
Abstract

Personalized medicine is a developing field of medicine that has gained in importance in recent decades. New diagnostic tests based on the analysis 
of circulating cell-free DNA (cfDNA) were developed as a tool of diagnosing different cancer types. By detecting the subpopulation of mutated DNA 
from cancer cells, it is possible to detect the presence of a specific tumour in early stages of the disease. Mutation analysis is performed by quanti-
tative polymerase chain reaction (qPCR) or the next generation sequencing (NGS), however, cfDNA protocols need to be modified carefully in prea-
nalytical, analytical, and postanalytical stages. 
To further improve treatment of cancer the Food and Drug Administration approved more than 20 companion diagnostic tests that combine cancer 
drugs with highly efficient genetic diagnostic tools. Tools detect mutations in the DNA originating from cancer cells directly through the subpopula-
tion of cfDNA, the circular tumour DNA (ctDNA) analysis or with visualization of cells through intracellular DNA probes. A large number of ctDNA tests 
in clinical studies demonstrate the importance of new findings in the field of cancer diagnosis.
We describe the innovations in personalized medicine: techniques for detecting ctDNA and genomic DNA (gDNA) mutations approved Food and Drug 
Administration companion genetic diagnostics, candidate genes for assembling the cancer NGS panels, and a brief mention of the multitude of cfD-
NA currently in clinical trials. Additionally, an overview of the development steps of the diagnostic tools will refresh and expand the knowledge of 
clinics and geneticists for research opportunities beyond the development phases.
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Review

Introduction

Personalized medicine and the transition of clini-
cally applicable research into practice have been 
rapidly evolving since the end of the last century. 
When the Human Genome Project was completed 
in 2003 with an almost fully sequenced human ge-
nome, it was expected that it will give an impor-
tant push in the elucidation of human genetic dis-
eases. Today we understand the functioning of hu-
man metabolism, genetics, and epigenetics much 
better, and research progress has led to the devel-
opment of more precise genetic diagnostic tools 
(1,2). Various analytical methods for the detection 
of cancer using circulating cell-free DNA (cfDNA) 
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obtained by liquid biopsy have undergone re-
search phases and are now awaiting approval.

Currently, the cancer treatment is performed with 
radiotherapy and/or systemic treatment, such as 
chemotherapy, use of growth factors, or biological 
therapy (3,4). The cancer tissue is formed from tu-
morigenic cancer stem cells that differentiate into 
different cell types leading to highly heterogenic 
cancer tissue, while genetic cancer mosaicism is 
confirmed if several cell karyotypes coexist in or-
ganism (5,6). Using a suitable analytical tool, genes 
can be systematically searched for somatic or he-
reditary mutations (Supplementary table 1). Can-
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cer associated genes mostly encode DNA repair 
proteins, tumour suppressors, and transcription 
factors (Supplementary tables 2-6). 

To search for genetic mutations in cancer, tissue 
samples are routinely obtained with tissue biopsy. 
Modern tissue biopsy is a low-risk procedure, but 
cannot usually be performed in the early stages of 
cancer due to the small size of an often heterogene-
ous tumour mass. In this case, the liquid biopsy, a 
body fluid collection, represents a beneficial alter-
native. It allows easy sampling, which can be used 
for mutation analysis of somatic or tumour cells. 
Namely, in body fluids apoptotic and necrotic tissue 
cells release DNA (genomic and mitochondrial) and 
RNA (5,7-13), that is fragmented into circulating cell-
free DNA/RNA (cfDNA/cfRNA). In the presence of 
tumours, the circulating tumour DNA (ctDNA) is re-
leased into the surrounding fluid, which in most 
cases reaches the blood. Due to the transport from 
tissue to blood, cfDNA is usually degraded into frag-
ments of 100-280 base pairs (bp), or 280-450 bp and 
450-700 bp (di- or tri-lengths of nucleosomal DNA) 
(14). Cell-free DNA can be detected in plasma and 
serum, cerebrospinal fluid, saliva, stool, urine, and 
other body fluids (13,15-18).

Circulating tumour DNA contains information on 
somatic, hereditary, and acquired mutations. It is 
an important marker found in body fluids that can 
be detected during tumour cell apoptosis and ne-
crosis. Cell-free DNA biomarkers are suitable for 
the detection of early disease stages, relapse con-
trol, treatment success, and the development of 
chemical resistance (19).

