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The use of diagrams can be effective in solving mathematical word problems 

solving. However, students worldwide do not construct diagrams unprompted 

or have trouble using them. In the present study, the effects of problem-

appropriate diagram use instruction were investigated with an adaptation 

of the multiple baseline design method. The instruction for using line 

diagrams, tables, and graphs was provided to 67 junior high school students 

in a staggered manner and the effects on problem solving of three different 

types of problems was examined. The results showed that use of problem-

appropriate diagrams increased and persisted over time. More importantly, the 

instruction led to increases in problem solving performance and to decreases 

in perceived cognitive load. These findings support the argument that effective 

diagram use depends on the acquisition not only of declarative knowledge, 

but also sufficient procedural and conditional knowledge.
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Introduction

In mathematics education, teachers draw on mathematical word problem solving 
to facilitate application of acquired knowledge and skills to real and hypothetical 
problems and situations (Schoenfeld, 1985; Reed, 1999). Students, however, experience 
difficulties in solving word problems (Mayer et al., 1992; Reed, 1999; Jitendra et al., 
2007; Boonen et al., 2014) since it requires more than simple retention and recall of 
facts and procedural steps. An effective heuristic to alleviate these difficulties is the 
use of diagrams (Hembree, 1992; Stylianou and Silver, 2004; Jitendra et al., 2007; 
Boonen et al., 2014). Diagrams facilitate self-explaining which in turn leads to deeper 
understanding (Ainsworth and Th Loizou, 2003), promote the construction of mental 
models for drawing inferences, and provide guidance towards appropriate learning 
behaviour (Butcher, 2006; van der Meij et al., 2017). More specifically in mathematics, 
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diagrams enable the construction of accurate solutions by 
enhancing information and knowledge access (Chu et  al., 
2017; Cooper et al., 2018). However, although these studies 
contribute to understanding the role of diagrams in learning, 
they provide only limited insights about constructing effective 
diagrams for oneself. In many situations, students need to 
construct their own diagrams for solving word problems in 
classroom exercises, homework, or tests. Previous research 
shows several obstacles when students are required to 
construct their own diagram, instead of just inspect and 
manipulate a given diagram. Indeed, students may omit 
constructing a diagram, fail to construct an appropriate 
diagram, or still draw incorrect inferences from their diagram 
(Hegarty and Kozhevnikov, 1999; Uesaka and Manalo, 2006; 
Corter and Zahner, 2007; Uesaka et al., 2007; van Garderen 
et  al., 2012). In the current study, we  set out to study 
instruction as a way of improving students’ construction of 
appropriate diagrams in mathematical word problem solving.

The representational effect or the 
appropriateness of a diagram for a 
specific problem

Diagrams enhance understanding of a problem through 
the representation of its elements and their interrelations 
(Hembree, 1992). In other words, they facilitate the 
construction of a schema or mental model of the problem text 
(Zahner and Corter, 2010). Solving a mathematical word 
problem involves two steps: generation of a problem 
representation from the text and implementation or 
computation of the solution (Kintsch and Greeno, 1985; Lewis 
and Mayer, 1987; Hegarty et al., 1995; Duval, 2006). The first 
step can be  assimilated to a translation from one type of 
representation to another (Ainsworth, 2006), also termed 
conversion from one semiotic register to another (Duval, 
2006). In Duval’s terminology, natural language, equations, 
and Cartesian graphs constitute different semiotic registers for 
representing abstract mathematical objects not directly 
available to the senses. For example, a problem stated in 
natural language can be  converted into a line graph, but 
neither text nor graph can be equated with the mathematical 
object (e.g., a linear function) underlying the problem. 
Research shows the importance of this first step: when 
students construct an accurate visual-schematic representation 
of a problem situation, they are more likely to produce the 
correct answer (Hegarty and Kozhevnikov, 1999; Boonen 
et al., 2014).

Diagrams may also facilitate the second step of implementing 
the solution to the problem. Different isomorphic representations 
of the same abstract structure or mathematical object differ in 
their potential for solving a problem, termed “the representational 
effect” (Zhang and Norman, 1994; Zhang, 1997). Any problem can 
have multiple alternative forms of external representations 

(Schnotz and Kürschner, 2008). Thus, different types of diagrams 
attract attention to different features and may give 
“representational guidance” (Suthers, 2003). For example, tables 
attract attention to empty cells and may reveal patterns in a series 
of quantities in a problem. In mathematics, Duval spoke of 
“operational significance” (Duval, 2006): a representation in a 
particular semiotic register is meaningful because of the 
operations that it affords. For example, tables and graphs do not 
give a visual-schematic representation of the problem situation, 
but instead provide a schema for how the problem can be solved 
(Novick and Hurley, 2001; Zahner and Corter, 2010; Uesaka and 
Manalo, 2012). In effect, they facilitate what Duval (2006) 
described as transformations within the same semiotic register. 
For example, graphs allow visual inspection, which helps in 
identifying points of intersection of two or more trajectories.

There are a number of studies that have experimentally 
demonstrated the importance of matching problem 
requirements with representational affordances of diagrams. 
Hurley and Novick (2010), for example, asked participants to 
solve problems using diagrams that did or did not match the 
problem requirements. Predictably, they found poorer 
performance (i.e., longer time to solve, inaccurate inferences) 
in mismatched cases. It is clear therefore that in solving 
mathematical word problems, not just any diagram will 
be efficient: the kind of diagram selected and constructed must 
match the requirements of the problem at hand. We will call this 
problem-appropriateness of a diagram. Ideally, students need to 
acquire the whole repertoire of diagrams because problem 
solving in mathematics requires “representational flexibility” 
(Nistal et  al., 2009) or “meta-representational competence” 
(diSessa, 2004; Verschaffel et  al., 2020). In order to achieve 
meta-representational competence, students first need to 
acquire knowledge of the different types of representations. 
Grawemeyer and Cox (2008) demonstrated that such knowledge 
is crucial when solving “representationally specific tasks” (those 
that can only be carried out effectively with the use of a very 
limited range of representations).

