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Abstract: Tremella fuciformis is a dimorphic fungus that can undertake a reversible transition between
yeast-like conidia and hyphal forms. The transformation mechanism and proteomic differences
between these two forms have not been reported. Therefore, in this study, we attempted to explore
the differential protein profiles of dikaryotic yeast-like conidia from fruiting bodies and mycelia (FB-
Mds) and dikaryotic mycelia (DM) by synthetically applying high-resolution MS1-based quantitative
data-independent acquisition (HRMS1-DIA) full proteomics and parallel reaction monitoring (PRM)
targeted proteomics. The results showed that a total of 5687 proteins were quantified, and 2220 of
them (39.01%) showed more than a two-fold change in expression. The functional analysis of the dif-
ferentially expressed proteins (DEPs) confirmed that the DEPs were mainly located in the membrane
and nucleus. The FBMds tended to express proteins involved in biosynthesis, metabolism, DNA
replication and transcription, and DNA damage repair. At the same time, DM exhibited an increased
expression of proteins involved in signal transduction mechanisms such as the mitogen-activated
protein kinase (MAPK) signaling pathway and the Ras signaling pathway. Further, phosphorylation
analysis confirmed the importance of the MAPK signaling pathway in T. fuciformis dimorphism, and
comparative metabolism analysis demonstrated the metabolic difference between FBMds and DM.
The information obtained in the present study will provide new insights into the difference between
FBMds and DM and lay a foundation for further research on the dimorphism formation mechanism
of T. fuciformis.

Keywords: proteomics; data-independent acquisition (DIA); parallel reaction monitoring (PRM);
MAPK signaling pathway; metabolism

1. Introduction

Tremella fuciformis is a typical dimorphic fungus with two cell types in its life history,
the yeast-like conidia form and the hyphal form, and it transforms under the influence of
the environment [1,2]. The fruiting body of T. fuciformis is rich in nutrients and has high
edible and medicinal value [3,4]. The lack of high-quality species and serious spawn de-
generation are the main problems in the industrial production of T. fuciformis, which bring
certain risks to breeding and production and cause huge economic losses. Therefore, find-
ing robust isolates is very important for the industrial production of T. fuciformis. However,
the dimorphism of T. fuciformis brings great difficulties to the breeding process, because it
is very difficult to form mycelia [5] when basidiospores transform into yeast-like conidia.
The dimorphism of T. fuciformis is an important theoretical basis for preserving, producing,
cultivating, and breeding. At present, the reports on the dimorphism of T. fuciformis are
mainly focused on the effect of environmental factors and phenotypic characteristics. Pre-
vious studies showed that the nitrogen source, carbon source, carbon/nitrogen ratio, pH
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value, temperature, culture time, and extracellular fluid of Cinnamomum cinerea all impacted
the transformation from yeast-like conidia to hypha, and that multicarbon and multinitro-
gen sources and minerals such as phosphorus can also promote this transformation [6,7].
According to Zhu’s research, Tremella polysaccharide (TPS) from dikaryotic yeast-like
conidia from fruiting bodies and mycelia (FBMds) and dikaryotic mycelia (DM) was mainly
composed of xylose, mannose, glucose, and galactose. Still, the proportion of the sugar
spectrum was different in two cell forms [8]. Some papers have also explored T. fuciformis
dimorphism at the protein level. Isozyme electrophoresis showed differential expressions
in esterase isozymes, polyphenol oxidase isozymes, and peroxidase isozymes produced
by FBMds and DM [1]. TrGpa1 was also shown to be involved in the dimorphism of T. fu-
ciformis and promote pseudohyphal growth [9]. There are few reports on the proteomics
analysis of T. fuciformis dimorphism, and the dimorphism mechanism is still unknown.
Notably, the dimorphism research involving other fungi has focused on proteogenomics
and signaling pathways for several years. Researchers have found that many signaling
pathways are involved in fungus dimorphism, including the mitogen-activated protein
kinase (MAPK) signaling pathway, the cAMP–protein kinase A (cAMP–PKA) pathway, the
target of rapamycin (TOR) pathway, the Rim101 pathway, and the Ca2+/calcineurin path-
ways [4,10–13]. Although much fruitful work has been carried out on fungal dimorphism,
the signaling pathways in different fungi and the upstream and downstream components
in the signaling pathways are still worth exploring. The expected results can be used as a
reference for studying the dimorphism of T. fuciformis.