Sample preparation and sequencing for cfDNA is 
almost identical to genomic DNA (gDNA) in the 
analytical and postanalytical stages, while in the 
preanalytical stage it requires a completely differ-
ent set of sampling and processing methods. Cell 
free DNA is collected from blood plasma fraction, 
fragmentation step is not needed. 

In the analytical stage, cfDNA analysis by quantita-
tive polymerase chain reaction (qPCR) or next gene
ration sequencing (NGS) is identical to gDNA. 
Problems can be attributed to DNA artifacts or us-
age of different internal controls or reference ma-
terials. 

In the postanalytical stages, technical errors due 
to the application of different quantification algo-
rithms or discrepancies in calculation, interpreta-
tion, and reporting of the results still remain a ma-
jor problem.

The method for ctDNA analysis with increasingly 
growing preference is NGS, with which clinically 
relevant mutations in ctDNA samples from cancer 
patients have been successfully sequenced (20). 
Five hundred sixty eight mutations involved in 
non-small-cell lung cancer, gastrointestinal stro-
mal tumour, colorectal carcinoma, and melanoma 
were searched for in DNA samples of 40 cancer pa-
tients (20). However, the introduction of new DNA 
technologies requires new genetic training of 
health care providers; new professions have to be 
introduced (21).

We have performed a review of modern genetic 
ctDNA diagnostics approaches for the detection 
of mutations in cancer associated genes. In order 
to give medical readers an overview of currently 
available clinical tests, we included approved can-
cer diagnostic and companion tests. Additionally, 
we prepared potential panels of cancer genes for 
future transition into clinical practice. 

Genetic ctDNA diagnostic tools

Cancer is usually manually detected with mam-
mography, colonoscopy, biopsy, and flexible sig-
moidoscopy X-ray and computed tomographic 
(CT) colonography and later graded with histo-
pathological imagery, which is time consuming 
and tedious task that requires considerable effort, 
expertise and experience of pathologists (22,23). 
Diagnosis is difficult due too late stage symptoms 
(24,25). New techniques use more high-tech ap-
proaches based on antibody specific labelling and 
DNA sequencing. The high-risk patients can be 
constantly monitored measuring the serum mark-
ers often in combination with ultrasonography 
(26).

Development of evidence based diagnostic meth-
ods, used to evaluate the test and guide the diag-
nosis, need to go through four stages: i) formula-
tion of clinical question from patient’s disease is, 
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followed by, ii) search of relevant clinical articles, 
iii) evaluation of evidence for its validity and iv) 
usefulness is needed to implement the evolved 
disease diagnosis into clinical practice. To solve the 
disease diagnostic problem, a complete analytical 
process has to be implemented: all phases of pre-
analytics (DNA sampling, dissolution, clean up, 
preconcentration and separation, storage), analyt-
ics (DNA mutation detection), and postanalytics 
(data analysis and interpretation) have to be devel-
oped. Preanalytical stage, sample collection, han-
dling, and processing is an important step, as im-
proper handling may lead to false diagnosis, while 
analytical and postanalytical problems are meth-
od dependent.

If tissue biopsy is possible, in situ hybridization 
(ISH) technique enables visual processing of muta-
tion carrying cells through chromophore (chromo-
genic in situ hybridization - CISH) or fluorophore 
(fluorescence in situ hybridization - FISH). In situ hy-
bridization technique is a technique where a 
probe – labelled single-stranded DNA or RNA – se-
lectively binds to a specific target site of the cellu-
lar DNA or RNA (27). Detection can be performed 
through chromogenic or fluorescent signal analy-
sis. Chromogenic in situ hybridization is used to 
determine gene amplification, gene deletion, 

chromosome translocation, and chromosome 
number (28). Fluorescence in situ hybridization ad-
ditionally offers a multiplex option; it is possible to 
detect multiple targets in a single sample (29). In 
situ hybridization methods have certain advantag-
es compared to other methods (Table 1).

Liquid biopsy enables easy sample collection, that 
can be used for mutation analysis of both somatic 
or tumour cells. Finger-stick capillary blood can be 
used as an alternative modern method for blood 
collection (18). Quantitative PCR or NGS enable 
fast, precise results. If the subpopulation of ctDNA 
is detected, tumour presence is confirmed. With 
the progression of the tumour, the share of ctDNA 
will increase (Figure 1).