Three kinds of representational knowledge are a prerequisite 
for effective diagram construction and use: declarative (knowing 
that), procedural (knowing how), and conditional (knowing when; 
cf. Paris et al., 1983; Garner, 1990). In sum, students need to know 
that certain kinds of diagrams are helpful for solving certain kinds 
of problems (declarative knowledge). They need to know how to 
correctly construct the appropriate diagram based on relevant 
information in the problem description (procedural knowledge). 
Finally, they need to know when to use a diagram as well as when 
to use a specific kind of diagram (conditional knowledge). The 
question arises whether instruction about representational 
knowledge of different types of diagrams would increase 
unprompted diagram use per se, and problem-appropriate diagram 
use in particular. In investigating different types of diagram 
instruction, the current study addresses this question and thus goes 
one step further than previous studies on the interplay between 
different types of diagrams and different types of problems.
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Cognitive load associated with 
constructing diagrams

One reason for the observed difficulties in constructing 
diagrams may lie in insufficient cognitive resources. From the 
perspective of cognitive load theory, problem solving tasks can 
only be successfully undertaken if the required or resulting 
cognitive load does not exceed the capacity of working 
memory (Sweller, 1994; Sweller et al., 1998). The effort for 
visually representing concrete details explicitly described in a 
word problem is low (e.g., illustrating details). In contrast, the 
construction of an abstract diagram that does not visually 
resemble the represented entities, such as a table or a graph, 
requires more transformational steps. Thus, such a 
construction is more difficult and demands higher amounts of 
cognitive effort (Uesaka and Manalo, 2012). Problem-
appropriate diagram instruction may reduce cognitive load 
through schema construction (Sweller et al., 1998; Schnotz 
and Kürschner, 2007). Schemas cluster elements of a problem 
and its solution together making them more manageable. 
Problem-appropriate instruction may draw attention to 
specific problem features that provide clues for selecting the 
most appropriate diagram (Duval, 1999, 2006), as well as the 
relevant declarative, procedural, and conditional knowledge 
for actually constructing and using that diagram (cf. Paris 
et al., 1983).

The present study

For developing knowledge about diagrams, appropriate 
instruction appears to be  necessary (van Meter and Garner, 
2005; Jitendra et al., 2007; van Garderen, 2007; Uesaka et al., 
2010; Manalo et  al., 2019). Although instruction appears to 
promote spontaneity in diagram use, the role of cognitive load 
and the effect on the correctness in problem solving, particularly 
where more complex problems are involved, has not been 
established. Our main purpose therefore was to investigate 
whether diagram instruction results in increases in unprompted 
diagram construction. Moreover, we  expect an increase of 
problem-appropriate diagrams following corresponding 
diagram-specific instruction. As a result, correctness in solving 
corresponding word problems should increase and persist over 
time. Finally, we expect to see corresponding decreases in levels 
of perceived cognitive load when working on mathematical 
word problems.

Three diagram-specific instructions for line diagrams, 
tables, and graphs were designed and tested on three 
corresponding types of problems “Compare quantities,” “Predict 
patterns,” and “Compare trajectories” respectively. These types 
of problems and diagrams for solving them are a very important 
part of the Japanese school curriculum (Ayabe et al., 2021). An 
adaptation of the multiple baseline design method (Baer et al., 
1968; Morgan and Morgan, 2009) was used in order to compare 

the use of different kinds of diagrams and performance on 
different types of problems across time following different types 
of instruction. This design involves giving the three types of 
instruction in a staggered manner and observing the effect on 
all types of problems for the same participants. For example,  
an increase in the use of line diagrams specifically and 
corresponding improvement in problem solving performance 
should only occur after the line diagram instruction and 
exclusively for the targeted Compare quantities problems, not 
the Predict patterns and Compare trajectories problems. Thus, 
this design is more appropriate than a “no instruction” control 
group because it allows comparisons of (1) the same students 
(within-participant design) and (2) several kinds of instruction. 
Our specific hypotheses were as follows:

H1: Diagram instruction leads to an overall increase in 
unprompted use of diagrams.

H2: Diagram instruction leads to an increase in the use of 
problem-appropriate diagrams persisting in time.

H3: Diagram instruction increases problem-solving 
performance (correct answer rates).

H4: Diagram instruction reduces perceived cognitive load.

Materials and methods

A faculty ethics committee of Kyoto University approved the 
study. Participation was voluntary, and prior to the study, 
participants received verbal and written explanations. Informed 
consent was obtained from all participants and their parents.

Participants

Seventy junior high school students (aged approximately 
14 years, all Japanese) from three regular classes of a junior high 
school in a small city in Japan participated in the study (ability 
grouping is not usually practiced in schools in Japan). Students in 
Japan perform well in mathematics by world standards (Japan 
ranked 5th in mathematics in PISA 2018; OECD, 2019). We used 
G*Power (Faul et al., 2007) to estimate the minimum sample size 
for our within-participant design. This estimated that 46 
participants would be required to detect a statistically significant 
difference for the assumed small to medium size effect (ƒ = 0.25, 
α-level p = 0.05, power = 0.80). Considering class sizes in the 
school (≤ 25 students), and allowing for dropout, three classes 
were included to ensure minimal sample size. The experimental 
sessions were conducted during regular class sessions. All the 
students participated but three missed some sessions and their 
data were excluded. Data from 67 students (female = 36) were used 
in the analyses.
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Problem-appropriate diagram instruction

Three dedicated instruction sessions covered the use of line, table, 
and graph diagrams. Instruction and practice sessions were held 
during regular class sessions (45 min duration). The instructions were 
given by the first author, assisted by a school mathematics teacher.

