
sensors

Article

Wearable Electronic Tongue for Non-Invasive Assessment of
Human Sweat

Magnus Falk 1,2, Emelie J. Nilsson 1,2 , Stefan Cirovic 1,2, Bogdan Tudosoiu 3 and Sergey Shleev 1,2,*

����������
�������

Citation: Falk, M.; Nilsson, E.J.;

Cirovic, S.; Tudosoiu, B.; Shleev, S.

Wearable Electronic Tongue for

Non-Invasive Assessment of Human

Sweat. Sensors 2021, 21, 7311.

https://doi.org/10.3390/s21217311

Academic Editor: Ki H. Chon

Received: 26 September 2021

Accepted: 1 November 2021

Published: 3 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden;
magnus.falk@mau.se (M.F.); emelie.nilsson@mau.se (E.J.N.); stefan.cirovic@mau.se (S.C.)

2 Biofilms—Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
3 Covercast AB, Drottensgatan 4, 222 23 Lund, Sweden; bogdantds@gmail.com
* Correspondence: sergey.shleev@mau.se

Abstract: Sweat is a promising biofluid in allowing for non-invasive sampling. Here, we investigate
the use of a voltammetric electronic tongue, combining different metal electrodes, for the purpose
of non-invasive sample assessment, specifically focusing on sweat. A wearable electronic tongue is
presented by incorporating metal electrodes on a flexible circuit board and used to non-invasively
monitor sweat on the body. The data obtained from the measurements were treated by multivariate
data processing. Using principal component analysis to analyze the data collected by the wearable
electronic tongue enabled differentiation of sweat samples of different chemical composition, and
when combined with 1H-NMR sample differentiation could be attributed to changing analyte
concentrations.
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1. Introduction

A significant effort is being devoted to the development of new healthcare and fitness
innovations, driven by the need imposed by patients and individuals, as well as the
possibilities provided by recent electronics, to evaluate and benchmark personal health
parameters [1,2]. By designing wearable devices, it is possible to perform continuous,
non-invasive monitoring of biomarkers for assessing human performance, health, and
wellbeing. Such new wearable technologies enable a shift from professional medical care
provided by hospitals to essentially outsourced medical services at point-of-care units and
homes and individuals being able to self-assess, at a much lower cost than what is currently
possible. A variety of different wearable electronics systems are already on the market,
which are capable of, e.g., monitoring heart rate and maximal oxygen uptake (VO2 max).
However, these systems measure general parameters, and do not perform non-invasive
chemical analysis.

To facilitate non-invasive sensing, there is a large interest in developing different sen-
sors and biosensors operating in interstitial fluid, saliva, tears, and sweat, which promises
continuous analyte access and measurement in a minimally- or non-invasive format [3].
In particular, there is a growing interest to use perspiration for chemical analysis as sweat
contains a wealth of physiologically and metabolically important biomarkers, such as
electrolytes and metal ions, metabolites, amino acids, proteins, and hormones, and can be
sampled non-invasively [4–8]. Traditionally, the high demands on laboratory infrastruc-
ture, typically needing mass spectrometry or H-NMR to analyze the samples, have thus
far prevented the clinical implementation of sweat as a diagnostic biofluid, limiting the
clinical importance of sweat to the determination of chloride for the diagnosis of cystic
fibrosis [9,10]. The content of sweat is also highly variable, both between individuals but
also dependent on the sample location from the same individual, making sample analysis
harder [11].
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The use of sweat as a noninvasive, laboratory-independent, on-skin diagnostic biofluid
has the potential to have a major impact on health care in the future. Sweat analysis is an
ideal method for continuously tracking a person’s physiological state, but no commercial
portable device exists as of yet whereas several different wearable sweat monitoring
devices have been reported recently by different research groups [3,12–15]. A sensitive
and selective approach to multiplexed sensing of sweat biomolecules can be achieved by
utilizing wearable electrochemical sensors, coupled with electrical components for signal
transduction and data transmission. One such example was described by Gao et al., where
the authors designed a sensor array device of different selective electrodes, combining
biosensors for detection of glucose and lactate with ion-selective electrodes for sodium
and potassium [12]. By having a sensor array where the individual sensors showed high
specificity towards a different specific analyte, the authors could measure a detailed sweat
profile of human subjects. However, it is a well-known fact that biosensors have quite
restricted operational lifetime due to the limited stability of enzymes, and most of them are
not ready for real practical usage outside scientific, industrial, or medical laboratories.

An alternative approach to using highly specific electrodes for sweat analysis is
instead to employ so called electronic tongues (e-tongues), composed of an array of robust
and stable but non-specific, poorly selective sensors with partial specificity and using
data-processing algorithms, such as principal component analysis (PCA) and hierarchical
cluster analysis (HCA), to analyze the sample [16]. In addition, sweat is a complex solution
containing a mixture of many electrochemically active high and low molecular weight
compounds, which complicates electrochemical detection of individual compounds. In
an e-tongue, the performance of individual sensors can be greatly improved in terms
of the limit of detection and selectivity by the simple inclusion of data from seemingly
non-related sensors [17,18]. The capabilities of e-tongue systems show a unique ability to
deal with complex and changing background and diminish the impact of interferents, and
a wide variety of voltammetric e-tongues have been used, e.g., analysis of foodstuff or
environmental monitoring [19–27]. Recently, a portable electronic tongue was developed
by a research team from IBM for classification of different beverages [28]. The device
was connected to cloud computing and employed machine learning algorithms for the
classification of liquids within less than one minute. E-tongue systems can also be used
as a diagnostic approach to identify and monitor early stages of pathological biological
processes in complex biological fluids, and have been used to investigate urine samples and
for continuous monitoring in saliva [29–32]. A potentiometric ion-selective sensor array
has also been used to classify cystic fibrosis from stimulated sweat samples [33]. However,
wearable e-tongues have so far not been used for the analysis of human perspiration.

