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Summary

 

Autoimmune diseases, like rheumatoid arthritis, result from a dysregulation of the immune re-
sponse culminating in hyperactivation of effector cells leading to immune-mediated injury. To
maintain an appropriate immune response and prevent the emergence of autoimmune disease,
activation signals must be regulated by inhibitory pathways. Biochemical and genetic studies
indicate that the type IIB low-affinity receptor for immunoglobulin (Ig)G (Fc

 

g

 

RIIB) inhibits
cellular activation triggered through antibody or immune complexes and may be an important
component in preventing the emergence of autoimmunity. To investigate the role of Fc

 

g

 

RIIB
in the development of type II collagen (CII)-induced arthritis (CIA), a model for rheumatoid
arthritis in humans, we have examined its contribution in determining the susceptibility to CIA
in the nonpermissive H-2

 

b

 

 haplotype. H-2

 

b

 

 mice immunized with bovine CII do not develop
appreciable disease. In contrast, immunization of the Fc

 

g

 

RIIB-deficient, H-2

 

b

 

 mice with bo-
vine CII induced CIA at an incidence of 42.2%. The maximal arthritis index of the Fc

 

g

 

RIIB-
deficient mice developing CIA (6.9 

 

6

 

 3.6) was comparable to that of DBA/1 mice (8.6 

 

6

 

1.9), an H-2

 

q

 

 strain susceptible for CIA induction. IgG1, IgG2a, and IgG2b antibody responses
against CII were elevated in the Fc

 

g

 

RIIB-deficient animals, especially in those mice showing
arthritis, but less pronounced than DBA/1 mice. Histological examinations of the arthritic
paws from Fc

 

g

 

RIIB-deficient mice revealed that cartilage was destroyed and bone was focally
eroded in association with marked lymphocyte and monocyte/macrophage infiltration, very
similar to the pathologic findings observed in DBA/1 mice. These results indicate that a non-
permissive H-2

 

b

 

 haplotype can be rendered permissive to CIA induction through deletion of
Fc

 

g

 

RIIB, suggesting that Fc

 

g

 

RIIB plays a critical role in suppressing the induction of CIA.
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T

 

he Fc receptors (FcRs) for Igs constitute a family of
hematopoietic cell surface molecules that include re-

ceptors which can either stimulate or inhibit cellular re-
sponses upon binding of antibody–antigen complexes (for
reviews, see references 1–6). Triggering the activation re-
ceptors, Fc

 

g

 

RI and III or Fc

 

e

 

RI elicits a variety of effector
functions, including phagocytosis (7–9), antibody-depen-
dent cell-mediated cytotoxicity (10–13), and the release of
inflammatory mediators (for reviews, see references 1 and

2). Analysis of FcR-deficient mice has revealed the central
roles these receptors play in the mechanism of initiating

 

type I, II, and III hypersensitivity reactions. In vivo,
the binding of antibody–antigen complexes to their cog-
nate FcRs is both necessary and sufficient to trigger ana-
phylaxis (11, 12, 14–16), autoimmune hemolytic anemia
and thrombocytopenia (13), the Arthus reaction (17–19),
and autoimmune glomerulonephritis (20). In addition, the
interaction of cytotoxic antitumor antibodies with FcRs is
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a necessary prerequisite for mediating the in vivo activity of
these molecules (21).

These activation responses are modulated by the type IIB
FcR for IgG (Fc

 

g

 

RIIB),

 

1

 

 the most widely expressed FcR.
Fc

 

g

 

RIIB suppresses B cell, mast cell, and macrophage acti-
vation triggered by cross-linking B cell receptor (BCR) or
FcRs (22–25). Disruption of Fc

 

g

 

RIIB by gene targeting
resulted in mice with elevated Ig levels in response to both
thymus-dependent and thymus-independent antigens, en-
hanced passive cutaneous anaphylaxis reaction (26), and
enhanced immune complex (IC)-mediated alveolitis (25).
These studies indicate that Fc

 

g

 

RIIB physiologically acts as
a negative regulator of IC-triggered activation (26) and
may function in vivo to suppress autoimmunity by regulat-
ing both B cell responses and effector cell activation.