To ensure fidelity to plan and equivalence of the three 
instruction sessions, the authors discussed all contents and the 
instructional steps were determined in advance. PowerPoint slides 
were prepared and used to guide instruction. The instruction 
covered (1) the characteristics and functions of each kind of 
diagram (declarative knowledge), (2) the types and features of 
mathematics word problems that each diagram is useful for 
(conditional knowledge), and (3) the ways of constructing and the 
reasoning behind each diagram (procedural knowledge). During 
practice, the students solved example problems and constructed 
diagrams individually.

Line diagram instruction
Line diagrams, also known as “line numbers” or “tape 

diagrams” (Murata, 2008), visually express quantities as line 
segments. Line diagrams allow inferring relationships between 
sums, differences, multiples, and proportions (declarative 
knowledge). Constructing a line diagram involves converting 
quantities to lines to enable easier visual comparisons of the lengths 
of the lines. Conditional knowledge included that line diagrams are 
helpful for solving complex problems about relationships between 
quantities. For developing procedural knowledge, students were 
asked to construct line diagrams in solving three word problems 
(isomorphic but different from those used in the tests).

Table instruction
The instructor explained and demonstrated how tables are 

effective for organizing numbers or quantities of two variables of 
interest. The students were told that creating an array for one variable 
and then arranging the second variable in a corresponding array 
would clarify the relationship between the two variables. Thus, a table 
makes it easier to find the rule that determines how the two variables 
change (declarative knowledge). The conditional knowledge 
conveyed was that tables are helpful for identifying a consistent 
pattern or rule of change in quantities to predict a future amount.  
For developing procedural knowledge, the students practiced 
constructing tables for use in solving three isomorphic word problems.

Graph instruction
The instructor explained that graphs (more specifically, 

cartesian graphs) are useful for visually representing complex 
variations or changes of quantities and gave a demonstration on 
how to represent two variables of a word problem as points with 
connecting lines on the x-and y-axes. The declarative knowledge 
included that graphs enable visual awareness of the change in 
quantities as they increase, decrease, or remain the same across 
space and time. It also included knowledge about how graphs can 
be  used, such as extending two lines on graphs to find their 

intersection. The conditional knowledge conveyed was that a 
graph should be used for complicated processes of change that 
require projections of future events. Again, for developing 
procedural knowledge, the students practiced constructing graphs 
in solving three isomorphic problems.

Mathematical word problems

Five isomorphic problems (same problem structure but with 
different cover stories) for each of three problem types (Compare 
quantities, Predict patterns, and Compare trajectories) were used 
for three types of problem-appropriate diagrams (line, table, and 
graph diagrams respectively).

Compare quantities problems contained information about 
the magnitudes of lengths or distances. Solving these problems 
involved comparing these quantities. Line diagrams are 
appropriate because constructing a correct visual representation 
of the lengths not only provides a schematic layout of the problem 
situation, but also supports identification and working out of 
missing or unknown lengths (see example problems in Table 1).

Predict patterns problems contained information about 
quantities at multiple times or stages. Students were not informed 
of the rule-based character of the changes. Solving these problems 
required students to infer the rule and predict future quantities. 
Tables are appropriate because their structure makes patterns of 
changes visible, which leads to apprehending the underlying rule.

Compare trajectories problems contained information about 
actions from two or more entities (usually people). Solving these 
problems required students to compare trajectories of the different 
entities. Graphs are appropriate because they enable plotting 
distances (relative to a point of reference) across time, which in 
turn enables comparing trajectories.

Prior to the study, the 15 problems (5*3) were given to  
five mathematics teachers (female = 1; mean teaching 
experience = 9.2 years, SD = 2.8 years) to check whether they were 
comparable and suitable for the intended grade level (14-year-olds 
at junior high school). Minor adjustments were made based on the 
teacher feedback. The revised problems were administered to 29 
students from another school (female = 12; mean age = 13.2 years). 
Multiple comparisons using paired t-tests of the correct answer 
rates revealed no significant differences between the five problems 
of each type. Thus, they were considered equivalent and randomly 
used in the five test phases: Pre-test, Post-test after each of the three 
instruction sessions, and Delayed post-test.

Dependent measures

Unprompted and problem-appropriate 
diagram use

An analysis grid was constructed for scoring the kind of 
diagram (Table 2). Numbers, equations, formulas, or computations 
in columns were not considered as diagrams.
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Two teachers, with no vested interest in the study, rated all 
1,005 answer sheets (5*3*67) in random order, blind to both 
test phase (5 phases) and type of problem (3 types). The 
teachers first rated 20% of the answer sheets, and compared 
and discussed their ratings with the first author. The teachers 
then independently scored the remaining answer sheets. 
Overall interrater agreement was high (Cohen’s kappa = 0.918). 
Unprompted diagram use was calculated as the presence of 
any kind of diagram. Problem-appropriate diagram use was 
calculated as the use of a specific kind of diagram for a specific 
type of problem (line diagram for Compare quantities, table 
for Predict patterns, and graph for Compare trajectories  
problems).