The aim of this work was to investigate the use of a voltametric e-tongue, composed
of different metal electrodes, for the differentiation of sweat samples containing differ-
ent analytes of interest, employing mainly PCA to differentiate the samples. Based on
the results from the analysis of the e-tongue in sweat samples in vitro, a miniature wear-
able voltametric tongue, where metal electrodes were incorporated on a flexible circuit
board, was designed and investigated for on-body measurements of human perspiration,
where the content of the characterized sweat samples also were analyzed with 1H-NMR,
combining the non-specific response of the e-tongue with analytical determination of the
fluid to assess the compositional change of the sweat, leading to differentiation in the
sample-classification by the e-tongue.

2. Materials and Methods
2.1. Chemicals and Materials

In total, three different e-tongues were used for the investigations. For the initial
characterization of the e-tongue in buffer and sweat, macro electrodes from BASi® (Bio-
analytical Systems Inc, West Lafayette, IN, USA) made of gold and platinum (2 mm in
diameter) and palladium (3 mm in diameter) were used (Device 1). To be able to inves-
tigate small volumes of sweat, a micro e-tongue was designed, made from metal wires
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from Goodfellow Cambridge Ltd. (Huntingdon, UK) of palladium (0.125 mm in diame-
ter), gold and platinum (0.1 mm in diameter), all with a length of 1.5 cm of the working
electrode, where the remaining wire was insulated using cellulose acetate dissolved in
acetone with a concentration of 15 mg mL−1 (Device 2). A few mLs of sweat was used
for each measurement. Finally, a wearable e-tongue prototype was designed by plating
gold, palladium, and platinum as working electrodes (1 mm in diameter) and silver (3 mm
in diameter) as a combined counter/reference on a flexible circuit board (Device 3). The
metal electrodes were electroplated onto conducting copper tracks at SIFCO ASC Sweden
AB (Sifco Asc Sweden AB, Rättvik, Sweden). A nine times larger area was chosen for the
counter/reference electrode compared to the working electrode area to minimize devia-
tions in the reference potential [34]. The circuit board was covered with neoprene rubber,
leaving channels where the sweat could flow to the electrodes. The neoprene rubber was
coated with S100 hydrophilic coating (Jonsman Innovation ApS, Gørløse, Denamrk) to
facilitate the flow of sweat to and from the electrodes.

All chemicals used were of analytical grade, obtained from Sigma Aldrich (St. Louis,
MO, USA). The buffer used was a 10 mM phosphate buffer (PB), pH 6.9 containing 10 mM
NaCl. For the initial characterization of the electronic tongue, the PB was spiked with
different analyte concentrations: 150 mM sodium chloride (NaCl), 5 mM glucose (Glc),
10 mM lactate (Lac), 100 µg mL−1 ascorbic acid (AA), 10 mM urea (Ur), 100 mM sodium
bicarbonate (NaCarb), and 10 mg mL−1 albumin (Alb), respectively. For characterization
of sweat in vitro, a single sample was collected from a healthy volunteer and used for
characterization of the same analytes as with PB. The pH value of the PB was chosen
to match the measured pH value of this sweat sample. Additional sweat samples were
collected from three healthy volunteers and analyzed separately. All sweat samples used
for in vitro analysis were collected via heat-induced sweating, pooled from collected sweat
from the forehead, back, chest, and arms.

2.2. Electrochemical Measurements

Electrochemical characterization was performed using a DropSens multichannel Po-
tentiostat µStat 8000P (Oviedo, Spain). For characterization of Device 1 a standard three
electrode configuration was used with an Ag/AgCl (sat.) reference electrode and a plat-
inum counter electrode. For analysis of sweat with the micro e-tongue (Device 2) and
wearable e-tongue (Device 3), a 3 cm silver wire (0.125 mm in diameter, Goodfellow Cam-
bridge Ltd., Huntingdon, England) and a plated silver electrode were used as a combined
counter/pseudoreference Ag/AgCl electrode, respectively. Prior to measurement, the
electrodes were gently polished with 0.05 µm aluminum oxide powder from Struers (West-
lake, OH, USA) and thereafter cleaned electrochemically by cycling in 0.5 M H2SO4.Fluid
samples were characterized using differential pulse voltammetry (DPV). A potential range
from −0.6 to 0.6 V and a step potential of 1.95 mV with a 25 mV amplitude and 0.1 s interval
time were applied, recording 615 individual data points for each DPV measurement. Each
sample was measured three times.