Collagen-induced arthritis (CIA), a model for rheuma-
toid arthritis (RA) in humans, is a chronic inflammatory ar-
thropathy that can be induced in susceptible rodents by im-
munization with native type II collagen (CII [27–31]). The
histopathology of this arthritis is characterized by a prolifer-
ative synovitis that erodes the adjacent cartilage, ultimately
producing articular injury and ankylosis. Detailed investiga-
tions of the immune responses to CII have been under-
taken to determine the precise sequence of events leading
to CIA. The development of arthritis is thought to be asso-
ciated with the synergistic effect of high levels of cell-medi-
ated and humoral immunity to CII (27, 29, 30). CIA and
RA are clearly associated with the MHC region (32), and
in mice only H-2

 

q

 

 and H-2

 

r

 

 haplotypes are susceptible to
CIA (33, 34). The responsible gene in the H-2

 

q

 

 haplotype
has been isolated and codes for the A

 

q

 

 class II molecule
(35), which binds peptides derived from CII, thus leading
to T cell activation which is of crucial importance for de-
velopment of arthritis in this model (36, 37). In addition, a
strong B cell response is activated in CIA, producing IgG
directed towards CII-specific structures (28, 38). There is
evidence that these antibodies are directly pathogenic, as
shown by transfer experiments (39, 40), as well as synergiz-
ing with activated T cells to promote the development of
arthritis (41, 42). B cell–deficient mice on a susceptible
background do not develop CIA, indicating that B cells
play a crucial role for development of CIA (43).

In this study, we demonstrate that Fc

 

g

 

RIIB-deficient
(Fc

 

g

 

RIIB

 

2

 

/

 

2

 

) mice on a nonpermissive background (H-2

 

b

 

)
become susceptible to CIA induction upon immunization
with CII. The histopathological characteristics of the ar-
thritic paws were similar to those observed in CIA-suscep-
tible

 

 

 

DBA/1 mice (H-2

 

q

 

). Fc

 

g

 

RIIB

 

2

 

/

 

2

 

 animals show aug-
mented anti-CII IgG production, as well as elevated release
of proinflammatory mediators by macrophages stimulated
with IgG ICs, suggesting a mechanism for CIA induction
in a nonpermissive background. These results suggest that
Fc

 

g

 

RIIB normally suppresses the emergence of autoim-

mune disease, and its modulation could be a factor in de-
termining susceptibility and disease severity in the patho-
genesis of RA.

 

Materials and Methods

 

Animals.

 

Fc

 

g

 

RIIB

 

2

 

/

 

2

 

 mice were generated in the 129/SvJ
(H-2

 

b

 

) and C57BL/6 (H-2

 

b

 

) hybrid background as described pre-
viously (26). These mice and their wild-type counterparts (129/
BL6 hybrids) were kept and bred in the Animal Unit of The
Institute of Development, Aging and Cancer, an environmentally
controlled and specific pathogen–free facility. DBA/1 and C57BL/6
mice were obtained from Charles River Japan, Inc. All experi-
ments were performed on 8–12-wk-old, age-matched male mice.

 

Induction of Arthritis.

 

Bovine CII was obtained from Collagen
Gijutsu-kenshukai (Tokyo, Japan) and dissolved at a concentra-
tion of 4 mg/ml in 0.02 M Tris/0.15 M NaCl (pH 8.0) at 4

 

8

 

C.
Mice were immunized at the tail base with 200 

 

m

 

g of CII emulsi-
fied in CFA containing 

 

Mycobacterium tuberculosis

 

 strain H

 

37

 

Rv
(Wako Pure Chemical Industries Ltd.) and boosted at the same
location with 200 

 

m

 

g CII plus IFA (Wako Pure Chemical Indus-
tries Ltd.) 21 and 42 d later. The mice were observed for the de-
velopment of arthritis starting from day 16 after immunization
and bled periodically for anti-CII antibody determination. The
clinical severity of arthritis was quantified according to the fol-
lowing scoring system: 0,

 

 

 

no change; 1,

 

 

 

swelling in one joint
(digitus, wrist, or ankle); 2,

 

 

 

swelling in more than one joint or
mild inflammation of paws; 3,

 

 

 

severe swelling of the entire paw
and/or ankylosis. Each paw was graded, so that each mouse could
achieve a maximum score of 12. At the end of the experiment,
joints were prepared for histopathology. Joints were examined for
erosions, pannus formation, and synovium infiltrates.