Differential proteomics has become a powerful tool for investigating cellular responses
to various events and discovering biomarkers of biological processes. Over the past few
decades, several data-dependent acquisition (DDA) based quantitative strategies such as 2D
gel MS, isotope labeling, metabolic labeling, and label-free quantification have been applied
for differential purposes. However, some drawbacks of these traditional approaches include
quantifying differentially expressed proteins (DEPs), identifying low-abundance proteins,
and isobaric interference [14–16]. Since the rise of sequential window acquisition of all
theoretical mass spectra (SWATH-MS) as an emerging strategy with the advantages of an un-
biased scan, high throughput, and high reproducibility, data-independent acquisition (DIA)
has become a popular quantitative proteomics method applied to personalized medicine,
biomarker research, drug screens, genetic association studies, and systems biology [17].
As a new strategy of DIA, high-resolution MS1-based quantitative data-independent ac-
quisition (HRMS1-DIA) was developed from the traditional DIA method in the past two
years. Compared with the traditional DIA method based on production quantification,
HRMS1-DIA significantly improved the quantity and accuracy of protein quantification
through its use of ultra-high-resolution primary full scan and MS1 quantification [18].

To explore the differential expression of proteins and find the potential underlying
mechanism of T. fuciformis dimorphism, HRMS1-DIA-based proteomics technology was
used to analyze the total proteins of FBMds and DM, followed by the bioinformatics
analysis of DEPs. Parallel reaction monitoring (PRM) targeted proteomics and comparative
metabolism were also used to confirm the predicted changes in the bioinformatics analysis.
The results of our study will provide an omic insight into the dimorphism of T. fuciformis.

2. Materials and Methods
2.1. Fungus Strains and Culture Conditions

The wild-type strain T. fuciformis TWW01-AX was isolated from rotten wood (Anxi
County, Quanzhou, China) by our laboratory and stored on agar slant at 4 ◦C. FBMds and
DM were separately cultured on potato dextrose agar (PDA) solid medium covered with
aseptic cellophane and cultivated in a constant-temperature incubator at 25 ◦C for 20 days.
All reagents and chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA).
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2.2. Protein Extraction, Digestion, and Peptide Fractions

Cell pellets were crushed into powder in liquid nitrogen, and 1 g powder was washed
in 5 mL precooled TCA/acetone (10% trichloroacetic acid in acetone, precooled to −20 ◦C)
twice. One milliliter of protein extraction buffer (2% volume of β-mercaptoethanol, 85%
weight of phenol in ddH2O) was added to the powder, the extraction step was repeated
3 times, and the supernatant was combined. Subsequently, 5 times the volume of pre-
cooled methanol was added to the supernatant, and the mixture was precipitated overnight
at −20 ◦C. The protein pellets were dissolved in lysis buffer (8 M urea, 100 mM Tris-
HCl, pH 8.0, 1× protease inhibitor cocktail) and then measured by the BCA assay (Ther-
moFisher Scientific, Waltham, MA, USA). Protein digestion was performed with filter-
aided sample preparation (FASP) method, as previously described in [19]. Briefly, lysates
were loaded onto spin filter columns (Nanosep centrifugal devices with Omega mem-
brane, 30 kDa MWCO; Pall, NY, USA) and reduced by DTT, followed by alkylation with
iodoacetamide (IAA). Afterward, lysis buffer was exchanged by washing the membrane
3 times with 50 mM NH4HCO3. Proteins were digested overnight at 37 ◦C using trypsin
(Promega, WI, USA) at an enzyme-to-protein ratio of 1:50 (w/w). Following the manu-
facturer’s protocol, peptide desalting was performed with the Pierce C18 spin tips (Ther-
moFisher Scientific, Waltham, MA, USA). Otherwise, the mixed peptides for the DDA
library were preisolated to 10 fractions using high-pH reversed-phase HPLC (U3000 UH-
PLC System, ThermoFisher Scientific, Waltham, MA, USA), as previously described in [20].
Briefly, the peptide mixture was dissolving in 20 mM ammonium formate, loaded onto a
reverse-phase column (Accucore C18 column, 2.1 mm × 150 mm, 1.9 µm; ThermoFisher
Scientific, Waltham, MA, USA), separated, and collected under a 30 min linear gradient
(from 5% ACN to 30% ACN, 20 mM ammonium formate, pH 10.0). The column flow rate
was maintained at 0.3 mL/min, and the column temperature was maintained at 30 ◦C.