2.3. Statistical Analysis

PCA was performed as an unsupervised tool for dimension reduction. The differ-
ent e-tongues (Device 1, Device 2, Device 3) were analyzed separately, where data sets
for responses from the three working electrodes were merged into one data set of 1845
data points and analyzed together with each repeat measurement and each fluid, with
the responses standardized to remove effects of different electrode sizes by having each
variable (response from each electrode) scaled to unit variance and mean centered. After
preprocessing, PCA of samples was performed using IBM SPSS (IBM Svenska AB, Malmö,
Sweden), extracting all factors with an eigenvalue greater than 1, without any additional
factor rotation. Furthermore, HCA on the extracted PCs was performed by calculating the
Euclidean distance using Ward’s minimum variance method using IBM SPSS.
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2.4. 1H-NMR

Sweat samples collected in conjunction with measurements with the wearable elec-
tronic tongue (Device 3) were also prepared for 1H nuclear magnetic resonance (NMR)
spectroscopy. Fifty µL of sweat was dried under a flow of N2 gas to minimize the amount
of water in the sample. Afterwards the samples were resuspended/diluted in 350 µL D2O.
The resuspended samples were transferred into 5 mm NMR tubes. The spectra were col-
lected on a Varian Mercury 400 MHz spectrometer at a resonance frequency of 400.41 MHz
using a 5 mm Varian 400 ASW 1H/13C/31P/15N/4NUC PFG 40–162 MHz (SN40P5A910)
probe at 25 ◦C. The spectra were acquired using a 90 ◦C pulse (12.3 µs pulse width), a
relaxation delay of 2 s, an acquisition time of 2.6 s, a spectral width of 6406.1 Hz (−3.3 to
12.7 ppm), with 16,384 complex data points and a 20 Hz spin. The residual water signal
was suppressed by using a PRESAT pulse sequence available in VnmrJ version-4.2, using
a presaturation delay of 10 s and a power of 36 Hz at 4.65 ppm. All spectra were Fourier
transformed using MestReNova (version 14.1.2, Mestrelab Research, Escondido, CA, USA)
with zero filling to 64k data points. All spectra were phased and baseline corrected. The
area of the peaks was calculated by fitting Lorentzian–Gaussian peaks to the regions of
interest.

3. Results
3.1. Characterization of Electronic Tongue in Complex Buffer and Physiological Fluids

In order to assess the viability of using an e-tongue for classifying different sweat
samples, gold, platinum, and palladium electrodes were first investigated in buffer solu-
tions with analytes of interest. Electrode materials for e-tongues have previously been
investigated, and the electrode materials were chosen to have different response profiles
and provide a simple and robust sensing platform [35]. Nickel and silver electrodes were
initially investigated but excluded from the analysis, as they were found to not contribute
to the sample separation.

Sweat contains a large number of different compounds which could be of clinical
importance, where a few compounds were selected to investigate the response of the
electronic tongue [36,37]. It should be noted that very large differences exist in reported
concentration ranges in the literature, which makes the choice of analyte concentration
for this study somewhat arbitrary. The glucose level in sweat has been shown to correlate
with blood, however, the presence of glucose is much lower than in blood, but with very
large variations in reported values between different studies (from 0.1 mM up to around
2 mM) [38,39]. Sweat electrolyte concentration can vary widely between individuals,
with concentration values of sodium and chloride reported below 10 mM and above
100 mM, with chloride being used for diagnosis of cystic fibrosis [9,10]. Average urea
concentrations in sweat range from ~4 to ~12 mM for healthy people, with higher levels in
kidney patients [14]. Sweat also contains a variety of proteins, peptides, and amino acids.
While only a small proportion of the total protein content in sweat is made up of albumin,
albumin was chosen as a model protein to see the effect of a high protein content on the
response of the electronic tongue [40]. Sweat also contains different vitamins, where, e.g.,
loss of vitamin C due to heat exposure is of clinical relevance [41,42]. Finally, lactate and
bicarbonate are present in sweat at elevated levels, with concentrations related to the level
of physical exertion or sweat rate, but which have also shown clinical relevance in, e.g.,
cystic fibrosis [43,44]. Some reference values of compounds of interest are summarized in
Table 1 below.
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Table 1. Reference values for compounds of interest present in sweat.

Compound Concentration (mM)

Lactate 5–40 (Ref [45])
Glucose 0.1–2 (Ref [38,39])

Sodium carbonate 0.5–100 (Ref [36,43])
Na+, Cl− below 10, above 100 (Ref [9,10])

Urea 5– above 100 (Ref [14,45])
Ascorbic acid 0.01–0.5 (Ref [45,46])

As a model experiment, initial investigations were performed to characterize the
electrode system in buffer solution, which was also further spiked with either 150 mM
sodium chloride, 5 mM glucose, 10 mM lactate, 100 µg mL−1 ascorbic acid, 10 mM urea,
100 mM sodium bicarbonate or 10 mg mL−1 albumin. Concentrations were chosen at the
highest end of the range or even slightly above, in order to also elicit a clear response in the
complex background. However, concentrations in the high ranges also typically signal that
some physiological issue exists. Typical current responses for the electrodes recorded using
DPV are displayed in Figure 1. Different response patterns were obtained for all electrodes.
The different electrode materials show non-specific and overlapping signals with different
sensitivity properties towards the different analytes. Whereas direct sensing of different
analytes in complex fluids would not be possible, the results indicate that by combining the
electrodes an e-tongue system could be used to differentiate between samples of different
compositions.
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When measuring using DPV in complex buffers and physiological fluids, which
contain a multitude of different components, the response signal is complex, and a direct
interpretation of the data is difficult. Without additional chemical analysis performed
on the physiological samples, it is impossible to determine their contents based only on
the response of the e-tongue, as the selectivity of individual electrodes is insufficient for
specific analysis of single components from such samples consisting of several redox-active
compounds and various ions. However, the voltammograms from the e-tongue system
contain a large amount of “hidden” information and to extract this information PCA was
employed, a useful mathematical tool to explain variance in experimental data, where DPV
responses from each electrode were combined into one data-set and used for analysis [47].
Such analysis has the major advantage that no prior knowledge about samples or variables
is required and that the data structure is represented by as few variables as possible. The
generated score plots show the relation between the experiments, and groupings in the
score plots can be used for classification.