Quantitative and droplet digital PCR

A real-time polymerase chain reaction (real-time 
PCR), also referred to as qPCR, is a polymerase en-
zyme-based technique (30). The limit of validated 
qPCR methods is above 1% ct/cfDNA (13). Low de-
tection is associated with method error; mostly it 
is attributed to technical error of preanalytical 
stage (standardization of sampling, sample sto
rage, and preparation), analytical stage (use of dif-
ferent internal controls, reference material, for as-

Sanger 
sequencing NGS qPCR FISH CISH

Tumour biopsy gDNA gDNA gDNA gDNA in 
fixated cells

gDNA in 
fixated cells

Liquid biopsy cfDNA cfDNA cfDNA / /

Sequence information partial 
sequence sequence partial 

sequence
point 

mutation
point 

mutation

Time of analysis 7 days 3 days 4h 4h 4h

Precision nucleotide 
resolution

nucleotide 
resolution

mutation 
resolution

mutation 
resolution

mutation 
resolution

Possibility of simultaneous sample analysis - + + - -

Possibility of simultaneous gene analysis + + - + (a few) -

Costs of a few sample analysis high high low medium low

Costs of high throughput analysis high low low medium medium

+ – possible. - – not possible. NGS – next generation sequencing. qPCR – quantitative polymerase chain reaction. FISH – fluorescence 
in situ hybridization. CISH – chromogenic in situ hybridization. gDNA – genomic DNA. cfDNA – circulating cell-free DNA. 

Table 1. Comparison of modern techniques used for detection of cancer mutations
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sessing the analytical performance, running analy-
sis on different systems/platforms) or postanalyti-
cal stage (using different quantification algo-
rithms, discrepancies in calculation and interpreta-
tion of the results, differences in reporting results) 
(30). The major problem (comparison of preanalyt-
ical, analytical, and postanalytical phases) of qPCR 
is that only a small number of genes can be ana-
lysed (Table 1). With an alternative method – the 
droplet digital PCR (ddPCR) we can determine ctD-
NA concentrations quantitatively and sensitively 
with better accuracy (31). The sample is sprayed 
into drops, where only one or zero copies of DNA 
exists (32). Droplet digital PCR then measures the 
signals in the absolute way as positive or negative 
(binary system). It is cheap, fast, but mutations 
must be tested sequentially; discovery of new mu-
tations is impossible (13) (Table 1).

Sanger sequencing

Sanger sequencing has been the main DNA se-
quencing technology for more than 30 years 
(33,34). This method is based on synthesizing DNA 
on a single strand DNA matrix, randomly integrat-
ing dideoxi-nucleotide chain terminators (34). In 
1990, the method was upgraded to label termina-
tors with different coloured dyes, so that all can be 
integrated into a single reaction (35). Sanger se-
quencing is perfect for DNA sequencing of tissue 
samples, while a small amount of ctDNA in liquid 
biopsy prevents sequential analysis of multiple 
target genes (13). Major problems of Sanger se-
quencing are high costs, low sample processibility, 
and long analysis time (Table 1). High background 
noise (associated with undesired priming, contam-
ination, frame shift mutation, etc.) may lead to 
DNA sequence determination error.

Figure 1. Scheme of sample collection and processing of data. Liquid biopsy - From blood isolation of circulating cell-free DNA and 
genomic DNA (gDNA) is possible. Genomic DNA has to be isolated from cells and represents mostly DNA from blood cells. Cell-free 
DNA is located in upper plasma fraction and contains DNA from apoptotic, necrotic cells. Tissue biopsy - To perform in situ hybrid-
ization analysis, cells have to be collected with tissue biopsy. CISH or FISH methods can be used to specifically detect target DNA or 
RNA mutation in tissue. After probe binding, samples can be observed under standard bright field microscope. CISH – Chromogenic 
in situ hybridization. FISH – fluorescence in situ Hybridization. qPCR – quantitative polymerase chain reaction. NGS – next generation 
sequencing. 

