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Stem cell activity is subject to non-cell-autonomous regulation from the local microenvironment, or niche. In
adaption to varying physiological conditions and the ever-changing external environment, the stem cell niche has
evolved with multifunctionality that enables stem cells to detect these changes and to communicate with remote
cells/tissues to tailor their activity for organismal needs. The cyclic growth of hair follicles is powered by hair follicle
stem cells (HFSCs). Using HFSCs as a model, we categorize niche cells into 3 functional modules, including
signaling, sensing and message-relaying. Signaling modules, such as dermal papilla cells, immune cells and
adipocytes, regulate HFSC activity through short-range cell-cell contact or paracrine effects. Macrophages capacitate
the HFSC niche to sense tissue injury and mechanical cues and adipocytes seem to modulate HFSC activity in
response to systemic nutritional states. Sympathetic nerves implement the message-relaying function by
transmitting external light signals through an ipRGC-SCN-sympathetic circuit to facilitate hair regeneration. Hair
growth can be disrupted by niche pathology, e.g. dysfunction of dermal papilla cells in androgenetic alopecia and
influx of auto-reacting T cells in alopecia areata and lichen planopilaris. Understanding the functions and
pathological changes of the HFSC niche can provide new insight for the treatment of hair loss.
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Background

Hair forms a barrier to protect skin from external insults
as well as to keep the body from temperature loss. Hu-
man hair, especially human scalp hair, also has import-
ant ornamental functions that are essential for social
communication and senses of well-being. Unwanted hair
loss can pose psychosocial distress to affected individuals
[1]. Hair regeneration depends on the activation of hair
follicle stem cells (HFSCs) [2—4]. As the hair follicle
(HF) is an integral part of skin [5], its growth and the ac-
tivity of HESCs are regulated by various nearby cells of
the HFSC niche in the skin [6, 7]. We categorize the
component cells of the HFSC niche into 3 groups ac-
cording to their functions, including signaling, sensing
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and message-relaying. We review how HFSC activity is
regulated by different signaling cells and how sensing
and message-relaying cells help HFs to initiate a regen-
erative attempt in face of local injury and external envir-
onmental changes. In diseased states, we discuss how
the pathological changes of the niche lead to dysregu-
lated hair growth. In addition, we discuss how the influx
or emergence of non-preexisting cells within the HFSC
niche affects hair growth and depletes HFSCs. We also
highlight the therapeutic implications of niche pathology
with an aim to prevent hair loss and to promote hair
growth.

Hair follicle structure, hair cycle and HFSC

The HF is one of the few organs that undergo cyclic in-
volution and regeneration throughout life [5, 6, 8, 9].
Structurally, HF is an epithelial organ consisting of two
main parts: an epithelial cylinder composed of keratino-
cytes and the mesenchymal cells of dermal papilla (DP)
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Fig. 1 Hair follicle structure, hair follicle stem cell and hair cycle. Quiescent HFSCs reside in the bulge region and primed HFSCs are located in the
secondary hair germ. They are transiently activated in early anagen, giving rise to progeny that grow down to form the lower portion of HFs. HFs
progress through catagen (regressing phase), telogen (resting phase) and anagen (growing phase) cyclically. Matrix cells in the hair bulb actively
proliferate and differentiate to support the continued elongation of the hair shaft in anagen. In catagen, the hair bulb shrinks and the lower
portion of the HF regresses through a progressively shortened epithelial strand into the telogen HF. In telogen, HFSCs in the secondary hair germ

— Sebaceous gland
Bulge stem cell

Secondary hair germ stem cell

Dermal papilla

and dermal sheath (Fig. 1) [5, 10]. During the hair cycle,
HFs progress through anagen (growth), catagen (involu-
tion) and telogen (resting) phases and then re-enter ana-
gen (Fig. 1) [5, 8—11]. Postnatal cycling and regeneration
of HFs depend on sophisticated reciprocal epithelial-
mesenchymal interaction [6, 12—-19].