Correctness in problem solving
Correctness in problem solving was scored independently of 

diagram use. For each question (answer sheet), two answers were 
required for 0.5 points each. Correctness was scored 1 if both 
answers were correct, 0.5 if only one of them was correct, and 0 if 
both were incorrect or answers were missing.

Cognitive load
Cognitive load was measured using a short questionnaire for 

intrinsic cognitive load (Leppink et  al., 2014) translated to 
Japanese, with some minor adjustments. The questionnaire 
comprised four items, for example “I invested a very high mental 
effort in the complexity of this activity,” to be  answered on a 

TABLE 1 Example problems (translated from Japanese) and student-constructed problem-appropriate diagrams.

Compare quantities problem Line

There are three counters A, B, and C, at a concert venue for customers with 

A, B, and C-type tickets. Upon opening, queue length at counter A is 72 m, 

unknown at counter B, and 56 m at counter C. Fifteen minutes after 

opening, the queue length at A is 6 m shorter than twice the length at B, 

and the length of C is 1 m shorter than half the length at A. How much did 

queue length shorten in the first 15 min? How long was the queue length at 

B when the gate was opened? (counters become shorter at constant and 

identical speed).

Predict patterns problem Table

You have to arrange regular hexagonal tiles of 3 cm sides one at a time. 

Each new tile has to touch only one side of the tiles that are already placed. 

However, once placed, a tile can have more than one of its sides touching 

other tiles. When the number of sides (sides not in contact with other 

sides) around the figure becomes 86, how many tiles will you have 

arranged? When 26 tiles are placed, what is the length (in cm) around the 

figure?

Compare trajectories problem Graph

Manny leaves home at 6:30 am and walks 1,650 m to school. At school, 

he discovers that he forgot his lunch box and goes back. His mother 

discovers the lunch box and decides to bring it to him. At 7:18 am, Manny 

calls his mother’s mobile phone from a convenience store 900 m away from 

his school. She tells him that she already passed the convenience store at 

7:10 am. They meet at the convenience store and Manny gets his lunch box. 

What time did his mother leave home? How long did Manny stay at school 

before returning home? (Manny and his mother walk at the same speed. 

The house, convenience store, and school are on the same route.)
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10-point Likert-type scale (0 = “not at all the case” to 
9 = “completely the case”). The reliability of the scale was 
confirmed on the 15 problems in the preliminary study 
(Cronbach’s alpha ranged from 0.67 to 0.93).

Design and procedure

Following the multiple baseline method, instruction in the use 
of line diagrams, tables, and graphs was provided in a staggered 
manner in three sessions, respectively, (see Table 3).

The procedures used in administering the tests were identical 
across the five phases. Each test contained the three types of word 
problems in random order. Students were given 8 min to solve 
each problem. Students filled out the cognitive load questionnaire 
after solving each problem. All answer sheets were collected at the 
end of each session. No marks, grades, or feedback on the tests 
were given in between sessions.

Analyses

Unprompted and problem-appropriate diagram use were 
dichotomous dependent variables (0 or 1). Therefore, Cochran’s Q,  

a non-parametric test, was used for analysis of main phase effects 
and McNemar’s test was used for pairwise comparisons. 
Correctness in problem solving had three possible scores (0, 0.5, 
1) and perceived cognitive load ranged from 0 to 36. A repeated-
measures analysis of variance was run on these variables as it is 
robust against violations of normal distribution assumptions 
(Schmider et al., 2010). The Greenhouse–Geisser correction was 
used when the sphericity assumption was not met. We performed 
confirmatory analysis with the non-parametric Friedman test.

Results

Did diagram instruction lead to an overall 
increase in unprompted use of diagrams?

Figure 1 shows diagram use (top row) as a function of problem 
type and test phase and allows comparing the percentage of 
answer sheets that included a diagram of any of the four kinds 
(cumulated shaded parts of the bars) against those that did not 
include any diagrams at all (white part of the bars). As expected, 
the unprompted use of any diagram seems to increase as a result 
of the instructions (white portion decreases over time) but only 
for the Predict patterns and Compare trajectories problems.

The analysis showed no significant phase effect for Compare 
quantities problems [Cochran’s Q(4) = 7.26, p = 0.12]. Moreover, no 
significant difference was found in diagram use between the tests 
immediately before and after the line instruction [Pre-test versus 
Post line, McNemar’s χ2

(1) = 2.88, p = 0.90, p values were multiplied 
by 10 as a Bonferroni correction]. Thus, the overall level of 
unprompted diagram use of any kind of diagram was high for 
Compare quantities problems (> 70%) from the beginning and 
stayed at such a high level throughout the five phases.

In the Predict patterns problems, a significant phase effect was 
found (Cochran’s Q(4) = 48.35, p < 0.001). However, no significant 
difference was found in unprompted use of any diagram between 
the tests immediately before and after the table instruction [Post 
line versus Post table McNemar’s χ2

(1) = 4.84, p = 0.28]. A significant 
increase was observed only after graph instruction [Post line 
versus Post graph McNemar’s χ2

(1) = 22.09, p < 0.001]. Moreover, 
unprompted use of any diagram for Predict patterns problems did 
not increase nor decrease from the Post graph to the Delayed test 
[Post graph versus Delayed McNemar’s χ2

(1) = 0.11, p = 1.00]. Thus, 
unprompted use of any diagram increased following table 
instruction in the corresponding Predict patterns problems, but 
only towards the end of the procedure.