200620  5-CTAAGTACGTACGTACGATCGATCATCGATAATAAAACGGGAAACG-3  20066

NGS

CISH FISH

cells

Tissue biopsyLiquid biopsy

cell-free DNA gDNA

qPCR
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Next generation sequencing technology

Next generation sequencing methods are new 
technologies that are able to sequence a large 
number of samples with index-labelled DNA oli-
gonucleotides (multiplexing). Next generation se-
quencing detectors monitor the addition of la-
belled nucleotides to already synthesized immobi-
lized complementary DNA templates generated 
from the source DNA. Next generation sequenc-
ing systems offer reading lengths of 30-400 bp 
(13). Due to a large amount of information, the 
alignment of the sequences must be handled with 
the software. The software then automatically an-
notates the data with a variation/mutation data-
base. The main NGS platforms are: Ilumina, Ther-
moscientific, BGI Genomics, Agilent Technologies, 
Qiagen, Macrogen, Pacific Biosciences California, 
Genewiz, 10x Genomics, Oxford Nanopore Tech-
nologies (13). In recent years, the affordability of 
NGS sequencing technology has lowered the price 
of whole genome sequencing (WGS). The costs for 
the WGS – entire genome sequence fell from 2.7 
billion euros in 2003 to only 200 euros (on black 
Friday) and are even expected to fall (36).

From body fluid, blood cells or tissue, DNA can be 
isolated and further processed with special NGS 
preparation kits. DNA must be fragmented, re-
paired and adapter marked. There are several frag-
mentation methods that use ultrasound, enzymes, 
or chemicals. In the case of cfDNA, due to its frag-
mented state, no additional fragmentation proce-
dure is needed.

The targets may be specific genes enriched with 
an NGS panel of cancer-related gene primers. The 
NGS panels can be custom-made or ordered (e.g. 
Ilumina, Agilent, LifeTechnologies). In this way, in-
stead of WGS, sequencing is limited only to parts 
of the human chromosomes.

The NGS technique has several advantages over 
other methods (Table 1). It can be applied to all 
pathological conditions as it also enables the dis-
covery of new DNA mutations. The major prob-
lem, the disadvantage of NGS is limited analytical 
ctDNA sensitivity (13), but the technology is evolv-
ing and sensitivity is expected to increase (Table 

1). Low detection is associated with method error 
(incorrect calling of DNA bases or sequence vari-
ants), where artefacts in DNA sequence originate 
from preanalytical sample preparation, sequenc-
ing system platforms, or post sequencing data 
analysis. NGS enables the detection of somatic 
mutations under 5% (37). With the improvement 
of processes involved with sequencing, we can in-
crease ctDNA detection in samples.

In clinical settings the NGS technology is already 
tested, but, is for now still too expensive to be 
used worldwide, due to high initial investment. 
The extra costs of specifically educated personnel 
and technology (material and service) are slowing 
down the possibility of global hospital use.

All methods have to undergo rather long way to 
achieve standardization, pass through quality con-
trol in order to transfer into clinical practice (Figure 
2).

Cancer related candidate genes with 
potential of NGS panel assembly

The NGS cancer detection panel can be composed 
of a set of primers for genes involved in the specif-
ic tumour formation or tumour group. The se-
quencing of selected genes allows higher cover-
age and reduces analysis costs compared to whole 
genome sequencing. The advantage of the panel 
is that new genes can be easily added (38). Panels 
for breast, colon, hepatocellular pancreatic, and 
non-small cell lung cancer can be designed from 
the listed genes (Supplementary Table 2-6). De-
scribed cancers are spread worldwide and very 
difficult to detect at an early stage.

Breast cancer

Breast cancer is the most common type of cancer 
in women worldwide (39). It is the second most 
common cancer. It is usually manually discovered 
on mammograms and later graded with histo-
pathological images, which is a time-consuming 
and lengthy task that requires considerable effort, 
expertise, and experience from pathologists (22). 
New techniques use more high-tech approaches 
for cancer detection, such as antibody-specific la-
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belling or sequencing of DNA. There is a connec-
tion between the degree of breast cancer and the 
mutation that caused it (40). However, enormous 
differences were found between inter- and intra-
laboratory interpretations of the classification of 
breast cancer (41).