Over the past 3 decades, progress has been made in
understanding how the growth of HFs is regulated, par-
ticularly due to the discovery of HFSCs [2-4, 20-22].
HESCs are first identified as slow-cycling label-retaining
cells located in the bulge epithelium [2, 22]. In addition
to this population of relatively quiescent stem cells, HFs
harbor another population of primed stem cells with fas-
ter activation dynamics in the secondary hair germ of
telogen HFs [3, 5, 23]. HF regeneration from telogen to
anagen is fueled by the coordinated activation of these
two cell populations: primed HFSCs in the secondary
hair germ are first activated, followed by the activation
of quiescent HFSCs in the bulge later [2-5].

Signals and signaling cells within HFSC niche

By definition, HF itself does not require the existence of
surrounding niche cells to become a HF [24]. However,
the integration of a variety of surrounding niche cells
confer emergent functions on HFSCs, especially its abil-
ity to respond to changes of local, systemic and even ex-
ternal environments to begin a regenerative scheme or
to remain quiescent. In diseased states, pathological in-
filtration of non-preexisting cells in the HFSC niche can

lead to dysregulated hair growth. What constitutes the
microenvironment that regulates HFSC activity and hair
growth? Due to the continuous advance in hair research,
more and more cell types (Fig. 2), including DP cells,
adipose tissue, lymphatic vessels, nerves and immune
cells, are identified to be contributing to the HFSC niche
[15, 16, 25-36], unveiling the complexity and sophistica-
tion in the interaction of HFSCs with its environment.
Since activating and inhibitory signals can both be
present in the HFSC niche, the probability of HFSC acti-
vation is the readout of the summation of both activat-
ing and inhibitory signals [37, 38]. The two major
counteracting signals are the bone morphogenetic pro-
tein (BMP) and Wnt/B-catenin signaling pathways [28,
37, 39]. High BMP signaling keeps HFSCs in an inacti-
vated state, while Wnt/B-catenin signaling promotes
HFSC activation and maintains HF growth [17, 28, 37—
40]. Moreover, the TGF-B2, Foxpl and oncostatin M
signaling pathways have also been shown to regulate hair
cycle [16, 29, 37, 41] . Factors that are able to tilt the
balance of Wnt/B-catenin and BMP signaling can modu-
late HFSC activity, thereby suppressing or promoting
anagen entry [6, 16, 29, 38, 42].

Functional categorization- signaling, sensing and
message-relaying modules in HFSC niche

In addition to niche cells that provide either activating
or inhibitory signals in the physiological state, niche cells
of other functions also exist, enabling HFSCs to sense
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Fig. 2 Hair follicle stem cell niche. The HFSC niche is composed of various component cells, such as dermal papilla, preadipocytes, adipocytes,
immune cells and nerves. Systemic hormones also regulate HFSCs directly or indirectly through the HFSC niche cells. Both activating and

suppressive signals are present within the HFSC niche. The probability of HFSC activation depends on the summation of all the activating and
inhibitory signals
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Fig. 3 Functional categorization of HFSC niche cells. According to the functions of niche cells, they are categorized into 3 groups: signaling
modules, sensing modules, message-relaying modules. These functionally distinct modules are assembled into a multifunctional niche. Signaling
modules regulate HFSC activity via cell-cell contact or paracrine secretion. Sensory modules detect environmental cues. Message-relaying
modules transmit signals from remote cells/tissues to HFSCs. Sensory modules and message-relaying modules can directly signal to HFSCs or
indirectly regulate HFSC activity through the signaling modules