Finally, a significant phase effect was also found for Compare 
trajectories problems [Q(4) = 64.55, p < 0.001]. The significant 
increase in unprompted use of any diagram followed graph 
instruction [Post table versus Post graph McNemar’s χ2

(1) = 13.44, 
p < 0.01]. It seemed to still increase from the Post graph to the 
Delayed test, but this was not significant [Post graph versus 
Delayed McNemar’s χ2

(1) = 3.00, p = 0.83]. Hence, following graph 
instruction, unprompted diagram use of any diagram for the 

TABLE 2 Analysis grid for scoring constructed diagrams.

Line A line diagram consists of line segments or rectangular forms 

(tapes, bars) representing quantities. Two or more segments 

should be aligned so that their lengths can be compared. 

Segments without units or scales such as in geometric shapes 

or pictures should not be counted as a line diagram.

Table A table contains at least two arrays of numbers resulting in a 

matrix of at least two by three (2 × 3) cells. A table need not 

have a legend, labels, or borders. A 1×2 or 2 × 2 table or an 

incomplete table (< 6 cells) should not be counted as a table.

Graph A graph is a Cartesian coordinate system for plotting at least 

two functions in which a quantity (cost, distance) varies in 

time. The points and lines do not need to be correct. An 

empty x-y plane without points or lines is not counted as a 

graph.

Illustration Any other graphical or pictorial visual expression or 

depiction.

TABLE 3 Summary of the multiple baseline design. All five test phases 
contained a Compare quantities, a Predict patterns, and a Compare 
trajectories problem.

Session Day Instruction Test Phase

1 1 Pre-test

2 6 Line Post line test

3 9 Table Post table test

4 13 Graph Post graph test

5 22 Delayed test
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corresponding Compare trajectories problems significantly 
increased and sustained.

Did diagram instruction lead to a 
persisting increase in 
problem-appropriate diagrams?

We expected an increase of problem-appropriate diagrams 
specifically. In other words, we expected increases in the use 
of line diagrams for comparing quantities, tables for predicting 
patterns, and graphs for comparing trajectories. Such 
problem-appropriate diagram use should occur directly 
following the corresponding instruction and persist in time 
even after alternative diagram instruction. Figure 1 does show 
this expected pattern of results. The use of each of the three 
types of diagrams increases after the corresponding instruction 
but only for the expected type of problem. Following line 
instruction, although some line diagrams were also used for 
comparing trajectories, the use of line diagrams increased for 
comparing quantities [phase effect in line diagram use, 
Cochran’s Q(4) = 69.30, p < 0.001], but not for the other two 
types of problems. Following table instruction, the use of 
tables increased for predicting patterns [phase effect in table 
use, Q(4) = 121.39, p < 0.001], not for the other two types of 
problems. And finally, following the graph instruction, the use 
of graphs increased for comparing trajectories [phase effect in 
graph use, Q(4) = 105.86, p < 0.001], again not for the other two 
types of problems.

Individual comparisons (again with Bonferroni corrections) 
confirmed the pattern of results. In the Compare quantities 
problems, the increase in line diagram use took place directly after 
the line instruction [between Pre-test and Post line test, 
McNemar’s χ2

(1) = 19.20, p < 0.001]. It seemed to still increase in the 
Delayed test. Indeed, there was a significant difference between 
the Post line and Delayed test [χ2

(1) = 10.71, p < 0.01]. Thus, as 
Figure 1 shows, appropriate use of line diagrams for Compare 
quantities problems directly followed line instruction and still 
increased even after alternative table and graph instructions.

Similar results were obtained for the Predict patterns 
problems. Following table instruction, table use increased 
significantly for solving these problems [between Pre-test to Post 
table test, χ2

(1) = 27.00, p < 0.001] and increased still further from 
Post table to the Delayed test [χ2

(1) = 16.00, p < 0.001]. Thus, 
appropriate use of tables for Predict pattern problems started 
directly after instruction, and even continued to increase, rather 
than decrease, after alternative diagram instruction.

Finally, in the Compare trajectories problems, graph use 
increased significantly just after the graph instruction [between 
Pre-test to Post graph test, χ2

(1) = 29.00, p < 0.001]. However, unlike 
above, appropriate diagram use did not further increase in the 
Delayed test.

In all cases, the increase in problem-appropriate diagrams was 
observed directly after instruction but exclusively for the 
corresponding type of problem. Moreover, problem-appropriate 
diagram use tended to intensify, even despite the instruction on 
alternative diagrams. These results provide full support for the 
second hypothesis.

FIGURE 1

Diagram use (top), correctness in problem solving and perceived cognitive load (bottom) as a function of problem type and test phase. Cognitive 
load was normalized to range from 0 to 1.
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Did diagram instruction increase 
correctness in problem solving?

We expected an increase in correctness for each problem type 
directly following the corresponding diagram instruction and 
remaining stable over time. Such an improvement in problem 
solving can indeed be seen in Figure 1 (black bars in bottom bar 
graphs). Since the diagram-appropriate instruction took place in 
a staged fashion, the number of baseline data points differs for the 
three problem types, Comparing quantities, Predicting patterns, 
and Comparing trajectories (one, two, and three baseline data 
points, respectively). We therefore tested the pattern of results 
with three separate repeated-measurements analysis of variance, 
one for each problem type.

ANOVA revealed a significant phase effect for Compare 
quantities problems, F(4, 264) = 9.24, p < 0.001, ηG

2 = 0.08. Comparing 
adjacent phases showed that only the first contrast, between 
Pre-test and Post line test, reached significance, t(66) = 5.11, 
p < 0.001, Cohen’s d = 0.88, all p values were Bonferroni adjusted. 
Thus, correctness for Compare quantities problems significantly 
increased following line diagram instruction and the higher level 
of performance in problem solving persisted throughout the four 
subsequent test phases.