PCA was used to characterize the response from the different electrodes in different
buffer solutions. Every sample was tested three times using DPV (as shown in Figure
1), and so to perform the analysis of all the samples, the data from each electrode was
merged by combining the different data sets to a large data set of size 24 × 1845 (eight
different fluids each tested three times, using three different working electrodes each
recording 615 data points). Discrimination of the samples was possible by studying the
score plots. In total, six different principal components (PCs) were extracted, all with
absolute Eigen values larger than one, explaining a total of 94.7% of the variance in the
samples, where the first three components (PC 1, PC 2, PC 3) explained 37.2%, 19.1%,
and 14.8%, respectively. The first three PCs are illustrated in Figure 2, where the different
samples with various added analytes are all well separated. This shows that the e-tongue
can be used to distinguish between spiked samples containing different clinically relevant
biomarkers that can be present in physiological sweat samples. These results indicate that
using an e-tongue for screening of different physiological samples could be a very useful
tool to quickly assess the contents of the sample and/or monitoring changes over time,
where, e.g., clustering could be used to assess the composition of measured samples.
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acid (AA), 10 mg mL−1 albumin (Alb), 150 mM sodium chloride, 10 mM urea (Ur) or 100 mM sodium
bicarbonate (NaCarb). Explained variance of PC 1 (37.2%), PC 2 (19.1%), and PC 3 (14.8%).

To investigate the e-tongue for the specific purpose of sweat analysis in more detail,
in a similar manner as with the buffer solutions, a sweat sample collected from a healthy
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volunteer via heat-induced sweating, with unknown content, was also investigated with
DPV, with the same analytes as for the investigations in buffer added to the sample.
Due to the limited amount of collected sweat, a miniature voltammetric e-tongue was
designed by combining micro-wires of gold, platinum, and palladium, with a combined
micro-silver counter/reference electrode, to allow electrochemical characterization in real
sweat samples of a small volume. Each sample was investigated three times, where
the same original sweat sample was used for all the measurements, so as to keep the
concentration of different metabolites constant besides that with which the sample was
spiked. These measurements were performed to validate that the e-tongue would be able
to distinguish different concentrations also when applied to a complex background instead
of just buffer solution. In addition to the spiked sweat samples, additional heat-induced
sweat samples from three different volunteers were collected and analyzed. All the sweat
samples were analyzed together, combining the different data sets to a large data set of
size 30 × 1845 (10 different fluids each tested three times, using three different working
electrodes each recording 615 data points). The results of the PCA are shown in Figure 3.
In total, six different principal components were extracted, all with absolute Eigen values
larger than one, explaining a total of 94.6% of the variance in the sample, where the first
three components (PC 1, PC 2, PC 3) explained 34.4%, 24.5%, and 18.9%, respectively.
Addition of analytes resulted in samples that could be differentiated from each other also
when the background solution was real sweat instead of PB. Furthermore, the samples
collected from different volunteers gave a widely different response, related to a large
individual variation in the composition of the sweat, and all are clearly separated in the
PCA score plots. However, the exact composition of each fluid was unknown.
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Sweat is a very complex fluid and a detailed appreciation of different components is
not possible due to the large possible variability in content. To fully understand the cause
of the sample discrimination, extensive reference measurements would be required. As all
the samples have a different chemical composition, possible explanations of the various
response patterns are electrode kinetics, metal oxide-catalyzed reactions, and adsorption
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of different species present in the solution. However, the aim of the experiments was not
to develop a complete analytical system, but to investigate the possibilities of using DPV
combined with multivariate methods for classification purposes for non-invasive analysis.
Nonetheless, these results demonstrate that an e-tongue can be used to distinguish between
real sweat samples of different composition.

To further investigate the possibility of using the e-tongue in sweat, the stability of
the sensor response was investigated in pre-collected sweat. The sensors were placed
in the sweat solutions and DPV was recorded right away, after 0.5 h, 2 h, and 8 h in the
same solution. Finally, the sensors were removed, cleaned by the standard procedure then
placed back in the sweat solution and measured one final time. The results are shown in
Figure 4. Overall, the different sensors gave a similar response over time, especially over
shorter measurement times. After long incubation in sweat larger changes were observed.
The changed response can be attributed both to a change of the sensor surface, such as
adsorption of different species changing the redox properties, as well as the changing
composition of the sweat solution itself. It is likely that a collected sweat solution contains
different cells and bacteria, which over time can influence the redox response of the sensors
as well as change the composition of the sweat. After cleaning, part of the signal is restored
but some permanent changes remain, which can be attributed to compositional changes in
the sweat such as e.g., bacterial growth. If worn on the skin, it is likely this problem can be
lessened by carefully cleaning the sensor site before attachment.
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Figure 4. Differential pulse voltammetry (scan rate 20 mV/s, pulse amplitude 25 mV, pulse time 50 ms) of (a) gold,
(b) platinum, and (c) palladium electrodes incubated in the same sweat solution with measurements taken immediately,
after 0.5 h, 2 h, 8 h and finally after cleaning the electrodes and measuring again in the same solution.
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3.2. Wearable E-Tongue for On-Body Sweat Characterization

As shown in Section 3.1, a voltammetric e-tongue can be used to separate complex
physiological fluids of different compositions, which could be used for example to deter-
mine attributes of the fluids or to monitor changes in the fluids. Sweat is of particular inter-
est as it can be monitored non-invasively, contains a wealth of physiologically and metabol-
ically important biomarkers, and shows a large variability in composition [5,36,39,48].
To allow for sweat monitoring directly on the skin, a wearable e-tongue prototype was
designed, shown in Figure 5. Au, Pt, and Pd were plated on a flexible circuit board and
used as working electrodes, with an Ag counter/reference electrode.
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Figure 5. (a) Sketch showing the general design of the flexible circuit board. (b) Photograph of
a wearable e-tongue prototype. (c) Wearable e-tongue attached to volunteers back, worn during
exercise and used for on-body analysis of the subject’s sweat.