Chen et al. Journal of Biomedical Science (2020) 27:43

local, systemic and even external environmental changes
to adjust their activity to meet local and organismal
needs [28, 34, 35, 43—45]. Since additional cells of varied
functions can be incorporated singly or in combination
into the HESC niche, we think that the niche cells can
be modularized and these modules can be co-opted to
construct the niche (Fig. 3). This is analogous to the de-
sign of a spaceship. The combination of different func-
tional modules increases the functionality of the
spaceship. Message-relaying modules allowed the com-
munication between the Apollo 11 and NASA space
center. The lunar module endowed Apollo 11 with an
important function to land human on the moon. From
this perspective, we divide HFSC niche cells into 3 func-
tional modular categories: signaling, sensing and
message-relaying (Fig. 3). Signaling cells directly provide
activating or inhibitory signals for HFSCs through ligand
secretion or cell-cell contact. Sensing cells detect the
changes of local environmental cues and then directly or
indirectly instruct HFSCs to remain quiescent or become
activated. Message-relaying cells are capable of transmit-
ting remote signals to the HFSC niche and then directly
or indirectly modulate HESC activity. Of note is that a
single niche cell type can exhibit more than one func-
tion. We speculate that the co-option of various func-
tional modules within a stem cell niche enables the
animals to adapt their regenerative activity to the chan-
ging environment and to the altering physiological
needs, thereby ameliorating the organismal fitness dur-
ing evolution.

Signals from dermal papilla for signaling and gain of
testosterone-processing function in androgenetic
alopecia

DP cells are an essential signaling component within the
HESC niche (Fig. 2). Epithelial-mesenchymal interaction
is indispensable not only for embryonic HF morphogen-
esis but also for postnatal hair cycling [12, 13, 36, 46] .
In the embryonic stage, interaction with the specialized
mesenchymal niche of HF dermal condensate/papilla
stimulates and instructs the epithelium to sequentially
form placode, germ, and peg [46]. For postnatal follicu-
lar epithelial-mesenchymal interaction, although DP cells
provide signaling ligands, such as TGF-p2 and FGF-7 [3,
16], to activate HFSCs for a new hair cycle, signals from
epithelial cells are also required for proper anagen entry
[17]. After HFs reach mature anagen, DP behaves as an
instructive niche by regulating the proliferation and
spatially ordered differentiation of transit-amplifying
progenitors for proper hair shaft elongation and hair
bulb structure maintenance [47]. Continued activation
of Wnt/B-catenin signaling in DP through epithelial-
mesenchymal interaction is indispensable for anagen
progression [48]. During catagen, DP is also essential for
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the recession of the epithelial cylinder through con-
trolled apoptosis/cell death [12]. In addition to physio-
logical cycling, DP might also instruct the anagen repair
process to avoid catagen entry when HFs are injured by
chemo- and radiotherapy [49, 50].

Androgens are an important regulator for hair growth
with paradoxical effects on HFs in different body re-
gions. Androgens can stimulate the transformation of
small vellus HFs into large terminal HFs after puberty,
such as beard, pubic hair and axillary hair [51, 52]. On
the contrary, in the scalp of genetically predisposed indi-
viduals of androgenetic alopecia or male pattern bald-
ness, androgens inhibit hair growth, leading to
progressive HF miniaturization [53]. Hyperandrogenism
in females can lead to hirsutism with excessive male pat-
tern hair growth [54]. These paradoxical effects of an-
drogens on human hair growth have long been a puzzle
[55, 56]. Androgens act through the intracellular andro-
gen receptor. In HFs, androgen receptors are mainly
expressed by DP [57, 58]. In contrast, keratinocytes do
not express androgen receptors or show androgen
receptor-dependent signaling activation, suggesting that
keratinocytes may not be the primary responding cells in
HFs [59, 60].

Alopecia due to HF aging is characterized by progressive
HF atrophy with hair shaft miniaturization, prolonged
telogen, and even loss of the entire HFs, resulting in di-
minished hair amount [61, 62]. In male, androgenetic alo-
pecia is the most common disease of premature HF aging.
With genetic predisposition in affected individuals, DP
cells in the balding area exhibit higher activity of type II 5-
alpha-reductase, an enzyme that are normally highly
expressed in the prostate [58]. This enzyme converts tes-
tosterone into dihydrotestosterone through 5a-reduction
of testosterone [57]. Dihydrotestosterone is a more potent
androgen with a higher affinity than testosterone [63].
Local sustained dihydrotestosterone stimulation to DP
compromises its functions, leading to deteriorating hair
growth, shortened anagen and prolonged telogen [55, 56].
Therefore, the inappropriate gain of function, ie. 5a-
reducing ability to process testosterone, of these niche sig-
naling cells in a patterned distribution is the primary cause
of androgenetic alopecia.