Data mining was performed in the scientific litera-
ture bases and internet sites: clinicaltrials.gov and 
the genetic testing registry database (42-49). Muta-
tions in BRCA1 and BRCA2 are responsible for 2/3 of 
familial breast cancer (50). The rest mostly cover 
mutations in genes ATM, CHECK2, PALB2, PTEN, TP53. 
The ERBB2 (HER2) gene is the most sequenced gene 
in recent diagnostics. Genes involved in breast can-
cer, suitable for the development of diagnostic tools 
are TP53, CDH1, PALB2, ATM CHEK2, RAD51D, BARD1, 
BLM CDKN2A, FANCM MRE11A, RAD50, APC HOXB13 
and MITB (51). Genes encode proteins that are in-
volved in cell adhesion, cell growth, DNA repair 
mechanisms, and tumour suppression (Supplemen-
tary Table 2). Irreversible mutations in high-risk 

genes can cause damage that leads to the develop-
ment of cancer cells and later somatic tumours 
(Supplementary Table 2). The database of clinical 
trials shows that several tests are waiting for ap-
proval. The genetic diagnostics were developed on 
the genes: KRAS, PD-L1, ER, PIK3CA, BRCA1, BRCA2, 
BRCA2, EGFR, HER-2, C-MYC, PTEN, MET, IGFR-1. Genes 
belong to the known oncogenes and tumour sup-
pressors (clinicaltrials.gov). The Genetic Testing Reg-
istry NCBI database lists 34 genes used for breast 
cancer detection used in 613 tests: AKT1, AR, ATM, 
BAPM, BARD1, BRCA1, BRCA2, BRCA3, BRIP1, CASP8, 
CDH1, CHEK2, CYP2D6, ERBB2, ESR1, HMMR, IL1B, IL-
1RN, KISS1R, KRAS, LFS3, MKRN3, NQ02, PALB2, PHB, 
PIK3CA, PPM1D, PTEN, RAD51, RAD54L, RB1CC1, 
SLC22A18, TP53, XRCC3 (https://www.ncbi.nlm.nih.
gov/gtr/).

Colorectal cancer

Colorectal carcinoma is one of the common wide-
spread types of cancer (3rd most common diag-

Figure 2. Phases of drug development (www.fda.gov). Development of drug is finished with preclinical in vitro and in vivo studies. 
Human drug effects are tested in clinical environment on patients with the condition/disease. Phases are divided into 4 phases: In 
phase 1 safety and dosage of the drug are determined on few subjects. In phase 2 efficacy and side effects are determined. If passed, 
drug goes into next phase that lasts from 1 to 4 years where efficacy and adverse reactions are monitored. In 4th phase the drug is 
ready for the market, safety and efficacy are actively monitored. Food and Drug Administration (FDA) has to review drug documenta-
tion and later on monitor drug safety post-market.

Clinical phase 1

Clinical phase 2

Clinical phase 3

Clinical phase 4

Clinical research

Discovery and
development FDA Post-Market Drug Safety

Monitoring

FDA Drug
Review

Preclinical research

Several months: safety and dosage

Several months to 2 years:
efficiacy and side effects

Active monitoring: safety and efficacy

1 to 4 years: Efficacy and monitoring
of adverse reaction

I

II

III

IV

V
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nosed malignancy, 4th leading cause of cancer 
worldwide). It is usually treated with chemothera-
py and EGFR antibodies (23). Early diagnostic 
methods for detection are colonoscopy, biopsy, 
and flexible sigmoidoscopy and computed tomo-
graphic (CT) colonography (www.nice.org.uk).

Gene candidates involved in cancer formation are 
stated in Supplementary Table 3 (52). Modern di-
agnostics for colorectal cancer detect mutations in 
KRAS, NRAS, and EGFR genes. Expressed proteins 
influence on cell proliferation and differentiation. 
High risk genes that can be used in the develop-
ment of cancer diagnostics are APC, MLH1, MSH2, 
MSH6, POLE, TGFBR2, MLH3, POLD1, MUTYH, and 
AXIN2 (52). Mostly proteins act as tumour suppres-
sors or are involved in DNA repair (Supplementary 
Table 3) (53-63).

Clinical trials database holds information regard-
ing mutations of KRAS, NRAS, and BRAF. In NCBI da-
tabase genetic testing registry 33 genes are listed 
for colorectal cancer detection in 584 tests: AKT1, 
APC, AXIN2, BUB1B, CRCS6, CRCS7, CTNNB1, DCC, 
DLC1, EP300, EPCAM; FGFR3, FLCN, GALNNT12, MLH1, 
MLH3, MSH2, MSH3, MSH6, MUTYH, NRAS, NTHL1, 
PIK3CA, PMS1, PMS2, POLS1, POLE, RNF43, SMAD7, 
SRC, TGFBR2, TP53, UGT1A1 (https://www.ncbi.nlm.
nih.gov/gtr/).