Prior to on-skin measurement, the wearable e-tongue was characterized with a small
(roughly 20 µL per measurement) amount of pre-collected sweat, spiked with the same
concentration of analytes as described above (in Section 3.1). As the actual composition
of all sweat samples is unknown apart from the analyte it was spiked with, these pre-
body measurements are important in order to be able to interpret changes in the on-
body measurements and be able to relate them to possible compositional changes of
the analyzed fluid. The e-tongue prototype was then attached to the back of a healthy
volunteer whereupon a 5-min high-intensity exercise regime was performed, triggering
heavy sweating. A lighter exercise load was then maintained throughout the measurements,
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to keep an elevated level of perspiration. Directly after finishing the 5-min exercise, the
e-tongue was connected to a multichannel potentiostat and measurements were performed
with the wearable e-tongue attached to the back of the volunteer. After an additional 15-min
period, new measurements were performed, in order to study the changing composition of
the exuded sweat. All the data using the wearable e-tongue were combined and analyzed
together, combining the different data sets to a large data set of size 27 × 1845 (nine different
fluids each tested three times, using three different working electrodes each recording
615 data points).

As shown in Figure 6, after analysis of the data, PCA explained a total of 87.8%
of the variance, where five PCs were extracted, all with absolute Eigen values larger
than one. The PCs explained a total 47.4%, 21.7%, 8.3%, 6.2%, and 4.2% of the variance,
respectively. A detailed breakdown of one of each repeat measurement of different fluids
per PC is also listed in Table 2. To further differentiate between the samples based on
the five PCs, HCA was performed by calculating the Euclidean distance using Ward’s
minimum variance method. The distances between each of the first measurements in the
different sample fluids are shown in Table 3, which gives information about the overall
similarity of the different samples taking into account all five PCs. The results shown
in Figure 6 show overlap between some of the different samples, to a larger extent than
the miniature e-tongue (Figure 3). However, taking into account all five PCs, sample
differentiation is possible. For example, ascorbic acid show overlap on the first three
PCs, but is separable from the other analytes on PC 4 and PC 5. A notable difference is
observed between the in vitro sweat measurements and on-body sweat measurements,
where the on-body measurements are clearly separated from the pre-body measurements
on the first two PCs which explain most of the sample variance (Figure 6a). This is not
surprising, as different sources of sweat were used for the measurements, where the
in vitro analysis used pooled sweat collected via heat-induced sweating and the on-body
sweating was caused by an exercise regime. It is well-known that different sources of
sweat can vary widely in composition [49,50]. The response of the wearable e-tongue on
the skin directly after exercise and with a 15 min delay was quite similar, with the largest
differentiation being the samples recorded on the loading of PC 3, which decreased from
around 0.22 to −0.61. To assess the possible compositional changes in the sweat samples
recorded in connection with exercise, the results were compared with the results from the
in vitro measurements, where samples were spiked with a known analyte. As shown in
Figure 6 and Table 2, a large decrease in PC3 was observed when the sample was spiked
with lactate, changing the loading from around 0.4 to −0.15. These results indicate that
an increasing lactate concentration in the delayed measurement on the skin compared to
the measurement taken directly after the 5-min exercise could be one of the causes for the
sample separation. Based on the distance between the samples shown in Table 3, it also can
be observed that the last on-body measurement is closer to the sweat sample spiked with
lactate than the first on-body measurement, with distances of 2.728 and 3.533 versus lactate,
respectively. Whereas other compositional changes surely existed between the samples,
these are difficult to assess due to the complexity of sweat composition.
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Table 2. List of PC score values for the first of each repeat measurement of sweat, sweat spiked with
different compounds, and on-body measurements, obtained from the wearable e-tongue.

Compound PC 1 PC 2 PC 3 PC 4 PC 5

Sweat 0.61 0.34 0.40 −0.44 0.03
Lac −0.89 0.12 −0.15 −0.01 −0.09

NaCarb −0.81 −0.52 0.09 0.10 −0.06
Glc −0.86 0.25 −0.01 0.11 0.06
Ur −0.42 0.70 −0.05 −0.35 −0.02
AA −0.30 0.69 −0.01 0.37 0.40

NaCl 0.45 0.74 −0.01 0.19 −0.27
SweatFirst 0.93 −0.18 0.22 0.4 −0.07
SweatLast 0.61 −0.24 −0.61 -0.3 0.28
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Table 3. Euclidean distance between each of the first repeat measurements of the different samples, based on the 5 extracted
PCs using the results obtained from the wearable e-tongue.