2.3. HRMS1-DIA-Based LC–MS/MS

DDA was performed to build the spectral library. Briefly, 10 peptide fractions were in-
dividually loaded onto the omics high-resolution series monolithic capillary HPLC columns
(100 µM × 50 cm, KYOTO MONOTCHE) with a column temperature of 50 ◦C using the
EASY-nLC1000 chromatographic system (ThermoFisher Scientific, Waltham, MA, USA) at
a rate of 2.0 µL for 8 min. The peptides were subjected to a 120 min runtime elution at
600 nL/min using mobile phase A (0.1% formic acid in water) and phase B (0.1% formic
acid in acetonitrile) with the following gradients: 0–4 min, 4–7% B, 4–79 min, 7–20% B,
79–108 min, 20–30% B, 108–110 min, 30–90% B, 110–120 min, and 90% B. The electrospray
voltage of 2.2 kV versus the inlet of the Orbitrap Fusion Lumos (ThermoFisher Scientific,
Waltham, MA, USA) was used and the mass spectrometry parameters were, briefly, as
follows: (1) MS—scan range (m/z) = 350–1500, resolution = 60,000, AGC target = 4 × 105,
RF lens = 40%; (2) HCD-MS/MS—resolution = 30,000, AGC target = 5 × 104, collision en-
ergy = 32, maximum injection time = 120 m, isolation window = 1.6 Da.

For HRMS1-DIA analysis, the chromatographic condition was set as the same as
that of the DDA analysis, and the mass spectrometry parameters were set as previously
described in [18], with some modifications. Briefly, the full MS experiment included one
broadband scan acquired over m/z 350–1550 at a resolution of 120,000 with an AGC target
value of 4 × 105 and a maximum injection time of 50 ms. The MS/MS experiment included
20 scans/cycle (for a total of 60 scans) acquired at R =30,000 with an AGC target value of
2 × 105, a maximum injection time of 72 ms, and HCD energy 32%.

2.4. Parallel Reaction Monitoring (PRM) Target Proteomics

No fewer than 3 unique peptides (unmodified, no missing cleavages) were selected as
candidate proteins to perform PRM quantification. The chromatographic conditions were
similar to those in the HRMS1-DIA experiment. The parameters of Orbitrap Fusion Lumos
mass spectrometry were as follows: MS1 scan range was 400–1500 m/z, the resolution was
60 K, and AGC target was 4 × 105; MS2 acquisition used the target MS2 module to monitor
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the target m/z list (Table S3) with a resolution of 30 K, isolation window 1.6 Da, AGC target
5 × 104, maximum injection time 120 ms, HCD collision energy 35%, and retention time
windows of 8 min around the expected precursor detection time.

2.5. Data Processing and Statistical Analysis

To obtain a confidential and comprehensive spectral library, DDA raw data and
HRMS1-DIA raw data were both searched against the protein database by Spectronaut
15 (Biognosys AG, Switzerland) with default settings: carbamidomethyl (C) was fixed
modification, oxidation (M) was variable modification, tolerance was 20 ppm, and precursor
and protein false discovery rate (FDR) was 1%. Then, the HRMS1-DIA raw data underwent
identification and quantification according to the following parameters: q-value cut-off
applied for precursor and protein level was 1%, and decoy generation was set to mutate,
which is similar to scrambled but only applies a random number of AA position swamps
(min = 2, max = length/2). All selected precursors passing the filters were used for MS1
quantification. Interference peaks in the MS2 spectrum were removed, except for the three
least-interfering peaks. The top 3 filtered peptides that passed the 1% q-value cut-off were
used to calculate the major group quantities. The significance of log2-fold change values
was determined using the Student’s one-tailed t-test (p < 0.05).

The PRM raw data were loaded into Protein Discoverer 2.2 (ThermoFisher Scientific,
Waltham, MA, USA) to perform peptide identification, and the pdResult file containing
peptide spectra was read by Skyline 20.1.0 [21]. Skyline 20.1.0 built the translation list
and spectral library with a cut-off score >0.9; peptide length between 7 and 30 aa; and ion
type b, y, and p; three productions with a p-value greater than 0.8 were used for peptide
quantification and protein quantification.