DP cells from the balding scalp of androgenetic alope-
cia patients exhibit signs of senescent characters, such as
loss of replicative potential, changes in cell size and
shape, decrease or loss of is characteristic markers/mo-
lecular signature [64, 65]. Although the mechanisms are
not fully clarified yet, dihydrotestosterone seems to in-
duce premature senescence in DP due to persistent an-
drogen receptor activation. The balding DP cells not
only lose the ability to promote HFSC proliferation but
also produce inhibitory factors that suppress HFSCs and
disrupt keratinocyte proliferation [66—69]. For example,
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Wnt signaling is critical for anagen entry and anagen
progression [17, 40]. Dkk1, a negative regulator of Wnt
signaling, is overexpressed by balding DP cells [68]. In-
creased secretion of TGF-f1 from DP in catagen pro-
motes anagen-to-catagen transition [12, 70]. TGF-B1
production is upregulated in balding DP and can com-
promise keratinocyte proliferation [69]. Additionally,
balding DP cells also produce higher inflammatory cyto-
kines, such as IL-6 [66, 67, 71]. IL-6 not only inhibits
anagen entry but also disrupts normal anagen progres-
sion [66, 67, 71]. As a key mesenchymal signaling com-
ponent in HFSC niche, targeted restoration of the
normal signaling functions of DP cells can be an import-
ant strategy for the treatment of alopecia.

Currently, the most effective treatment for androge-
netic alopecia is to suppress local dihydrotestosterone
production by inhibiting 5-a-reductases. Finasteride and
dutasteride are 5a-reductase inhibitors with different
specificity and potency [72, 73]. Finasteride mainly in-
hibits the type-II 5a-reductase, the main 5a-reductase
subtype in HFs, while dutasteride suppresses both type-I
and type-II 5a-reductases. Long-term treatment with fi-
nasteride or dutasteride promotes hair growth in pa-
tients with androgenetic alopecia [74, 75]. Another
FDA-approved medication for treating baldness is min-
oxidil [76, 77]. Minoxidil is a potassium channel opener
originally designed for the treatment of hypertension
[78]. Though the mechanisms are still unclear, it is spec-
ulated to promote hair growth through its effects on
blood vessels or potassium channels [79].

Mast cells, regulatory T cells, dendritic epidermal T cells
The HF maintains its own distinctive immune system,
and the interplay between HFs with immune cells en-
sures proper hair growth and protection against auto-
immunity [30, 35, 80, 81]. The immune cells, including
macrophages, mast cells, and T cells, modulate the activ-
ity of HESCs (Fig. 2) [30-32, 35]. Mast cells are found in
the perifollicular compartment of the HF [80]. While the
role of mast cells in HFSC activation and differentiation
is still unclear, histochemical and ultrastructural analysis
in the murine skin showed a high level of degranulation
during late telogen to early anagen transition and late
anagen to early catagen transition [32, 82]. Several mole-
cules secreted by mast cells could contribute to HF turn-
over, including histamine and serotonin which promote
epidermal keratinocyte proliferation in situ [83]. Mast
cell activity is also suspected to contribute to hair loss
disorders, such as androgenic alopecia and cicatricial
alopecia [84—86].

Regulatory T cells (Tregs) have been shown to reside
in the HFSC epithelium and are in close contact with
HFSCs [31]. Tregs can augment HFSC proliferation and
differentiation following hair plucking injury through
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Jaggedl (Jagl, 31]. The roles of Langerhans cells and
dendritic epidermal T cells (DETC; y§ T cells), which
are skin-resident antigen presenting cells and T cells
respectively, in modulating HFSC activities are less
defined [80]. Langerhans cells and DETCs are found
in the outer root sheath of HFs [80]. The roles of
DETCs on HFSCs have been reported in the context
of wound healing. Activated DETCs not only stimu-
late epidermal stem cell proliferation to accelerate
wound healing [87], but also favorably promote HFSC
activation for hair regrowth [88].