 

Assay for Detection of Serum Anti-CII Antibodies.

 

Serum anti-
body titers were measured by modification of an ELISA assay de-
scribed previously (44). In brief, a 96-well microplate (Falcon;
Becton Dickinson Labware) was coated with 50 

 

m

 

l/well of a 20

 

m

 

g/ml solution of CII in PBS at 4

 

8

 

C overnight, washed three
times with PBS containing 0.05% Tween 20 and 0.1% BSA, and
then blocked with 250 

 

m

 

l/well of PBS containing 0.2% BSA at
4

 

8

 

C overnight. The diluted serum (1:400–20,000) was added at
50 

 

m

 

l/well and allowed to react at 4

 

8

 

C overnight. The wells were
washed three times with PBS containing 0.05% Tween 20, incu-
bated with 50 

 

m

 

l of a 1:200 dilution of goat anti–mouse IgG1,
IgG2a, IgG2b, or IgM coupled to horseradish peroxidase (Sigma
Chemical Co.) at 4

 

8

 

C for 2 h, washed three times with PBS con-
taining 0.05% Tween 20, and developed at room temperature for
30 min with 0.1 ml of TrueBlue Peroxidase Substrate (Kirke-
gaard & Perry Labs). The OD

 

450

 

 was read using a microplate
reader (Biolumin 960; Molecular Dynamics).

 

Cytokine Production.

 

Mice were injected intraperitoneally
with 1 ml of 5% thioglycollate, and peritoneal exudate cells were
harvested 4 d later. The cells were suspended in DMEM supple-
mented with 10% heat-inactivated FCS, to a concentration of 10

 

6

 

cells/ml. The cells were plated in 24-well culture plates (Sum-
ilon; Sumitomo Bakelite Co., Tokyo, Japan) at 1 ml/well and in-
cubated for 1 h at 37

 

8

 

C in 95% air, 5% CO

 

2

 

. Nonadherent cells
were removed by rinsing the monolayers with PBS, and the puri-
fied macrophages were subjected to the determination of IL-1

 

a

 

release. SRBCs derivatized with TNP were coated with mouse
anti-TNP IgG1 (G1 in reference 44), and then used for the stim-
ulation of macrophages as described previously (12). For the anal-
ysis of IL-1

 

a

 

 production, the culture supernatant was collected
and cytokine production determined using an ELISA plate (En-

 

1

 

Abbreviations used in this paper:

 

 BCR, B cell receptor; CII, collagen type II;
CIA, collagen-induced arthritis; Fc

 

g

 

RI, Fc

 

g

 

RIIB, and Fc

 

g

 

RIII, type I
high-affinity Fc receptor for IgG, type IIB, and type III low-affinity recep-
tors for IgG, respectively; IC, immune complex; RA, rheumatoid arthritis.
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dogen, Inc.) according to the manufacturer. For the determina-
tion of cytokine production by lymph node cells, 11 d after CII
immunization single-cell suspensions from pooled inguinal and
popliteal lymph nodes from the immunized mice were made.
The cells (10

 

6

 

 cell/well) were cultured in 96-well plates (Falcon;
Becton Dickinson Labware) with heat-denatured CII (100 

 

m

 

g/
well). After 72 h, the supernatants were collected and subjected
to determination for IFN-

 

g

 

 production using an ELISA plate
(Endogen, Inc.) according to the manufacturer. As a control, cells
were stimulated with LPS (5 

 

m

 

g/ml, O111:B4; Sigma Chemical
Co.) and IFN-

 

g

 

 (100 U/ml; Biosource International).

 

Proliferation of Lymph Node Cells.