Hepatocellular carcinoma

Liver cancer is the sixth most common cancer. The 
most common type of liver cancer is hepatocellu-
lar carcinoma (24). High-risk patients are constant-
ly monitored measuring the serum marker alpha-
fetoprotein (AFP) often in combination with ultra-
sonography (26).

The tumour appears to be regulated by the Wnt/
β-catenin signalling pathway. In hepatitis-induced 
hepatocellular carcinoma, β-catenin mutations are 
present in 13–41% of cases. In more than 55% of 
the cases, the mutations are present in the GSK-3β 
region of the β-catenin gene (64).

Diagnostics for hepatocellular carcinoma can be 
developed by screening high risk cancer genes for 
mutations in CCNB1, CEP55, CHEK1, EZH2, KPNA2, 
LRRC1, PBK, RRM2, SLC7A11, SUCO, ZWINT (Supple-
mentary Table 4), that are up-regulated and ACLS1, 

CDC37L1 (Supplementary Table 4), that are down-
regulated (65). Up-regulated genes are involved in 
the process of duplication, differentiation, and the 
biosynthesis. Down-regulated genes are involved 
in biosynthesis of lipids and transcription of RNA 
(Supplementary Table 4) (45,66-73).

The vast number of hepatocellular carcinoma tests 
waits Food and Drug Administration (FDA) ap-
proval. Clinical trials tests screen whole genomes 
or specific genes for mutations (clinicaltrials.gov). 
In NCBI database ‘’genetic testing registry’’ 38 
genes are listed for colorectal cancer detection in 
94 tests: ABCB11, APC, ATF7B, AXIN1, BMP2, CASP8, 
CCR5, CTNNB1, F5, FAH, G6PC, GPC3, GPC4, H19, HFE, 
HMBS, IFNAR2, IFN6, IFNGR1, IFNL3, IGF2, IGF2R, 
IL10RB, JAG1, JAK2, MET, MPV17, PDGFRL, PIK3CA, PT-
PRC, RSS, SERPINA1, SLC25A13, SLC37A4, SPRTN, TJP2, 
TP53, UROD, (https://www.ncbi.nlm.nih.gov/gtr/).

Non-small cell lung cancer

Lung cancer is the leading cause of death world-
wide (25,74). It is graded as small cell and non-
small cell lung cancer (NSCLC) types (25). NSCLC 
cancer is difficult to diagnose in early phases and 
first cancer signs are usually detected with X-ray 
and computed tomography (CT) (25).

Non-small cell lung cancer with mutations of epi-
dermal growth factor receptor (EGFR) mutations, 
anaplastic lymphoma kinase (ALK) mutations, ROS 
proto-oncogene 1 (ROS1) rearrangement, mesen-
chymal-epithelial transition (MET) factor amplifica-
tion, v-Raf murine sarcoma viral oncogene ho-
molog B (BRAF) mutations, human epidermal 
growth factor receptor 2 (HER2) mutations, and 
RET rearrangement respond well to treatment (75).

Modern diagnostics for non-small cell lung cancer 
were developed on high risk cancer genes such as 
EGFR, PD-L1, ALK, BRAF (Supplementary Table 5), 
coding proteins involved in cell proliferation, and 
immune system evasion (Supplementary Table 5) 
(76-88).

More than 200 tests await in clinical trial settings. 
Genes MET, KRAS, NRAS, EGFR, FGF, VEGF, PDGF, ALK, 
ROS1, HER2, HER3, BRAF are tested in diagnostic kits 
for mutations. Genes belong to known oncogenes, 
responsible for proliferation, tumour suppression 
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(Supplementary Table 5). In Supplementary Table 
5 other candidate genes involved in NSCLC cancer 
formation are stated. In NCBI database ‘’genetic 
testing registry’’ 51 tests are listed for NSCLC can-
cer detection on genes: ROS1, ALK, MET, ERBB2, 
KRAS, RET, EGFR, TYMS, RRM1, FGFR1, ERCC1, BRAF 
(https://www.ncbi.nlm.nih.gov/gtr/).

Pancreatic cancer

Pancreatic ductal adenocarcinoma (PDAC) is the 
most common type of pancreatic cancer. It is the 
twelfth most common cancer and the seventh 
most frequent cause of cancer-related death (89). 
Diagnosis is performed with CT or magnetic reso-
nance (MR).