Sample Sweat Lac NaCarb Glc Ur AA NaCl SweatFirst SweatLast

Sweat 0 2.823 3.163 2.643 1.409 1.901 0.846 0.632 1.602
Lac 0 0.492 0.393 0.687 1.184 2.278 3.533 2.728

NaCarb 0 1.242 1.862 2.003 3.230 3.142 2.680
Glc 0 0.614 0.684 2.070 3.430 2.805
Ur 0 0.702 1.117 2.792 2.457
AA 0 1.039 2.611 2.183

NaCl 0 1.176 1.673
SweatFirst 0 0.902
SweatLast 0

3.3. NMR-Analysis of Sweat Samples Characterized by the Wearable E-Tongue

In order to assess if the indicated changes detected by the e-tongue corresponded
to actual changes in the measured samples, sweat samples were collected from the back
in connection with the e-tongue measurements, both directly after the exercise program
and 15 min later. The collected samples were then analyzed using 1H NMR spectroscopy.
This was done to assess compositional changes that could lead to the different responses
generated by the electronic tongue. Several different studies have been aimed at charac-
terizing the composition of sweat, using techniques such as mass spectroscopy and NMR.
The studies have shown sweat to display a large physiological variability in terms of the
number of metabolites present and the concentrations between subjects as well as between
different body locations [49–52].

1H NMR spectroscopy produced spectra of the sweat samples that identified and
quantified different metabolites, as shown in Figure 7 with identified compounds listed
in Table 4. The metabolites were identified by comparison to previously published data
on common endogenous metabolites [53–55]. Several peaks could not be identified, as
verification of the identities of these metabolites would require the extensive use of either,
e.g., 2D NMR spectroscopy or high-performance liquid chromatography coupled to mass
spectroscopy (HPLC-MS). In general, the initial sweat sample contained a myriad of peaks,
most of which were reduced in intensity or completely lacking in the sample taken after
15 min. This is not surprising, as the initial sweat sample would contain partially old
sweat and contamination from the skin surface, where the contamination effect of all these
sources will be diluted and diminished when higher sweat rates are maintained over
time [5,6]. Lactate was the most dominant metabolite found in both samples and also
displayed the largest change between samples, where the amount increased roughly six-
fold in the sample taken 15 min after the exercise program. Another significant metabolite
was glycerol, which had similar concentrations before and after the exercise program.
These results agree with the analysis using the wearable e-tongue, where the decrease in
PC 3 could be attributed to an increase in lactate concentration. The results also makes
sense from a physiological perspective, as high exertion exercise regimes increase the
metabolic activity of the sweat gland itself and have been shown to display a spike in
lactate correlating with exercise intensity (sweat rate), whereas this does not necessarily
represent the anaerobic state of the body [6].
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Figure 7. The 400 MHz 1H-NMR spectra of human sweat taken directly after (SweatFirst), as well as
after 15 min (SweatLast), following a 5 min exercise regime. The spectra show a significant difference
for the lactate (orange circles) in the two samples, but also a distinct presence of glycerol (turquoise
diamonds).

Table 4. Peaks assigned to metabolites in sweat samples, collected in conjunction with measurements
with the wearable e-tongue, after comparison with an NMR spectroscopic metabolite reference
database. Multiplicity is indicated as s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.
The relative area is calculated per molecule.

Metabolite Chemical Shift (δ) Area, First Area, Last

Lactate 4.11 (q), 1.32 (d) 1.0 5.9
Serine 3.96 (m), 3.85 (m) trace trace

Alanine 3.79 (q), 1.48 (d) trace trace

Glycerol 3.77 (m), 3.65 (m),
3.55 (m) 0.5 0.6

Pyruvate 2.37 (s) trace trace
Lipids (-CH2-) 1.28 (broad) trace trace
Lipids/Protein

(CH3-) 1.15 (broad) trace trace

4. Discussion

Previous studies of sweat have focused on employing specific sensors, where enzy-
matic sensors for sweat biosensing demonstrations (e.g., ethanol, lactate, glucose) and
ion-selective electrodes are common techniques [11]. Here, we take instead a new approach
of sweat characterization, by combining several non-specific electrodes, which gives an
electrochemical profile of the sample analyzed, which changes with changing analyte
concentrations. The results of the wearable e-tongue in combination with the NMR analysis
of the measured sweat show the potential of using an e-tongue for non-invasive analysis
of sweat samples. To improve the performance of the wearable e-tongue, more electrodes
could be included for the DPV measurements, e.g., other noble metals such as iridium or
rhodium. Electrodes could also be further modified with, e.g., self-assembled monolayers,
conducting polymers or redox catalysts to differentiate the response. Other types of mea-
surements could also be included in the analysis, e.g., inclusion of ion-selective electrodes
and conductivity measurements. In addition, while DPV is a very sensitive technique,
due to the complex composition of sweat and the typically very low amounts of some
analytes, e.g., glucose which typically vary in the micro-molar range, minor concentration
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changes would not be detectable. The e-tongue could however also be complemented with
specific sensors for analytes present at very low concentrations, with the added benefit that
the data analysis of the combined sensor array would be improved. The combination of
different sensor technologies in hybrid electronic tongues has been shown to improve the
performance [21,27].

