition, and
chemical reactions of pollutants, previous studies have found them insignificant in
affecting IF over a large area®%. Zhou et al.3? identified precipitation as the most
significant climate factor that has a negative correlation with IFs and can explain
most of the residuals correlated with climate factors. We calculated average annual
precipitation between 2011 and 2016 based on daily meteorological monitoring
data from 839 stations across China, and used Kriging interpolation to estimate
annual precipitation at each location in China (Supplementary Fig. 11). Using
coefficients in Supplementary Table 2, we calculated IF;;, caused by SO,, NO,, and
primary PM, 5 emissions based on Eq. (1).

Estimating the relative risks of studied diseases. Following Anenberg et al.1°,
West et al.20, and Burnett et al.3?, the exposure-response relationship in this study focus
on increased mortality rates of three types of diseases, namely IHD, COPD, and lung
cancer, due to increase in annual average PM, 5 concentration. For a 10 pg per m3

increase in annual average PM, 5 concentration, the relative risks for both IHD and
COPD are 1.13 (95% confidence interval [CI]: 1.10-1.16), and the relative risk for lung
cancer is 1.14 (95% CI: 1.06-1.23).

In Egs. (2) and (3), RRy is the relative risk of disease k in correspondence to a
10 ug per m3 increase in annual average PM, 5 concentration. For people living in
grid g RR, ;; is the relative risk of disease k in correspondence to the change in
ambient PM, 5 concentration (AC;;,) caused by pollutant j emitted from power
plant i, while grid g is located in range r from plant i; RR,, is the relative risk of
disease k in correspondence to the change in ambient PM, 5 concentration caused
by all power plants within range r from grid g.

()
RR, ;= RRy," @
(Ef’:, T ACA.Y.Y)
10 3)
RRg,k.r = RRklO

Impacts on mortality rates. Mortality rates attributable to increased PM, 5 con-
centration caused by every single coal-fired power plant can be estimated by
applying GBD methods®. In the GBD method, population attributable fraction
(PAF) is defined as the percentage of disease mortality attributable to certain
exposure in a population. PAF is estimated as

PAF, ,, = Pg.k.ijx RRg.k.i,j - Pé,k,iJ x RR;'.k.i,j ()
Skt Pg,k,i,j X RRg,k,i,j
P,, xRR — P, xRR/
PAngJ _ gk.r g.kr gk gk, (5)

Pg.k.r x RRg.k.r

where in Eq. (4), PAF;; represents the fraction of a specific disease (k) mortality
in grid g attributable to pollutant j emitted from power plant i; Py ;; is the pro-
portion of population exposed to air pollutant j emitted from plant i, presumably
equal to one (=100%) due to the universal impacts of air pollution; Py ;. is the
counterfactual proportion of the population not exposed to emissions from plant i,
which is equal to one as well. RR), , ; . is the counterfactual risk from not being

g.k.ij
exposed to plant i, equal to one. Thus, the equation can be simplified as
RR ., —1
PAF, ;= — = — (6
gkiij RRg‘k.i.j
RR,;, —1
PAF,,, =31 7)
& RRg.k‘r

Similar denotation rules apply to Egs. (5) and (7). Disease-specific mortality
change can be estimated as

AMortality, ;. = mortality, , x PAF, ; ;; 8)

AMortality, . = mortality, , x PAF ;. )

where mortality,  is the age- and sex-standardized mortality rate (2012 China
national standardized population) of a specific disease k in grid g; PAF;; is the
fraction of mortality attributable to pollutant j emitted from plant i. AMortality, ; ;
is the fraction of mortality attributable to emissions of pollutant j from plant i. The
distributions of age and sex in grid g are assumed to be homogeneous across all
regions in the same province. Similar denotation rules apply to Eq. (9).

Valuation of air pollution-related mortality. The VSL method, which is based on
surveys on people’s willingness to pay to avoid fatality risks>7, was used to estimate
the economic loss of increased mortality caused by air pollution. We used the VSL
suggested by the US EPA38 as the baseline (VSLpase), which is $7.4 million per
person in 2006 value, and adjusted it to 2017 value. VSL in each grid g was
calculated based on China’s national and prefecture level socioeconomic data
according to Eq. (10):

(10)

Here, pcGDP2017, is GDP per capita of grid g in 2017, calculated from China’s
national and prefecture level GDP and population data in 2017; pcGDP2017ys is
GDP per capita in the United States in 2006, adjusted to 2017 value taking into
account of inflation. Income elasticity of the VSL with respect to per capita GDP is
0.5, following West et al.20. The exchange rate in 2017 was one dollar for 6.75
Chinese Yuan (CNY).