2.6. Bioinformatics Analysis

Protein–protein interactions (PPIs) were analyzed by STRING online v11.5 [22] and
Cytoscape v3.8.2 [23] against the homology species. The protein sequences were individ-
ually annotated by Blast2GO version 5 [24] and KOBAS 3 [25]. Then, the ClusterProfile
package [26] was used to perform the gene ontology(GO) and Kyoto encyclopedia of genes
and genomes (KEGG) pathway enrichment of 2-fold DEPs.

2.7. Metabolomics Analysis

Metabolite extraction was performed as previously described in [27]. Briefly, 50 mg
freeze-dried cell pellets were added to 800 µL methanol. The mixture was ground with
TissueLyser II (Qiagen, Dusseldorf, Germany) at 65 Hz for 90 s and kept at −20 ◦C for
1 h, then centrifuged at 12,000× g for 15 min. The supernatant was injected into a U3000
liquid chromatography system coupled to an Orbitrap Fusion system (ThermoFisher
Scientific, Waltham, MA, USA) and an Accurose C18 column (150 mm × 0.21 mm × 1.9 µm,
ThermoFisher Scientific, Waltham, MA, USA) to separate the derivatives under a 20 min
gradient. Mass data were acquired under positive mode with the following parameters:
full scan range 70–1000 m/z; 60 K mass resolution; dd-MS scan isolation window 1.6 Da;
step collision energy 20%, 40%, 60%; 30 K mass resolution. Raw data were converted to
MzXML and MGF files using Proteowizard software (version 3.0.6150), then Xcms software
(version 1.46.0) was used for peak extraction and online MetDIA was used for metabolite
identification and quantification [28,29].

3. Results
3.1. HRMS1-DIA Quantification of FBMds and DM

A while after the FBMds had been inoculated on the germination medium, hyphae
germinated around the colonies, and this phenomenon is called the dimorphism of T. fuci-
formis (Figure 1A). HRMS1-DIA and PRM were used to study the differential proteomics to
understand the difference in protein expression between the two cell forms. The workflow
chart is shown in Figure 1B.
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Figure 1. Proteomics data analysis of dikaryotic yeast-like conidia from fruiting bodies and mycelia
(FBMds) and dikaryotic mycelia (DM) of T. fuciformis TWW01-AX. (A) Phenotypes and microscopic
morphology were captured by stereo-scanning microscopy and a confocal microscope, respectively.
Bar = 10 µm. (B) The flow chart of the proteomics analysis work. (C) Cluster analysis of protein
expression intensity between three respective biological replicates of FBMds and DM: the color scale
of log2 (intensity) is shown in the left, and white is a missing value. (D) Statics of differentially
expressed proteins (DEPs) of DM/FBMds: red—the number of upregulated proteins in DM; blue—the
number of downregulated proteins in DM.

In the HRMS1-DIA proteomic analysis, a total of 5687 proteins were quantified in three
biological replicates with at least two matched unique peptides and FDR of 1% (Table S1).
The cluster analysis of the protein expression intensity of T. fuciformis in the two cell forms
is shown in Figure 1C, which illustrates the significant difference in protein expression
between FBMds and DM. As Figure 1D shows, 311 proteins were specifically expressed
in DM, and 335 proteins were expressed in FBMds; 2220 proteins (1135 downregulated
and 1085 upregulated proteins, see Table S2) had more than a two-fold changed expression
in DM.

In addition, both qualitative and quantitative repeatability of the experiments were
observed. About 87% of the proteins identified in the triplicated experiments were involved
in FBMds, and 93% in DM (Figure S1A,B). The correlation coefficients of the triplicated
experiments were all greater than 0.9 (Figure S1C), indicating that quantitative information
was obtained from the high-quality proteomics data.