 

For cell proliferation assays,
male mice were immunized with 500 

 

m

 

g CII emulsified in CFA
intradermally in both hind footpads, the neck, and at the base of
the tail. Inguinal, popliteal, and axillary lymph nodes from the im-
munized mice were obtained 10 d after immunization. The tissue
was minced through sterile wire mesh, resulting in single cell sus-
pensions. Cells (5 

 

3 

 

10

 

5

 

/well) from immunized mice were cul-
tured in 96-well, flat-bottomed microplates (Falcon; Becton
Dickinson Labware) in the absence or presence of 5, 50, or 100

 

m

 

g/ml of CII at 37

 

8

 

C in 5% CO

 

2

 

 for 4 d. During the final 18 h
of culture, cells were pulsed with 0.5 

 

m

 

Ci of [

 

3

 

H]TdR. Cells
were harvested on glass fiber filters by using an automated sample
harvester (Packard Japan). The incorporated radioactivity was
measured with a scintillation spectrometer (Aloka Co. Ltd.). The
results of the [

 

3

 

H]TdR incorporation assay were expressed as
the mean cpm 

 

6

 

 SD of triplicate determinations from each of the
three lymph node cell preparations derived from different mice.

 

Histological Study.

 

The mice were killed with an overdose of
diethyl ether. Their arthritic paws were removed and fixed in
10% neutral buffered formalin. The tissues were decalcified in a
5% EDTA-2Na solution. The joints were then embedded in par-
affin. The specimens were cut into 6-

 

m

 

m sections and stained
with hematoxylin and eosin.

 

Statistical Analysis.

 

Statistical differences between groups for on-
set of arthritis, the arthritic index, the mean maximum arthritis score,
serum levels of antibodies, and T cell proliferation were calculated
using Student’s 

 

t

 

 test; differences in the frequency of arthritis were
calculated using Fisher’s test.

 

 P 

 

, 

 

0.05 was considered significant.

 

Results

FcgRIIB2/2 Mice in an H-2b Background Are Susceptible to
CIA. Immunization of DBA/1 mice (H-2q) with CII

results in typical and progressive polyarthritis in parallel
with the production of high levels of anticollagen antibody,
as described (27). Neither arthritis nor high levels of anti-
body are induced in BALB/c (H-2d), C3H/He (H-2k), or
C57BL/6 (H-2b) mice (27, 42). Many lines of evidence in-
dicate that CIA susceptibility is restricted to only two H-2
alleles, H-2q and H-2r (33, 34). Although the FcgRIIB2/2

mice were generated on H-2b background (25), a haplo-
type not susceptible to CIA induction, we set out to deter-
mine if deletion of this inhibitory receptor would convert a
nonsusceptible strain of mice into a susceptible one. Fc-
gRIIB-deficient male mice were immunized with CII/
CFA and then boosted with CII/IFA, and monitored for
the occurrence of arthritis in comparison to age and sex-
matched H-2b wild-type or DBA/1 mice. Three separate
experiments were conducted with similar results as summa-
rized in Table I. Fig. 1 shows the time course and severity
of CIA in one such experiment. FcgRIIB-deficient mice
develop arthritis with a time course and severity compara-
ble to DBA/1 mice when immunized with CII. Although
the incidence of arthritis in FcgRIIB-deficient mice was
lower than DBA/1 (42.2 vs. 95.2%), it was dramatically en-
hanced compared with wild-type H-2b mice (42.2 vs.
7.0%). In those mice that developed arthritis, the mean on-
set of disease for FcgRIIB2/2 mice was comparable to that
in DBA/1 controls (35.3 vs. 33.2). Similarly, the mean
maximal arthritic index of the mutant animals (6.9 6 3.6)
was also comparable to DBA/1 controls (8.6 6 1.9).

Histopathological Features of CIA in FcgRIIB2/2 Mice.
Histopathological features of the CIA induced in FcgRIIB2/2

mice were examined (Fig. 2). The joints of nonarthritic
wild-type mice appeared histologically normal, with no sig-
nificant inflammatory cell infiltration or cartilage–bone de-
struction (Fig. 2 D). In contrast, the arthritic lesions of the
FcgRIIB2/2 mice showed massive lymphocytic and mono-
cyte/macrophage infiltration associated with cartilage–bone
destruction (Fig. 2 E) similar to that observed in DBA/1 im-
munized animals (Fig. 2 F). Thus, the results obtained by
histopathologic examination of FcgRIIB2/2 mice immu-
nized with CII verified a destructive arthritis, which is quali-
tatively similar to the arthritis induced in DBA/1 mice.