In addition to incorporating additional sensor modalities, several other design consid-
erations should be considered. First, the volume of sweat required to operate the device
could be an issue, as sweat generation rate varies from 0.1 nL min−1 per gland to >10 nL
min−1 per gland and eccrine sweat gland densities range from tens to hundreds of glands
per square centimeter depending on body location [5,6]. For a wearable e-tongue to be
viable for applications outside of active perspirers (such as athletes or very active people),
artificial sweat stimulation is required via, e.g., iontophoretic delivery of pilocarpine [8,11].
Second, sensor attachment to the skin is an important consideration. Body movement can
cause the sweat flow to accelerate or even reverse and damage or alter the sensor itself
with pressure or abrasion. In our developed wearable e-tongue, we used a stretch band to
attach the sensor, which was fine for our purpose of sensing during active perspiration,
when sweat flows easily, but otherwise not ideal. Possible solutions could be to deploy
a wicking system to transport the sweat to the sensor or a closed channel system [56,57].
Alternatively, a flexible tattoo-based sensing system could be employed, combined with
a localized iontophoretic sweat stimulation system [46]. Finally, care should be taken
regarding the reference electrode, and as we describe here a combined counter/reference
electrode is used. Operation of the sensor can lead to a significant potential shift of the
reference, causing a significant reduction in function of the sensing system [34]. For the
wearable e-tongue used in this study, employing three working electrodes with a combined
counter/reference electrode nine times the size of the working electrode, is not an issue,
but by adding additional working electrodes of other materials or other sensor modalities
this could become an issue and should be taken into account in the design of the reference
electrode, where a more complicated three-electrode system may be more suitable.

By extending the number of volunteers used in the study and combining the response
of the e-tongue with careful chemical analysis of sweat samples, powerful machine learning
algorithms could be deployed to achieve better sample classification and characterization.
However, this requires a very large number of volunteers to be recruited and investigated.
As the chemical composition of perspiration varies between individuals, sample location
on the body and the causes and period of sweating, with other factors, e.g., having a fever
also influencing its composition, carful studies with regard to sampling, sensor placement,
etc. enrolling a large number of volunteers would be needed [58]. By showing here the
important first step, that the wearable e-tongue indeed can separate samples of changing
composition, also verified with NMR, we intend to improve in future studies the original
design according to the above discussed points to be deployed in a large-scale study.
Sensors and algorithms for analysis of the data provided by such a wearable sensor array
could then be implemented in, e.g., a smart watch, to provide insight into physiological
changes.

5. Conclusions

An electronic tongue was designed by combining different metal electrodes as working
electrodes and showed promising ability when applied in complex fluids, such as different
buffer solutions and sweat. The different samples could be discriminated using principal
component analysis. Based on these results, a wearable prototype electronic tongue was
designed and used to differentiate between the changing composition of the exuded sweat
upon exercise over time. The results showed great promise in differentiating sweat samples
of different composition. When combined with 1H-NMR analysis of the sweat samples,
some of the observed changes measured with the e-tongue could be attributed to the
changing lactate concentrations in samples after physical exercise.



Sensors 2021, 21, 7311 15 of 17

Author Contributions: Conceptualization, M.F., S.S. and B.T.; methodology, M.F. and E.J.N.; software,
M.F.; validation, M.F. and E.J.N.; formal analysis, M.F. and E.J.N.; investigation, M.F., E.J.N. and S.C.;
resources, S.S.; data curation, M.F. and E.J.N.; writing—original draft preparation, M.F.; writing—
review and editing, M.F., E.J.N., S.C., B.T. and S.S.; visualization, M.F. and E.J.N.; supervision,
S.S.; project administration, S.S.; funding acquisition, S.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Swedish Knowledge Foundation (KKS), grant number
20150248 and 202100-4920, as well as MultiSens platform at the Faculty of Health and Society, Malmö
University.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of
the Swedish Ethics Review Board, Uppsala (protocol code 2019-01741, 2019-04-11).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Most data is contained within the article. Additional data presented
in this study are available on request from the corresponding author, due to containing data from
human volunteers.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Turner, A.P.F. Biosensors: Sense and sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. [CrossRef] [PubMed]
2. Chen, M.; Ma, Y.; Li, Y.; Wu, D.; Zhang, Y.; Youn, C.H. Wearable 2.0: Enabling Human-Cloud Integration in Next Generation

Healthcare Systems. IEEE Commun. Mag. 2017, 55, 54–61. [CrossRef]
3. Bandodkar, A.J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371.

[CrossRef] [PubMed]
4. Mena-Bravo, A.; Luque de Castro, M.D. Sweat: A sample with limited present applications and promising future in metabolomics.

J. Pharm. Biomed. Anal. 2014, 90, 139–147. [CrossRef]
5. Heikenfeld, J. Non-invasive Analyte Access and Sensing through Eccrine Sweat: Challenges and Outlook circa 2016. Electroanalysis

2016, 28, 1242–1249. [CrossRef]
6. Sonner, Z.; Wilder, E.; Heikenfeld, J.; Kasting, G.; Beyette, F.; Swaile, D.; Sherman, F.; Joyce, J.; Hagen, J.; Kelley-Loughnane, N.;

et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications.
Biomicrofluidics 2015, 9, 031301. [CrossRef]

7. Choi, J.; Ghaffari, R.; Baker, L.B.; Rogers, J.A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 2018, 4, eaar3921.
[CrossRef]

8. Heikenfeld, J.; Jajack, A.; Feldman, B.; Granger, S.W.; Gaitonde, S.; Begtrup, G.; Katchman, B.A. Accessing analytes in biofluids
for peripheral biochemical monitoring. Nat. Biotechnol. 2019, 37, 407–419. [CrossRef] [PubMed]

9. Lara, B.; Gallo-Salazar, C.; Puente, C.; Areces, F.; Salinero, J.J.; Del Coso, J. Interindividual variability in sweat electrolyte
concentration in marathoners. J. Int. Soc. Sports Nutr. 2016, 13, 31. [CrossRef]