Using the results in the increase in mortality rates, we calculated the economic
loss caused by air pollutants from each power plant i and in each grid g. For plant i,
emissions of pollutant j will cause the mortality rate in grid g to increase by
AMortality, ;. ;- The air pollution-associated economic loss caused by plant i can be

0.5
VSLy = VSLyye x (pcGDP2017, /peGDP2017, )

calculated by the following equation:

L= ;:IZ‘QJ:]VSLK x Pop, x AMortality, ; ;- (11)
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where L; is the nationwide economic loss attributable to plant i; for residents of grid
g the air pollution-associated economic loss caused by all coal-fired power plants
in China is estimated as

L, = ZZZIZ;’:]VSL&, x Pop, x AMortality, ;. (12)

Equations (11) and (12) are also used to calculate the economic loss from
different combinations of pollutant types and geographic ranges, which can yield
more nuanced results for policy targeting (Figs. 3-5).

As comparisons to the main results using a universal VSL based on national per
capita GDP and an income elasticity of 0.5, we also calculated co-benefits using
VSLs based on alternative assumptions, including (1) an income elasticity of 1; (2)
prefecture-level VSLs based on local income; and (3) VSL based on a contingent
valuation survey study from China®. These results are presented in Supplementary
Notes 2 and 3.

On national average, the distribution of economic loss caused by a plant across the
four ranges (within 100, 100-500, 500-1000, and beyond 1000 km) is roughly 1:3:3:3.
Since a power plant can have many detrimental effects on adjacent areas other than
PM, 5 (e.g., coal ash and heavy metal deposition), the economic loss within 100 km
could be underestimated. As a comparison with the original results, in Supplementary
Fig. 3 we multiply the economic loss within 100 km by 3 to make it roughly the same
as the losses in other ranges. The choice of weight for local impacts can be adjusted
based on various environmental and socioeconomic considerations, and from a
regional planning perspective, policy makers can give higher weights to local impacts
in order to avoid construction of coal plants in metropolitan areas.

We use the GEOS-Chem model (GCHP 13.0.2 version) to statistically test the
accuracy of the IFs model. We created a national inventory for pollutants emissions
from all coal-fired power plants in China. Inventories for other economic sectors
are from the Multi-resolution Emission Inventory for China (MEIC)), a bottom-up
emission inventory framework developed and maintained by Tsinghua University
(http://meicmodel.org/). The model was run with a horizontal resolution of
approximately 0.5° x 0.5° in China (internal cubed sphere resolution) and 72
vertical layers. We then compared GEOS-Chem results with IF model results
(Figs. 6 and 7) as well as with observational data for annual average PM, 5
concentration from 1444 air-quality monitoring stations across China
(Supplementary Fig. 9).

Distribution of co-benefits across geographic regions. When technology set-
tings and coal quality are given for a plant, the co-benefit of per ton CO, emissions
reduction were calculated according to a power plant’s emission factors for CO,,
SO,, NO,, and primary PM, 5. China’s electricity grids are divided into six major
regional grids (Supplementary Fig. 12). Several previous studies have developed
complete emissions inventories for coal-fired power plants in China, such as the
MEIC. Liu et al.40 calculated regional-grid level average emission factors for CO,,
SO,, NO,, and PM, 5 per kWh of electricity generation in 2010 based on MEIC
(Supplementary Table 3). From 2010 to 2017, national average per kWh coal use
decreased from 333 to 309 g, while emission factors of SO,, NO,, and PM, 5
decreased by 83%, 63%, and 44%, respectively!!. The 2017/2010 ratios are used to
estimate regional-grid level emission factors in 2017 (Supplementary Table 4).
Since our study aims to estimate co-benefits of a power plant at a specific location
with average technology settings and fuel quality in the region, the use of regional
grid average emission factors is appropriate. Unabated emission factors for SO, in
each province were calculated based on per kWh coal consumption and sulfur
contents of coal. The sulfur content data and unabated emission factors for NO,
and primary PM, s are from Liu et al.’s study®’. The removal efficiency of four
representative technologies that can reduce pollutants emissions, including FDG,
SCR, ESP, and FAB, are assumed to be 95%, 85%, 93%, and 99%, respectively,
based on existing literature*! =43,

After we obtained co-benefit values for 2475 plants/generation units, a Kriging
interpolation algorithm was applied to estimate the geographic distribution of co-
benefits from a power plant built with regional grid average technology settings and
fuel quality. The provincial average co-benefit values were obtained by taking a
capacity-weighted mean of co-benefit values for all individual plants in that
province (Fig. 2). Since China’s coal power industry adopts the “equal shares
dispatch” rule, meaning that all power plants in a province are assigned roughly the
same operating hours each year#4, the weights can also approximate each plant’s
share in total electricity generation. Similar procedures were also applied to the
calculation of regional grid average co-benefits (Fig. 5).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. Other data that support the findings of this
study are available from the corresponding author upon reasonable request.
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