 
Table I. Summary of the CIA Course in FcgRIIB2/2 Mice

Mice Incidence* (%) Onset ‡ Arthritic index‡ No. of arthritic paws* (%)

(d)
Wild-type 3/43 (7.0) 50.5 6 7.6 2.3 6 1.9 7/172 (4.1)
FcgRIIB2/2 19/45 (42.2) 35.3 6 12.5 6.9 6 3.6 48/180 (26.7)
DBA/1 40/42 (95.2) 33.2 6 8.6 8.6 6 1.9 113/168 (67.3)

Mice were immunized with CII in CFA as described in Materials and Methods and monitored for signs of arthritis. Data are given as number and
percentage of diseased mice for the incidence, as means 6 SD for onset and arthritic index, and as number and percentage of arthritic paws. Arthritic
indices are expressed as the maximal scores reached by each arthritic mouse during the course of CIA.
*Statistical analyses were performed using Fisher’s test: P , 0.001 between wild-type and FcgRIIB2/2 mice, and between FcgRIIB2/2 and DBA/1
mice.
‡Statistical analyses were performed using Student’s t test: P , 0.05 between wild-type and FcgRIIB2/2 mice; not significant between FcgRIIB2/2

and DBA/1 mice.
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Anti-CII Antibody Levels in CIA-induced FcgRIIB2/2

Mice. Antibodies specific for CII play a major role in the
pathogenesis of CIA (28, 38–40). We determined the col-
lagen-specific IgG1, IgG2a, IgG2b, and IgM antibody pro-
duction in the sera of FcgRIIB2/2 and DBA/1 immunized
mice. Data derived from sera taken periodically during the
experiment are presented in Fig. 3. The mean of all mice of
different groups is presented regardless of whether or not
the mice had developed arthritis (Fig. 3, A–D). As de-
scribed previously, FcgRIIB2/2 mice have higher antibody
levels in response to both thymic-dependent and -indepen-
dent antigens. As expected, FcgRIIB2/2 mice had higher

anti-CII antibody titers than those of wild-type mice for all
isotypes tested. However, these responses to CII were
lower than those observed in DBA/1 mice. The aug-
mented anti-CII IgG responses in arthritic FcgRIIB2/2

mice were more pronounced compared with those of non-
arthritic wild-type mice (Fig. 3, E–G). Therefore, this
enhanced antibody response to CII in the FcgRIIB2/2

mice could contribute to the emergence of CIA in this
nonpermissive strain.

Proliferative Response of Lymph Node Cells from CII-primed
FcgRIIB2/2 Mice. Since CIA is dependent on dysregula-
tion of both humoral and cell-mediated responses, we de-
termined whether the absence of FcgRIIB altered the phe-
notype of the cell-mediated immune response to CII.
Therefore, we compared the specific proliferative responses
and cytokine production of CII-primed lymph node cells
derived from FcgRIIB2/2, wild-type H-2b, and DBA/1
mice. As shown in Fig. 4, antigenic stimulation with CII
induced higher levels of proliferation in DBA/1 animals and
similar lower levels of specific proliferation in FcgRIIB2/2

and wild-type animals. Similar results were obtained when
IFN-g production was used as a measure of specific T
cell stimulation. These results indicate that disruption of
FcgRIIB does not appreciably modify the antigen-specific
T cell response in nonpermissive animals and is not likely
to account for the susceptibility of these animals to CIA.

IL-1a Production Is Enhanced in FcgRIIB2/2 Macrophages
Stimulated with IgG-opsonized Antigen. At later stages of
autoimmune arthritis, local synthesis of cytokines such as
IL-1, TNF, and other inflammatory mediators is likely to
be responsible for the progression from inflammation to a
destructive arthritis. Supporting this notion are studies
showing that anti-TNF antibodies or an IL-1 receptor an-
tagonist reduce cytokine production by synovium cells

Figure 1. Development of CIA in mice by disruption of FcgRIIB ex-
pression. Incidence of arthritis (A) and severity of clinical signs (B) in
FcgRIIB2/2 mice (d, n 5 16), wild-type H-2b mice of 129/B6 hybrid
background (e, n 5 13), and DBA/1 mice (h, n 5 11) after immuniza-
tion with CII in CFA as described in Materials and Methods. Results are
expressed as a percentage of arthritic mice with the arthritic index 5 (A)
and as the mean arthritic scores in each group on a given day during the
course of CIA (B). Representative data from three separate experiments
with similar results are shown.