3.2. Functional Analysis of DEPs of T. fuciformis Dimorphism

To better understand the biological characteristics of T. fuciformis dimorphism, GO
enrichment analysis of the 2-fold DEPs was conducted using the ClusterProfile package
in R studio v1.3. In the biological process (BP) classification, transmembrane transport,
proteolysis, signal transduction, protein phosphorylation, and small-GTPase-mediated
signal transduction were the five most enriched GO terms in upregulated proteins of DM. In
contrast, several biological processes (oxidation–reduction, metabolism, and transcription)
were the most enriched GO terms in downregulated proteins (Figure 2A,B). As shown in
Figure S2, molecular function (MF) terms such as signal transducer activity, phosphotrans-
ferase activity, and GTP binding were upregulated in DM. In contrast, sequence-specific
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DNA binding, catalytic activity, oxidoreductase activity, and RNA polymerase II transcrip-
tion factor activity were downregulated. Additionally, cellular component (CC) classifi-
cation showed that the DEPs were significantly enriched in the membrane and nucleus
(p < 0.05).
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Furthermore, KEGG enrichment analysis of the DEPs showed that many signaling
pathways had upregulated expression in DM, such as the MAPK signaling pathway
(protein count = 16, p-adjust = 6.63 × 10−7), the Ras signaling pathway (protein count = 11,
p-adjust = 1.11 × 10−4), the chemokine signaling pathway (protein count = 9,
p-adjust = 7.60 × 10−4), and the neurotrophin signaling pathway (protein count = 10,
p-adjust = 2.68 × 10−5). On the contrary, compared to FBMds, basic metabolism processes
such as the biosynthesis of amino acids (protein count = 37, p-adjust = 1.34 × 10−5), carbon
metabolism (protein count = 32, p-adjust = 4.28 × 10−4), pantothenate and CoA biosynthe-
sis (protein count = 11, p-adjust = 2.01 × 10−5), and base excision repair (protein count = 11,
p-adjust = 1.01 × 10−4) were downregulated. KEGG enrichment analysis showed that basic
synthesis and metabolism activities of DM were lower than those of FBMds, but some
signaling pathways were more active in DM (Figure 2C,D).

The STRING online and Cytoscape V3.8.3 software were used to further analyze the
PPI network based on the KEGG enrichment pathways. Interestingly, the significantly
enriched KEGG pathways formed a complex PPI network containing three subnetworks
(Figure 3). The downregulated proteins mainly formed two PPI subnetworks by interacting
with POL2, POL30, RAD51, KGD1, GLN1, and DM1. One subnetwork was related to
biosynthesis and metabolism, the other was related to DNA synthesis and repair and
homologous recombination. On the other hand, the upregulated proteins mainly forming
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signaling pathways also displayed a PPI subnetwork centering on the MAPK signaling
pathway. It is noteworthy that many mitogen-activated protein kinases such as Hog1
(AX989), Slt2 (AX1207), Fus3 (AX1574), and STE4 (AX7569) were in the center of the
network, acting as hub proteins.
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3.3. PRM Validation of HRMS1-DIA Proteomics Results

To validate the reliability of the HRMS1-DIA results, 50 proteins (241 related peptides,
Table S3) were selected based on the functional analysis to perform a PRM experiment. Of
the 50 proteins, 44 exhibited a similar expression tendency, compared to the HRMS1-DIA
results, except for AX9487, AX9163, AX9121, AX4761, and AX761 (Figure 4A, Table S4).
The R-square of the PRM and HRMS1-DIA quantification ratio was 0.63. Furthermore, the
validated proteins related to the MAPK signaling pathway, the Ras signaling pathway, the
cAMP signaling pathway, and carbon metabolism were positively validated in this PRM
experiment (Figure 4B), demonstrating that our proteomics data were considered reliable.
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3.4. MAPK Signaling Pathway in T. fuciformis

As the most enriched pathway in DM, a total of 28 proteins assigned to the MAPK
signaling pathway were quantified by proteomic data, more than half of which were
upregulated, while only 3 proteins were downexpressed. As shown in Figure 5A, many
mitogen-activated protein kinases such as Hog1, slt2, kss1, Ste20, Mkk1,2, Ste11, and Fus3
were upregulated in DM. In particular, four MAP kinases (Fus3, slt2, Hog1, and Kss1)
directly interacting with the transcription factor showed immense changes in expression.
Among the three downregulated proteins, two proteins (Paf1 and Sko1) belonged to
the downstream transcription factors of the MAP kinase. Because the MAPK signaling
pathway is a high-phosphorylation-level pathway, the phosphorylated proteins in the
MAPK signaling pathway were further checked. As Figure 5B shows, five phosphorylation
sites of four kinases (T171/Y173 of Hog1, S110 of Pkc1, S257 of Mkk1/2, and S517 of
Ste20) were upregulated in DM. The spectrum of phosphorylation peptides is shown in
Table S5. In summary, the differences in the proteins’ expression and the phosphorylation
levels of the MAPK signaling pathway revealed that this pathway was more active in DM
than FBMds.
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3.5. Comparative Metabolism of FBMds and DM