We also found a significant test phase effect for Predict 
patterns problems [F(3.34, 220.12) = 40.06, p < 0.001, ηG

2 = 0.26]. For this 
type of problem, Figure 1 shows that correctness increased directly 
after the appropriate table instruction. Indeed, in comparing 
adjacent test phases, the contrast for the comparison between Post 
line and Post table tests was significant, t(66) = 8.95, p < 0.001, 
d = 1.55. Thus, correctness for Predict pattern problems augmented 
after the table instruction and the higher level maintained 
throughout the subsequent tests.

Finally, the test phase effect was significant for Compare 
trajectories problems, F(2.39, 157.56) = 33.03, p < 0.001, ηG

2 = 0.26. 
Figure 1 clearly shows improved problem solving directly after the 
problem-appropriate graph instruction. This expected distinct 
increase in correctness after graph instruction was significant, 
t(66) = 6.31, p < 0.001, d = 1.09. Improved correctness for Compare 
trajectories problems sustained at the obtained higher level in the 
Delayed test.

Friedman test results provided confirmation of these 
significant results in the Compare quantities problems 
[χ2

(4) = 34.15, p < 0.001], the Predict patterns problems [χ2
(4) = 99.04, 

p < 0.001], and the Compare trajectories problems [χ2
(4) = 90.93, 

p < 0.001]
Finally, we examined the relation between the use of problem-

appropriate diagrams and correctness in problem solving in the 
Delayed test. Chi-square tests for contingency tables showed that 
the students who produced an appropriate diagram also obtained 
higher correctness in problem solving [Compare quantities, 
χ2

(2) = 7.16, p < 0.05; Predict patterns, χ2
(2) = 19.30, p < 0.001; 

Compare trajectories, χ2
(2) = 12.83, p < 0.01]. These results show 

that the use of problem-appropriate diagrams is indeed concurrent 

with correctness in problem solving, providing full support for the 
third hypothesis.

Did diagram instruction reduce 
perceived cognitive load?

Finally, we expected that diagram instruction would decrease 
perceived cognitive load. Figure 1 shows that while the perceived 
cognitive load seems slightly decreasing over time (gray bars in 
bottom bar chart), the relation to diagram instruction is less 
marked. Again, we ran a separate analysis for each of the three 
problem types for the same reason given above.

The ANOVA showed a significant phase effect in the Compare 
quantities problems [F(3.52, 232.01) = 14.51, p < 0.001, ηG

2 = 0.08]. 
Unexpectedly, perceived cognitive load actually increased 
significantly following line diagram instruction [Pre-test versus 
Post line test, t(66) = 2.81, p < 0.05, d = 0.49]. Subsequently, a 
significant decrease took place from the Post line to the Post table 
test, t(66) = 4.14, p < 0.001, d = 0.72. Perceived cognitive load was 
lowest at Delayed test (significantly lower than at Pre-test, 
t(66) = 4.13, p < 0.001, d = 0.71). In other words, line diagram 
instruction did not immediately lead to cognitive load reduction 
in solving the Compare quantities problems, but a delayed 
reduction could be observed.

A significant phase effect was also found for the Predict 
patterns problems, F(3.58, 236.09) = 35.78, p < 0.001, ηG

2 = 0.19. In the 
Predict patterns problems, the pattern of perceived cognitive load 
variations fully supported the fourth hypothesis. No change in 
reported cognitive load was found prior to table instruction [Pre-
test versus Post line test, t(66) = 1.21, p = 0.46 (ns), d = 0.21], but a 
significant decrease followed table instruction [t(66) = 4.37, 
p < 0.001, d = 0.76, as well as a further decrease observed in the 
next Post graph test, t(66) = 2.95, p < 0.05, d = 0.51. Cognitive load 
did not further decline in the Delayed test, t(66) = 0.64, p = 0.52 (ns), 
d = 0.11]. Thus, evidence was found that table instruction reduced 
perceived cognitive load in solving the corresponding Predict 
patterns problems.

Finally, the analysis of perceived cognitive load showed a main 
effect of test phase for the Compare trajectories problems, 
F(3.41, 224.80) = 22.77, p < 0.001, ηG

2 = 0.14. The contrasts showed that, 
while there was no change in perceived cognitive load between 
Pre-test and Post line test, there was an unexpected increase at 
Post table test [i.e., Post line test versus Post table test, t(66) = 3.70, 
p < 0.01, d = 0.64]. Following graph instruction, the reported load 
then significantly decreased [i.e., Post table test versus Post graph 
test, t(66) = 3.38, p < 0.01, d = 0.58]. A further decrease in perceived 
cognitive load was found at the Delayed test [Post graph test 
versus Delayed test, t(66) = 5.50, p < 0.001, d = 0.95]. It is possible to 
interpret the decline in cognitive load from Post table test through 
to Delayed test as possibly stemming from practice effects. 
However, given that no decrease in perceived cognitive load 
actually occurred until after graph instruction was provided, 
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we  believe that on the whole these results can be  taken as 
supporting the fourth hypothesis.

Discussion

The results of the present study provide support for the 
hypotheses that we  tested. Diagram instruction increased 
unprompted use of diagrams and, more importantly, it increased 
the use of problem-appropriate diagrams. These increases in use 
persisted in time. Furthermore, the instruction led to increases in 
student problem solving performance and to decreases in their 
perception of cognitive load associated with that problem solving. 
In this section, we consider the reasons for and meaning of these 
results, and discuss their theoretical, research, and practical  
implication.