Macrophages for signaling and for injury- and force-
sensing
Physiologically, clusters of skin-resident macrophages
can be found in the perifollicular compartment and
have been implicated in the regulation of hair cycles
[30, 89]. The number of skin-resident CD11b*F4/
80"Grl™ macrophages decreases due to apoptosis
prior to the onset of anagen [30]. Upon their apop-
tosis, they release stimulatory factors, such as Wnt7b
and Wnt10a, which promote HFSC activation and dif-
ferentiation [30]. More recently, it was reported that
a different subset of TREM2" dermal macrophages
(trichophages) have an inhibitory effect on hair
growth [29]. This study stemmed from the discovery
that inhibition of JAK-STAT signaling promoted hair
growth via disrupting the maintenance of HFSC qui-
escence [90]. Mechanistically, oncostatin M acts up-
stream of JAK-STAT5 signaling to maintain HFSC
quiescence and oncostatin M is produced by TREM2*
macrophages [29]. Depletion of this specific subset of
macrophages leads to premature anagen entry [29].
Macrophages also exhibit other functions, including
the sensing of skin injury and mechanical force. Wound-
ing promotes premature anagen entry in skin [44, 45].
When skin is wounded, macrophages are recruited and
activated through the apoptosis signal-regulating kinase
1 (ASK1) [45]. Injury to HFs by hair plucking is also a
potent stimulation to HFSCs. Injured by hair plucking,
HFs recruit macrophages via the release of CCL2 [35].
TNF-a released by activated macrophages activates
HEFSCs by inducing AKT-dependent B-catenin accumu-
lation [91]. Therefore, macrophages here capacitate the
HFSC niche to sense the injuries to HFs or injuries to
the surrounding skin to mount a regenerative attempt
for skin protection. Additionally, macrophages also me-
diate the sensing of mechanical cues. Stretching skin can
polarizes macrophages toward a M2 phenotype [92].
Pro-regenerative M2 macrophages stimulate hair regen-
eration via paracrine secretion of IGF and HGF. This
demonstrates a mechanical force-macrophage axis in the
regulation of tissue regeneration. Since there are mul-
tiple populations of macrophages within skin, each with
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distinct roles in the modulation of HFSC activation and
differentiation, targeting macrophages can be a future
direction for the management of hair loss.

Influx of auto-reacting T-cells into HFSC niche disrupts
hair growth in alopecia areata and lichen planopilaris
Proper HF cycling is strongly dependent on the homeosta-
sis in the maintenance of HFSCs as well as intact immune
privilege [81]. Collapse of immune privilege as a result of
environmental factors or genetic predisposition puts HFs
in risk of immune/inflammatory attack [81, 93, 94]. An ac-
tive immune response with the secretion of inflammatory
cytokines such as interferon-y and TNF-a can certainly
disrupt proper maintenance of HFSCs, leading to alopecia
[94, 95]. These cytokines are secreted in abundance by
lymphocytes that are not usually present in the physio-
logical state, including CD4 and CD8 T cells (aff T cells)
that surround or infiltrate the HF [94, 96].