10. Heeley, M.E.; Woolf, D.A.; Heeley, A.F. Indirect measurements of sweat electrolyte concentration in the laboratory diagnosis of
cystic fibrosis. Arch. Dis. Child. 2000, 82, 420. [CrossRef] [PubMed]

11. Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; et al. Wearable sensors:
Modalities, challenges, and prospects. Lab Chip 2018, 18, 217–248. [CrossRef]

12. Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully
integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509. [CrossRef] [PubMed]

13. Matzeu, G.; O’Quigley, C.; McNamara, E.; Zuliani, C.; Fay, C.; Glennon, T.; Diamond, D. An integrated sensing and wireless
communications platform for sensing sodium in sweat. Anal. Methods 2016, 8, 64–71. [CrossRef]

14. Zhang, Y.; Guo, H.; Kim, S.B.; Wu, Y.; Ostojich, D.; Park, S.H.; Wang, X.; Weng, Z.; Li, R.; Bandodkar, A.J.; et al. Passive sweat
collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system. Lab Chip 2019, 19,
1545–1555. [CrossRef]

15. Tai, L.-C.; Gao, W.; Chao, M.; Bariya, M.; Ngo, Q.P.; Shahpar, Z.; Nyein, H.Y.Y.; Park, H.; Sun, J.; Jung, Y.; et al. Methylxanthine
Drug Monitoring with Wearable Sweat Sensors. Adv. Mater. 2018, 30, 1707442. [CrossRef]

16. Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D’Amico, A. Nonspecific sensor arrays (“electronic tongue”) for chemical
analysis of liquids: (IUPAC technical report). Pure Appl. Chem. 2005, 77, 1965–1983. [CrossRef]

17. Legin, A.V.; Rudnitskaya, A.M.; Vlasov, Y.G.; Di Natale, C.; D’Amico, A. The features of the electronic tongue in comparison with
the characteristics of the discrete ion-selective sensors. Sens. Actuators B Chem. 1999, 58, 464–468. [CrossRef]

http://doi.org/10.1039/c3cs35528d
http://www.ncbi.nlm.nih.gov/pubmed/23420144
http://doi.org/10.1109/MCOM.2017.1600410CM
http://doi.org/10.1016/j.tibtech.2014.04.005
http://www.ncbi.nlm.nih.gov/pubmed/24853270
http://doi.org/10.1016/j.jpba.2013.10.048
http://doi.org/10.1002/elan.201600018
http://doi.org/10.1063/1.4921039
http://doi.org/10.1126/sciadv.aar3921
http://doi.org/10.1038/s41587-019-0040-3
http://www.ncbi.nlm.nih.gov/pubmed/30804536
http://doi.org/10.1186/s12970-016-0141-z
http://doi.org/10.1136/adc.82.5.420
http://www.ncbi.nlm.nih.gov/pubmed/10799439
http://doi.org/10.1039/C7LC00914C
http://doi.org/10.1038/nature16521
http://www.ncbi.nlm.nih.gov/pubmed/26819044
http://doi.org/10.1039/C5AY02254A
http://doi.org/10.1039/C9LC00103D
http://doi.org/10.1002/adma.201707442
http://doi.org/10.1351/pac200577111965
http://doi.org/10.1016/S0925-4005(99)00127-6


Sensors 2021, 21, 7311 16 of 17

18. Ciosek, P.; Augustyniak, E.; Wroblewski, W. Polymeric membrane ion-selective and cross-sensitive electrode-based electronic
tongue for qualitative analysis of beverages. Analyst 2004, 129, 639–644. [CrossRef]

19. Winquist, F.; Wide, P.; Lundström, I. An electronic tongue based on voltammetry. Anal. Chim. Acta 1997, 357, 21–31. [CrossRef]
20. Winquist, F.; Krantz-Rülcker, C.; Wide, P.; Lundström, I. Monitoring of freshness of milk by an electronic tongue on the basis of

voltammetry. Meas. Sci. Technol. 1998, 9, 1937. [CrossRef]
21. Winquist, F.; Holmin, S.; Krantz-Rülcker, C.; Wide, P.; Lundström, I. A hybrid electronic tongue. Anal. Chim. Acta 2000, 406,

147–157. [CrossRef]
22. Ivarsson, P.; Holmin, S.; Höjer, N.-E.; Krantz-Rülcker, C.; Winquist, F. Discrimination of tea by means of a voltammetric electronic

tongue and different applied waveforms. Sens. Actuators B Chem. 2001, 76, 449–454. [CrossRef]
23. Söderström, C.; Borén, H.; Krantz-Rülcker, C. Use of an electronic tongue and HPLC with electrochemical detection to differentiate

molds in culture media. Int. J. Food Microbiol. 2005, 97, 247–257. [CrossRef]
24. Söderström, C.; Winquist, F.; Krantz-Rülcker, C. Recognition of six microbial species with an electronic tongue. Sens. Actuators B

Chem. 2003, 89, 248–255. [CrossRef]
25. Krantz-Rülcker, C.; Stenberg, M.; Winquist, F.; Lundström, I. Electronic tongues for environmental monitoring based on sensor

arrays and pattern recognition: A review. Anal. Chim. Acta 2001, 426, 217–226. [CrossRef]
26. Nery, E.W.; Kubota, L.T. Integrated, paper-based potentiometric electronic tongue for the analysis of beer and wine. Anal. Chim.

Acta 2016, 918, 60–68. [CrossRef]
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