Promoting unprompted and 
problem-appropriate diagram use

Two previously identified key challenges are that students 
generally lack spontaneity in diagram use and that, even when 
they construct diagrams, these are often not appropriate for the 
problem (Hegarty and Kozhevnikov, 1999; Uesaka and Manalo, 
2006; Corter and Zahner, 2007; Uesaka et al., 2007; van Garderen 
et al., 2012). The findings of the present study demonstrate that 
with instruction focusing on the correspondence between 
different types of problems and different kinds of diagrams both 
of these challenges can be resolved.

Previous research revealed that deficiencies in declarative 
knowledge is one important reason why students do not use 
diagrams when they should. Previous research also showed that 
instruction promotes greater spontaneity in the use of diagrams 
in mathematical word problem solving (Uesaka et al., 2010). This 
was confirmed in the present study: there were significant 
increases in unprompted use of any diagrams in both the Predict 
patterns and Compare trajectories problems following diagram 
instruction. In the Compare quantities problems, increases in the 
unprompted use of any diagrams also followed instruction, but 
these were not significant. The most likely reason was that the level 
of diagram use in attempts at solving the Compare quantities 
problems was already high at the first baseline (Pre-test), and so 
the increases that followed were proportionally small. Note that in 
all three problem types, most of the diagrams that participants 
constructed prior to instruction were illustrations (see Figure 1), 
which would not have been helpful toward obtaining the 
correct solutions.

Instruction specifically should promote the construction of 
effective diagrams. Thus, in the present case, the goal of instruction 
was not for students to construct any diagram because not all 
diagrams are equal in helping toward generating the required 
answers. Different representations, even when they are 
isomorphic, vary in their potential for solving a problem 

(Zhang and Norman, 1994; Zhang, 1997; Duval, 2006; Schnotz 
and Kürschner, 2008). Therefore, a crucial purpose of instruction 
is to enable students to determine and construct the most 
appropriate diagram to match the requirements of a problem. In 
the present study, for all three problem types, significant increases 
in problem-appropriate diagrams were evidenced following 
instruction, and those increases maintained. In the test phases 
following each instruction session, all three problem types were 
administered (in a random order) but, in each case, a significant 
increase was observed only in the problem type corresponding to 
the kind of diagram for which instruction had just been provided. 
This result suggests that, when given instruction, students are able 
to distinguish pertinent features of a problem and consequently 
select the most appropriate kind of diagram for solving it. They are 
able to develop both the necessary conditional and procedural  
knowledge.

Reducing cognitive load and improving 
word problem solving

A third important point is that, if students construct a 
problem-appropriate diagram, it should lead to a better problem 
solving performance. Again, this was demonstrated in the present 
study: the increases in appropriate diagram use coincided with 
significant improvements in problem solving performance. This 
outcome is understandable when we consider the representational 
effect mentioned earlier (Zhang and Norman, 1994; Zhang, 1997) 
and the specific operations that representations can enable in 
mathematical problem solving (Duval, 2006). More specifically, 
while some diagrams give an accurate visual-schematic 
representation for understanding a problem (Hegarty and 
Kozhevnikov, 1999; Boonen et al., 2014), they may not help in 
actually solving it. Problem-appropriate diagrams, especially for 
more complex mathematical word problems, are not just visual or 
topographical representations. They are of a more abstract nature 
that enables drawing inferences or executing necessary operations. 
The execution of such operations is quite specific and systematic, 
requiring the connections between pertinent details in the 
problem text, the choice and construction of the diagram, and the 
derivation of the solution, to be  explicitly explained – and 
practiced – in instruction sessions provided.

This brings up a fourth important point: that problem-
appropriate instruction likely reduces the cognitive load 
experienced during problem solving, thereby facilitating the 
unprompted and appropriate use of diagrams, as well as freeing 
up cognitive resources that can be  used in working out the 
answers. Evidence suggesting this was obtained in the current 
study: in all three problem types, instruction led to immediate or 
subsequent reductions in reported cognitive load, which coincided 
with increases in both appropriate diagram use and correct answer 
rates. According to cognitive load theory, the acquisition of 
knowledge and understanding relevant to a task leads to schema 
construction, which in turn leads to a reduction in intrinsic 
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cognitive load and to freeing up of resources in working memory 
(Sweller et al., 1998). In the case of problem solving and diagram 
use, prior to instruction the experience of cognitive load would 
likely be high, especially if the student is unsure about what to do. 
However, when problem-appropriate instruction is provided, the 
student would learn what to do and possess a schema to use for 
solving the problem. This means that the student’s experience of 
cognitive load would likely decrease (Fuchs et al., 2020). Such 
decreases could have arisen because of practice effects (Wesnes 
and Pincock, 2002), so it would be useful in future studies to 
obtain direct measurements of cognitive load (e.g., brain activity). 
In the present study, there is also evidence from the multiple 
baseline design that no significant decreases in cognitive load 
occurred prior to instruction, even in the Compare trajectories 
problems with three baseline points.

Theoretical implications

The findings of this research provide useful insights about the 
use of self-constructed diagrams in problem solving. They 
emphasize the importance of paying sufficient attention to the 
cultivation of procedural and conditional knowledge. In most 
Japanese mathematics classrooms, for example, teachers only 
demonstrate the use of diagrams, without any explicit explanation 
of how to select, construct, and use them (Uesaka et al., 2007). 
Despite being familiar with the types of word problems and 
diagrams, students did not spontaneously use diagrams and failed 
to solve the problems at baseline. Thus, without proper 
explanations students have gaps in their procedural and 
conditional knowledge for diagram use, which not only explain 
the lack of spontaneous use, but also of inappropriate use and 
inability to draw the necessary inferences (Hegarty and 
Kozhevnikov, 1999; Uesaka and Manalo, 2006; Corter and Zahner, 
2007; Uesaka et al., 2007). The cultivation of the necessary (and 
presumably incomplete) procedural knowledge and conditional 
knowledge was addressed in this study through explicit instruction 
in problem-appropriate diagram use – which proved effective in 
improving problem solving behaviours.