Familial pancreatic cancer mutations residues are 
located mostly on BRCA1, BRCA2, p16, PALB2 genes. 
BRCA2 mutations are highly associated with famil-
ial and sporadic pancreatic cancers (90).

Important genes determined to be involved in 
pancreatic cancer are stated in Supplementary Ta-
ble 6 (91-95). Modern diagnostics for pancreatic 
cancer are still in the phase of clinical testing. Clini-
cal research of diagnostics is being developed on 
high risk cancer genes such as APC, ATM, BARD1, 
BRCA1, BRCA2, BRIP1, BMPR1A, CDH1, CDK4, CDK-
N2A, CHEK2, EPCAM, GREM1, MLH1, MRE11A, MSH2, 
MSH6, MUTYH, NBN, NF1, PALB2, PMS2, POLD1, POLE, 
PTEN, RAD50, RAD51C, RAD51D, SMAD4, SMARCA4, 
STK11, TP53 (clinicaltrials.gov). Researched proteins 
belong to the family of oncogenes, tumour sup-
pressors. Some are involved in cell proliferation. In 
NCBI database genetic testing registry 28 genes 
are listed for pancreatic cancer detection in 287 
tests: AKT1, ATM, BARD1, BRCA1, BRCA2, BRIP1, 
CASP8, CDH1, CDKN2A, CHEK2, ESR1, HMMR, KRAS, 
NQO2, PALB2, PALLD, PHB, PIK3CA, PPM1D, RAD51 
(https://www.ncbi.nlm.nih.gov/gtr/).

FDA approved cancer diagnostic tests

The drug has to go through 4 clinical phases to de-
termine its safety, efficiency, and dosage in ad-
vance of FDA approval (www.fda.gov). After initial 
discovery, a lot of time has to be invested into its 
development. Development is concluded with 

preclinical in vitro laboratory tests and in vivo ani-
mal studies. Safety is afterwards performed with 
tests on human subjects. Each of the clinical phas-
es sections take a specific time period to complete 
the defined tasks (Figure 2). When clinical phases 
are completed, active monitoring of the drug be-
gins. FDA reviews the drug documentation and in 
parallel monitor’s safety of the drug.

According to the FDA, companion diagnostic is a 
device that gives information regarding the safe 
and effective usage of the corresponding drug or 
biological product. Different genetic tests for muta-
tion detection were developed and later approved 
by the FDA for different types of cancers (Supple-
mentary Table 1). Mutation detection kits are gain-
ing influence in clinical trials, where together with 
antibody and probe detection kits (immunohisto-
logical staining – IHS, western blot – WB) represents 
the majority of detection kits for use in personal-
ized medicine (Supplementary Table 1).

Cobas EGFR Mutation Test v2 (Roche Molecular 
Systems, Inc.) was approved on 1 June 2016 (FDA) 
for the detection of non-small cell lung cancer. The 
test is part of a companion diagnostic with the 
cancer drug Tarceva (erlotinib) (96). It detects epi-
dermal growth factor receptor gene mutations in 
non-small cell lung cancer patients (10-20% of all 
lung cancer) (FDA) (96). Cobas EGFR Mutation Test 
v2 was tested on blood samples of positive pa-
tients for 42 EGFR mutations on exon 18, 19, 20, 21 
mutations as determined by the Test v1 (FDA). 
Drug Tarceva should work if one of the mutations 
is found in tumor DNA. Mutations can be discov-
ered on gDNA and cfDNA samples.

Similar test the RealTime IDH1 Assay was approved 
in July 2018. A companion diagnostic test can be 
used to detect specific mutations in the IDH1 gene 
in patients with acute myeloid leukemia (FDA). Tib-
sovo is an inhibitor of isocitrate dehydrogenase. 
The drug is administered if the test for gDNA mu-
tation (isolated from white blood cells) comes out 
positive.