One of the most common immunity-mediated alo-
pecia is alopecia areata. Alopecia areata is an auto-
immune form of hair loss that may be patchy on the
scalp or progress into total body hair loss [97]. Alo-
pecia areata is reversible, indicating that HFSCs are
not lost during autoimmune/inflammatory attacks
[97]. However, the exact etiopathogenesis of alopecia
areata has not been completely elucidated. The devel-
opment of alopecia areata is associated with the col-
lapse of HF immune privilege which subsequently
increases antigen presentation to surveying T cells
that recognize HF epithelial and/or melanocyte-
associated antigens as foreign, and mount auto-
immune responses against HFs [93, 97-100]. There
are ongoing investigations trying to identify the exact
HF antigen and antigen-specific T cells involved in
the onset of alopecia areata [99, 101]. The auto-
immune attack does not kill HFSCs specifically, but,
instead, the lower transient portion of anagen HFs
[97]. Since HFSCs are preserved, removal of these
pathogenic T cells from HFSC niche restores hair
growth. Due to the wide variation of clinical presenta-
tion, such as numbers and extent of lesions, age of
onset, duration of disease persistence, and unpredict-
able responses to treatment, there is still a lack of
universal guidelines for the treatment of alopecia
areata. Topical or intralesional steroids are favored in
patients with limited diseases and topical minoxidil
can be employed as an adjuvant therapy [102-104].
In patients with extensive hair loss, systemic steroids
and other immunosuppressants, such as methotrexate,
can be considered. Additionally, immunotherapy with
repeated topical application of contact sensitizers,
such as diphenylcyclopropenone (DPCP), has also
been employed in patients with extensive hair loss
[102, 105, 106].
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Dysregulation of Tregs have also been suggested to be
associated with the collapse of HF immune privilege in
alopecia areata [31, 107, 108]. A defect or lack of Tregs
could lead to unchecked autoimmune attack on HF cells
[108]. Improvement of alopecia areata was also reported
(hair regrowth and reduction of CD4 and CD8 T cells)
by treating the patients with low-dose IL2 to promote
recruitment of Tregs into the skin [109].

Recently, it was shown that a population of CD8"/
NKG2D" T cells is necessary and sufficient for the de-
velopment of alopecia areata [107, 110, 111]. The IFN-y
response and several y-chain (yc) cytokines are signifi-
cantly upregulated in alopecia areata skin which can ac-
tivate cytotoxic CD8"/NKG2D" T cell infiltration. Using
anti-INF-y antibody can efficiently block CD8*/NKG2D"*
T cell infiltration and prevent alopecia areata develop-
ment in the mouse model [110]. Through this research,
the authors identified a small molecule inhibitor that
can effectively block JAK-STAT signaling important for
CD8"/NKG2D" T cell function and reverse alopecia
areata in both the mouse model and human patients
[110]. This research subsequently led to two successful
clinical trials repurposing FDA-approved JAK inhibitors,
ruxolitinib (JAK1/2 specific) and tofacitinib (pan-JAK),
to treat moderate to severe alopecia areata [112, 113].
Because of this, more clinical trials have started with the
aim to optimize treatment of alopecia areata with JAK-
specific inhibitors and different routes of administration
[114]. As described above, inhibiting JAK-STAT signal-
ing may have a direct impact on hair cycle. While alope-
cia areata-affected mice were treated, it was observed
that the mice grew fuller hair. When the treatment was
applied to wild-type mice at telogen, the mice entered
anagen faster and grew fuller and darker hair [90]. These
observations implicate a dual role of JAK inhibitors in
alopecia areata by inhibiting CD8"/NKG2D" T cells and
promoting HFSC proliferation or differentiation.

Hair loss in lichen planopilaris, also a chronic inflam-
matory disease of HFs, is irreversible with a final scar-
ring change [94, 115]. Lichen planopilaris usually runs a
slowly progressive course, presenting with single or mul-
tiple patches of perifollicular erythema, scaling, follicular
hyperkeratosis and eventual loss of HFs [116]. In con-
trast to alopecia areata in which cytotoxic T cells target
the hair bulb, lichen planopilaris is characterized by
Thl-biased cytotoxic T cell infiltration around the bulge
region where HFSCs reside. It is postulated that a select-
ive collapse of immune privilege in the HFSC niche, pos-
sibly triggered by interferon-y, contributes to the
pathogenesis of lichen planopilaris [94]. Chronic niche
inflammation might deplete HFSCs by directly inducing
HEFSC apoptosis or indirectly altering the niche environ-
ment to a state unfavorable for the maintenance of
HFSCs [94, 117]. Depletion of HFSCs leads to loss of
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entire follicular structures. Therapeutically, there is also
a lack of consensus for the treatment of this disease.
Current treatment mainly relies on immunosuppres-
sants, such as topical, intralesional or systemic steroids,
hydroxychloroquine, cyclosporine and mycophenolate
mofetil [116, 118]. Prevention of the collapse of immune
privilege of the HFSC niche can be a future direction for
the treatment and prevention of this disease [94].