The findings also indicate that an important consequence of 
such instruction is the reduction of cognitive load, specific to the 
problem type dealt with in the instruction. Our results suggest that 
cognitive load reduction is instrumental not only in promoting 
spontaneity in diagram use, but also in allowing sufficient 
cognitive resources to bear on the problem and hence to solve 
it successfully.

Furthermore, the findings draw attention to the distinction 
between two important functions that diagrams can serve in 
mathematical word problem solving: providing an accurate visual-
schematic representation for understanding the problem and 
providing a schema or operational tool for solving it. Most 
students are aware of the first of these functions, which is why 
even prior to instruction many of the participants in the present 
study produced illustrations. However, such illustrations even 
when they portray an accurate schema of the problem situation, 

may not help in working out the solution to the problem. More 
complex problems often require the use of more abstract diagrams 
(tables, graphs) that do not visually portray the problem situation 
but instead directly facilitate obtaining the required solutions. In 
the research area of diagram use in mathematical word problem 
solving, little work has been undertaken on this second function 
(Verschaffel et al., 2020). We believe it deserves more attention as, 
among other things, the transformational steps involved in their 
construction need to be better understood.

Research implications

In this research, the multiple baseline design allowed within-
participant comparisons without requiring a control group. 
Multiple testing phases showed increases in performance only for 
the expected types of problems directly following the 
corresponding instruction. This design is more commonly used 
for evaluating individual behavioural change in response to an 
intervention, particularly when there is an expectation that the 
change would be  irreversible (Baer et  al., 1968; Morgan and 
Morgan, 2009). Apart from across individuals (participants or 
clients), variations of the multiple baseline design include across 
settings, behaviours (Morgan and Morgan, 2009), and populations 
(Hawkins et al., 2007). The design has previously been used to 
evaluate the effect of providing instruction on mathematics skills 
to students. However, usually, instruction in a single mathematical 
operations using a particular teaching approach is evaluated 
across individual students (Rivera and Smith, 1988). In the present 
study, we used the design to evaluate the effect of instruction on 
multiple aspects of participant responding (behaviour, 
performance, perception) across variations in types of problems, 
with the aim of demonstrating the need for problem-appropriate 
diagram instruction.

Like in previous studies, we expected resulting changes to 
be  irreversible, and thus to maintain in post-instruction test 
phases. But we  also expected the effects to be  problem type-
specific, with limited or no transfer across the problem types. Our 
results confirmed these expectations. In fact, the multiple baseline 
design has proven crucial in demonstrating not only the problem 
type-specific effects of the instructions, but also the co-occurrence 
of pertinent changes in behaviour, performance, and perception 
(increases in appropriate diagram use and correct answer rates, 
along with decreases in cognitive load). Therefore, from a research 
design perspective, we have been able to demonstrate a useful 
variation of the multiple baseline design that may have potential 
further applications in classroom educational research.

Practical implications

The results of the present study indicate that teachers need to 
explicitly provide instruction on diagram use if their students are 
to use them effectively in mathematical word problem solving. 
Many students will not likely construct a diagram if they lack 
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adequate knowledge and skills: it may seem too demanding, and 
any effort in constructing a diagram may not pay off. Necessary 
problem-appropriate diagram instruction largely depends on 
teachers possessing the corresponding knowledge and skills. 
However, some teachers may be proficient in using diagrams in 
mathematical word problem solving, but may not have considered 
how to articulate such knowledge to convey it effectively to their 
students. It is therefore important to incorporate training in this 
area both for pre-service teachers in mathematics education, as 
well as for in-service teachers who may need upskilling through 
professional development courses.

Limitations and directions for future 
research

In the present study, we tested our hypotheses on the use of 
only three kinds of diagrams to solve three kinds of 
mathematical word problems. This is an important limitation to 
note as there are other kinds of diagrams that can be used to 
solve other types of problems, and it would be imperative to 
examine those in future research. Furthermore, our student 
participants all came from the same grade level in one school. 
We acknowledge that student capabilities in both mathematical 
word problem solving and diagram use would vary according 
to their age and grade level, as well as other aspects of their 
educational experiences. Thus it would also be useful to evaluate 
the effectiveness of problem-appropriate instruction on diagram 
use on students at other grade levels and from different 
educational backgrounds.

The instructions were also provided by the first author and an 
assisting teacher rather than the students’ real classroom teachers. 
An important step to take in future research would be to develop 
and evaluate instruction that real classroom teachers could use in 
cultivating diagram use capabilities in their own students.

Conclusion

The results of this study indicate that instruction on diagram 
use enables the construction and use of appropriate diagrams, 
improves ability to correctly solve problems, and reduces 
perception of the cognitive load associated with mathematical 
word problem solving. The instruction needs to be  problem-
appropriate, meaning that students need to learn specific details 
about the construction and use of different kinds of diagrams 
relevant to solving specific types of problems. As mathematical 
word problem solving is one crucial means by which 
understanding of the relevance of mathematics in the real world 
is cultivated, and diagram use is arguably one of the most effective 
heuristics for solving them, the effect of instruction indicated by 
our findings warrants serious consideration – especially as the 
extent to which such instruction is currently provided in most 
classrooms may be too general and thus inadequate.
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