Figure 2. Clinical and histo-
logic presentation of CIA in
FcgRIIB2/2 and DBA/1 mice.
(A–C) The appearance of a nor-
mal forepaw from a CII-immu-
nized wild-type mouse (A) con-
trasted with arthritic paws from
an FcgRIIB2/2 animal (B) and a
positive control DBA/1 mouse
(C). (D–F) Cross-sections of the
forefoot from a normal wild-type
mouse (D) compared with an ar-
thritic joint from FcgRIIB2/2 (E)
and DBA/1 animals (F). Original
magnifications: 350 (D), 380 (E),
380 (F). D illustrates normal carti-
lage–bone without inflammation,
whereas E and F show marked
mononuclear cell infiltration with
cartilage–bone destruction.
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from RA patients (45; for a review, see reference 31), and
ameliorated arthritis in DBA/1 mice (46, 47). In several
phases of joint inflammation, macrophages secrete che-
moattractants for polymorphonuclear cells and monocytes
(IL-6, IL-1, GM-CSF, monocyte chemoattractant protein
1, and macrophage inflammatory protein 1a) and upregu-
late integrins and vascular adhesion molecules through their
production of IL-1 and TNF-a (31). Deletion of FcgRIIB
decreases the threshold of IC necessary to trigger mast cell
and macrophage activation in vitro and in vivo (25) and
could contribute to the development of CIA in nonsuscep-
tible H-2 backgrounds by either lowering threshold re-
sponse or increasing the total cytokine response. To deter-
mine if macrophages derived from FcgRIIB2/2 animals
showed enhanced release of inflammatory mediators upon
stimulation, we determined the levels of IL-1a produced
upon stimulation with IgG-opsonized SRBCs. As shown
in Fig. 5, thioglycollate-elicited peritoneal macrophages
from FcgRIIB2/2 mice released quantitatively more IL-1a

than those from wild-type controls and at levels compara-
ble to macrophages derived from DBA/1 mice. Thus, the
absence of FcgRIIB makes macrophages more sensitive to
stimulation with IgG ICs, and results in a higher level of se-
cretion of a proinflammatory mediator.

Discussion

Autoimmune disease results from the dysregulation of
the normal immune response, resulting in the loss of toler-
ance to self-antigens, augmented T and B cell responses,
and inappropriate activation of effector cell pathways. Dis-
ruption of the ability to generate T or B cell responses
blocks the development of autoimmunity and autoimmune
disease, while disruption of effector cell pathways attenu-
ates disease development. However, identification of the
genetic components that modulate these central pathways
which could confer susceptibility to the development of
disease has been stymied by the complex multigenic nature
of these disorders. It has been known for some time that
the MHC haplotype is one such susceptibility factor in
both human and animal systems. In the murine model of
RA, CIA, H-2 haplotype determines the susceptibility of
an animal to the development of disease. In this study, we
demonstrate that the inhibitory FcR for IgG, FcgRIIB, is
another susceptibility gene, functioning to suppress the de-
velopment of CIA in nonsusceptible hosts. Deletion of Fc-
gRIIB converts a nonsusceptible H-2b animal to one sus-

Figure 3. Concentration of
anti-CII antibodies in sera from
mice immunized with CII. The
mean 6 SD antibody levels of
IgG1 (A), IgG2a (B), IgG2b (C),
and IgM (D) subclasses, for all
animals, and the mean 6 SD of
antibody levels (E–H) of arthritic
DBA/1 (h) and FcgRIIB2/2

(d) mice and of nonarthritic
wild-type mice (e) are shown.
**P , 0.01.

Figure 4. Proliferation and IFN-g production of anticollagen lymph
node cells in response to CII. (A) Lymph node cells (5 3 105/well) were
stimulated in vitro with 5, 50, or 100 mg/ml heat-denatured CII (dCII)
for 4 d. Proliferative response was determined by uptake of [3H]TdR
pulsed for the final 18 h of culturing. (B) Each of the culture supernatants
at the end of the experiment in A was collected and assessed for the
IFN-g content by ELISA. **P , 0.01 compared with wild-type mice.