Signals from adipose tissue and nutritional sensing
Dermal white adipose tissue is a highly dynamic tissue
in skin and the thickness oscillates during hair cycles
[27, 119-121]. The dermal white adipose tissue becomes
thickened from telogen to anagen and then decreases in
thickness from anagen to catagen transition [120]. The
increase of dermal white adipose tissue thickness during
telogen to anagen transition is mainly contributed by
proliferation and differentiation of preadipocytes and
hypertrophy of maturate adipocytes [27, 122]. The mat-
uration of preadipocytes with increased adipogenesis is
dependent on epidermal Wnt/B-catenin and sonic
hedgehog (SHH) signaling [123, 124]. Epidermal Wnt/j3-
catenin signaling is a signaling cascade initiator that is
required for dermal adipocyte differentiation [123]. After
anagen is initiated, the increased production of SHH by
HF transit-amplifying cells promotes adipogenesis in
preadipocytes via peroxisome proliferator-activated re-
ceptor y [124]. How the dermal white adipose tissue
thickness is reduced during anagen to catagen transition
is still unclear. Since no apoptosis of mature adipocytes
is detected [27], it is possible that adipocytes might
undergo dedifferentiation through a lipolytic or autopha-
gic process [121]. During anagen to catagen transition,
HFs express higher TGF-f1, which suppresses prolifera-
tion and increases apoptosis in HFs [125]. HFs might in-
duce adipocyte dedifferentiation through TGF-p1
signaling in catagen [126].

Adipose tissue has been shown to exhibit non-metabolic
functions [127]. In bone marrow, hematopoiesis and
hematopoietic stem cell activity are suppressed when
more mature adipocytes are present [128, 129]. In skin,
adipocytes and preadipocytes show opposite roles in the
regulation of HFSC activity during the physiological hair
cycling (Fig. 2) [127]. Immediately after HFSCs are acti-
vated to initiate anagen growth, mature adipocytes release
BMP proteins to suppress the activity of HFSCs [28]. This
might prevent overactivation of HFSCs by consolidating
quiescence. On the other hand, during the transition from
telogen to anagen, preadipocytes stimulate HFSCs
through paracrine secretion of PDGF [27]. The reciprocal
signaling and intimate interaction between HFs and adi-
pose tissue highlight the interdependence between HFSCs
and its niche cells to maintain appropriate tissue dynamics
in skin.
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In addition to passive fat storage, adipose tissue also
exhibits other non-metabolic functions [127]. During
bacterial invasion, cutaneous adipocytes undergo re-
active adipogenesis to increase the production of anti-
microbial peptides against bacteria [130]. We specu-
late that adipocytes in the HFSC niche might play a
role in sensing environmental changes, such systemic
nutritional states or local skin injury. Hair growth is
affected by the systemic nutritional states [131]. In
human, impaired hair growth is observed in individ-
uals with protein/energy malnutrition [132]. HFs can
be arrested in prolonged telogen during experimental
calorie restriction [5, 133]. How HFSCs detect the
systemic nutritional states is unclear. One possibility
is that HFSCs can directly sense the systemic nutri-
tional changes. mTOR signaling is a key pathway for
metabolic response to the nutritional state [134], and
upregulated mTOR signaling is essential for HFSC ac-
tivation in the early anagen and regeneration follow-
ing ionizing radiation injury [135, 136]. HFSCs might
tune its mTOR signaling according to the changes of
systemic nutrition. The other possibility is that the
nutritional states are detected by niche cells, such as
adipocytes. In the intestine, calorie restriction reduces
mTOR activity in the niche Paneth cells [137]. Subse-
quently, Paneth cells signal to intestinal SCs to in-
crease intestinal SC numbers. Clinical observation
suggests that obesity might negatively affect hair
growth [138]. Adipocytes might regulate HFSCs
through the release of adipokines according the sys-
temic nutritional states [127].