Approved diagnostic tests by FDA are optimized 
mostly for gDNA samples. Recently ctDNA tech-
nologies are gaining ground in the segment of 
companion diagnostics. In a few years, we expect 

https://www.biochemia-medica.com/assets/images/upload/Clanci/30/Supplementary_files/07_Suppl_Gaspercic.pdf
https://www.biochemia-medica.com/assets/images/upload/Clanci/30/Supplementary_files/07_Suppl_Gaspercic.pdf
https://www.ncbi.nlm.nih.gov/gtr/
https://www.biochemia-medica.com/assets/images/upload/Clanci/30/Supplementary_files/07_Suppl_Gaspercic.pdf
https://www.biochemia-medica.com/assets/images/upload/Clanci/30/Supplementary_files/07_Suppl_Gaspercic.pdf
https://www.biochemia-medica.com/assets/images/upload/Clanci/30/Supplementary_files/07_Suppl_Gaspercic.pdf
https://www.biochemia-medica.com/assets/images/upload/Clanci/30/Supplementary_files/07_Suppl_Gaspercic.pdf
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a whole set of ctDNA diagnostics to be approved 
and enter clinical settings.

A large number of tests in clinical trials shows the 
importance of emerging technology. At the begin-
ning of the 2020 year, 537 ctDNA and 368 cfDNA 
clinical test for different diseases were found to be 
awaiting approval (clinicaltrials.gov). Easy sam-
pling (liquid biopsy) and processing needed for 
ctDNA testing is a major advantage of tests. The 
majority (non-ISH) of the already approved tests 
(Supplementary Table 1) can be modified to use 
cfDNA or ctDNA instead of gDNA, due to identical 
DNA source (cellular gDNA). In order to switch to 
cfDNA analysis, protocols for DNA isolation and 
DNA preparation for sequencing, need to be mod-
ified. Major points that should be addressed be-
fore handling the cfDNA are associated with the 
ability to isolate very small amounts of cfDNA and 
the prevention of leukocyte lysis. Therefore, dur-
ing the transport extreme high and low tempera-
tures, and agitations should be avoided. Plasma 
preparation using filtration or centrifugation 
should be performed prior to leukocyte lysis, with-
in 6 hours after the blood draw using anticoagu-
lant tubes K2EDTA. Furthermore, freeze-thaw cy-
cles should be minimized to only one cycle in or-
der to prevent nucleic acid degradation and the 
diminished capability of cfDNA detection. The iso-
lation procedures vary, and numerous commercial 
kits are available. The versatility of purification 
protocols has an influence on the cfDNA purity 
and yield, which can reflect also on the down-
stream procedures, and therefore determination 
of optimal approach is crucial. In the sequential 
analytics step, it is of great importance to use ap-
propriate reference material for the valuation of 
the analytical performance (97). 

Conclusions

This review describes the breakthroughs in mod-
ern diagnostic techniques that are recently ap-
proved or are in clinical trials. The overview will 
help geneticists to refresh the knowledge of drug 
or diagnostic development phases from the be-
ginning and show which segment will surely pros-
per in the future.

Liquid biopsy analysis is becoming one of the im-
portant less invasive analysis tools. Precise knowl-
edge of gene function and their role in the par-
ticular disease will help to detect causes of disease 
and prescribe preventive action. Genetic and epi-
genetic studies of oncogenes, tumour suppres-
sors, and associated genes will shed new light on 
cancer development and diagnosis. Next genera-
tion sequencing developed analytical methods 
will bring a new era in precise personalized treat-
ment, improve the usefulness and effectiveness of 
the medication.

The vast number of ctDNA and cfDNA tests regis-
tered in clinical phases shows the importance of 
new emerging technologies. FDA approved the 
first set of companion diagnostic tool in 1998 
(HER2-trustuzumab). For cancer diagnostic whole 
set of companion diagnostic tools was approved 
later on. The tests use immunohistochemistry 
(IHC), in situ hybridization technique (CISH and 
FISH), PCR, qPCR, Sanger, and new NGS technolo-
gy to detect specific mutation or overexpressed 
proteins (IHC). The diagnostic is coupled to the 
pharmaceutical drug that is very efficient for cur-
ing specific target tumours. Innovations in person-
alized medicine, such as precise genetic analysis of 
genome and acquired mutations, give new infor-
mation regarding predisposition to certain diseas-
es, and predict the effectiveness of the discovered 
drug. This allows a higher chance of recuperation.

In the future, the evolution of personalized medi-
cine will enable the personalized treatment of dis-
ease/condition with the predicted course of treat-
ment. The development of analytical tools will 
lead to the approval of urine cfDNA tests, which 
will even further facilitate sampling and screening 
of the patients. Most likely NGS panels for detec-
tion of cancers will be improved with a complete 
set of disease associated genes.
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