Figure 5. Secretion of IL-1a
by peritoneal macrophages stim-
ulated with IC. Thioglycollate-
elicited peritoneal macrophages
from FcgRIIB2/2 (black bars)
and wild-type (white bars) mice
and DBA/1 mice (stippled bars)
were stimulated with IgG1-
opsonized SRBCs as described in
Materials and Methods. The cul-
ture supernatant was analyzed for
the IL-1a content by ELISA.
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ceptible to the development of CIA. The mechanism by
which deletion of FcgRIIB results in susceptibility to CIA
involves augmentation of both antibody and effector cell
responses, supporting a threshold model for autoimmune
disease.

Association of arthritis with high levels of autoantibodies
has highlighted the importance of the anticollagen antibody
responses in inducing arthritis. Antiserum or purified IgG
antibody to CII can transfer arthritis to the susceptible
DBA/1 mice (39). This passively transferred arthritis exhib-
its the histopathologic characteristics of the early lesions of
disease induced through immunization of susceptible hosts.
The resulting disease is transient and less severe than the
disease induced in immunized DBA/1 mice, suggesting
that anti-CII antibodies alone are not sufficient to give rise
to the full range of lesions that characterize CIA. In con-
trast, a typical arthritis could be induced by adoptive trans-
fer of anti-CII antibody from arthritic DBA/1 mice to-
gether with T cells from DBA-1 mice presensitized with
heat-denatured collagen (42). These results indicate the
crucial importance of the synergy between humoral and
cell-mediated immunities in the pathogenesis of typical ar-
thritis (42).

A strong B cell response is activated in CIA, producing
IgG directed towards CII-specific structures. There is evi-
dence that these antibodies are pathogenic, as exemplified
by transfer experiments, and promote T cell–mediated ar-
thritis development. In contrast, levels of anti-CII autoanti-
bodies in serum do not correlate with CIA development, as
high levels can be detected in nondiseased mice. Thus, the
role of B cells in both the priming and effector phases of
the disease is unclear. Svensson et al. (43) reported that the
B cell–deficient mice of the CIA-susceptible strains B10.Q
and B10.RIII (H-2r) are resistant to CIA induction, al-
though the anti-CII T cell reactivity does not differ be-
tween B cell–deficient and B cell–sufficient mice, thus in-

dicating a crucial role for B cells in the induction of
arthritis. In the present report, we show that the anti-CII
IgG antibody response is enhanced in FcgRIIB2/2 mice,
especially in those mice exhibiting arthritis (Fig. 2), sug-
gesting that the relatively high anti-CII IgG level could be
one of the pathogenic factors, although unlikely by itself to
explain the induction of disease in the H-2b background.

RA is an autoimmune disease in which macrophages are
believed to play a central role (48, 49). We found that mac-
rophages from FcgRIIB2/2 mice were hyperresponsive to
stimulation with IgG ICs, leading to augmented release of a
proinflammatory mediator, IL–1a (Fig. 5), that is able to
upregulate integrins and vascular adhesion molecules. At
later stages of autoimmune arthritis, local synthesis of cy-
tokines is probably responsible for progression of inflamma-
tion to a destructive arthritis (46, 47). Thus, the heightened
sensitivity of macrophages to ICs is likely another patho-
genic factor making FcgRIIB2/2 mice more susceptible to
CIA than control mice.

The present study thus suggests that the development of
autoimmune disease represents the dysregulation of both
humoral and effector pathways. The contribution of each
component may be below a critical threshold to result in
the development of disease, as has been suggested by the
genetic studies in the NZB/NZW F1 autoimmune glomer-
ulonephritis model (20). FcgRIIB is a pleiotropic receptor,
functioning to downregulate both B cell and effector cell
responses. The finding that deletion of FcgRIIB converts
nonsusceptible H-2b mice into susceptible animals for CIA
suggests that a similar role may be found in other autoim-
mune disease models and in human susceptibility to au-
toimmune disease. Therefore, strategies that result in the
upregulation of this receptor and its signaling would repre-
sent potential new therapeutic approaches to the treatment
of autoimmune diseases.
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