Signals from sensory nerves and message-relaying
function of sympathetic nerves to activate HFSCs via an
ipRGC-SCN-sympathetic circuit

HF is a highly innervated sensory organ. The non-
encapsulated endings of sensory nerve surround HFs for
the mechanosensory function [139, 140]. In HFs, sensory
nerves innervate upper bulge to form the sensory pilo-
neural niche (Fig. 2) [139, 140]. Through secreting SHH
ligands, this sensory piloneural niche maintains higher
hedgehog signaling activity in the HFSCs of the upper
bulge region [26]. Although this sensory piloneural niche
does not significantly affect hair regeneration, the ability
of the upper bulge cells to repair epidermal injury is
dependent on the sustained upregulation of hedgehog
signaling [26].

The piloerection function of HFs relies on the ordered
integration of sympathetic nerves and arrector bpili
muscle around HFs. Sympathetic nerves not only
densely surround arrector pili muscle but also loop
around HFSCs [34, 140]. It is intriguing whether sympa-
thetic nerves around the HFs have dual roles in both
piloerection (goosebumps) and HFSC regulation. In the
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bone marrow, sympathetic nerves control multiple func-
tions of hematopoietic SCs, including their mobilization,
maintenance of young functional signature and regener-
ation from chemotherapeutic injury [141-143]. Sympa-
thetic nerves also transduce the central circadian
rhythms to hematopoietic SCs for their daily rhythmic
oscillating egress from the bone marrow [143-145].
Clinical observation showed that hypertrichosis in the
form of “hemitrichosis” can be a result of sympathetic
nerve hyperactivity due to thoracic surgical injury [145],
suggesting a stimulating effect of sympathetic nerves to
hair growth. Early experiments suggested that sympa-
thetic nerves might promote anagen progression after
HFSCs are activated in the physiological state [140]. We
found that light can stimulate hair growth not only dir-
ectly through cutaneous irradiation but also indirectly
through the eyes [34, 43, 146]. Light irradiation to mur-
ine eyes, a danger signal to nocturnal animals, is de-
tected by the non-conventional photoreceptor
melanopsin of intrinsically photosensitive retinal gan-
glion cells (ipRGCs) (Fig. 4) [34]. Light signals are trans-
mitted via ipRGCs to the suprachiasmatic nucleus to
activate the systemic sympathetic system. A high sympa-
thetic tone increases local norepinephrine release which
subsequently upregulates hedgehog signaling in HFSCs,
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promoting their activation. Therefore, sympathetic
nerves are the niche gateway for internal HFSCs to com-
municate with the external world by relaying the exter-
nal light signals to the HFSC niche. Therapeutically,
stimulating adrenergic receptors of HFSCs can be a way
to promote hair growth.

Conclusion

Since cyclic hair regeneration can be easily observed,
the HF has become a favored model to explore how
tissue stem cell activities are regulated. Accumulative
results have helped to identify various component
cells of the HFSC niche and to elucidate how these
niche cells influence HFSCs. The integration of func-
tional distinctive niche modules, such as signaling,
sensing and message-relaying modules, has added the
complexity of HFSC regulation and also allows HFSCs
to interact with the local, systemic and external envi-
ronments to adapt their activity for tissue needs.
Pathological changes of the HFSC niche can lead to
dysregulated hair growth or HFSC loss in diseased
states. Studying how HFSCs are regulated by the
niche in the physiological and diseased states can un-
cover new therapeutic targets to prevent hair loss as
well as to promote hair regeneration.

Activation
of HFSCs

Upregulation of

hedgehog signaling

D,

ipRGC
N .
— @y Sympathetic nerve
S Symp:

® Norepinephrine

Fig. 4 Sympathetic nerves relay external light signals to HFSCs. Sympathetic nerves are a gateway for the communication between internal HFSC
niche and external environment. Intense light irradiation to eyes promotes HFSC activation through an ipRGC-SCN-sympathetic nervous circuit.
Increased norepinephrine release from cutaneous sympathetic nerves facilitates HFSC activation by upregulating hedgehog signaling
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