Considering that metabolic processes such as carbon metabolism and the biosynthesis
of amino acids differed between FBMds and DM in the proteomics analysis, six biological
replicates per cell type were used to perform a comparative metabolism analysis using
LC–MS/MS. Principal component analysis (PCA) confirmed the clear distinction between
FBMds and DM, with about 50% of the variance explained by factors 1 and 2 (Figure 6A),
and 22 downregulated metabolites and 6 upregulated metabolites in DM were identified
with a 2-fold change and a p < 0.05 cut-off (Figure 6B). Among the different regulated
metabolites, nine amino acids or intermediate products (phenylacetylglycine, tyrosine,
serine, leucine, histidinol phosphate, histidinol phosphate, and citrulline) were down-
regulated, and only (arginine) was upregulated in DM. Additionally, three metabolites
(isomaltose, maltotriose, and mannitol) related to carbohydrate digestion and absorption
were downregulated (Figure 6C,D). The comparative metabolism analysis indicated that
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amino acid metabolism and carbon metabolism in DM are less active than in FBMds, which
was consistent with the bioinformatics analysis of the HRMS1-DIA proteomics.
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4. Discussion

There have been many reports on the proteome of dimorphic fungi, especially pathogenic
fungi, but a proteomic analysis of T. fuciformis has not yet been reported. In this study, we
attempted to analyze the dimorphism of T. fuciformis based on the protein database predicted
by the genome sequence analysis of the wild-type strain T. fuciformis TWW01-AX. A total of
5687 proteins (55% of the protein database) and 38,965 peptides (about seven peptides per
protein) were quantified with good repeatability, which offered a high coverage regarding
both protein level and peptide level. Of the quantified proteins, 39% showed more than a
two-fold changed expression, indicating that the proteomics profile of T. fuciformis undergoes
a great change during the dimorphism process.

In this study, a large proportion of DEPs were quantified when yeast transformed
into hyphae. Arginine plays a central role in the germination and growth of mycelial
morphology in some dimorphous fungi. For example, the deletion of the ARG1 and ARG3
genes related to arginine synthesis can inhibit the transformation from yeast to mycelial
cells. In Zizania latifolia, arginine promotes MT-type mycelial growth and inhibits the
morphological transformation of T-type strains [30,31]. Under the action of arginase and
urea hydrolase, CO2 produced by arginine metabolism can also promote the transformation
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of yeast into mycelial cells in Candida albicans. Still, when the encoding gene of urea hydro-
lase was knocked out, Candida albicans could not form germ tubes [32]. Interestingly, our
proteomics and metabolism results found that arginine biosynthesis glutamyl dehydroge-
nase (AX4598), arginase (AX6366), acetylornithine transaminase (AX6129), arginosuccinase
(AX6827), and the final product arginine were indeed upregulated to varying degrees in
DM (Figure S3A). Superoxide dismutases (SODs) and thioredoxins (Trxs) are important
for the mycelial phase to protect against oxidative stress, which is also the self-protection
mechanism of pathogenic dimorphic fungi responding to adverse external stimulation
when the host changes [33,34]. According to the proteomics data, SODs (AX4369 and
AX10029) were downregulated, while Trxs (AX5890, AX8, AX3278, and AX4299) were
unchanged or even upregulated (Figure S3B). As an adhesion factor for T. marneffei conidial
attachment, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was upregulated in
mycelia [35], but the intensity of GAPDH (AX3569) in DM was lower than that in FBMds.
According to the proteomics data presented in this study, Lpd1 was identified in C. albicans
as a hypha-specific protein [36], but the homologous protein of Lpd1 (AX1116) also had a
higher expression in FBMds (Figure S3C,D). The above comparison shows the variations
in dimorphic differential protein expression between different fungi; thus, the function of
homologous proteins in different dimorphic fungi is still worth studying.

The bioinformatics results showed that several biological processes, such as the
oxidation–reduction process; the metabolic process; transcription; and DNA synthesis,
repair, and homologous recombination, were enriched in downregulated proteins in DM.
Similar results were observed in other dimorphic fungi. Several proteins related to protein
synthesis and transcription were upregulated in the conidia of Aspergillus nidulans [37].
Conidia from A. nidulans also keep an abundant reserve pool of mRNA and ribosomes
before the fungus starts the germination process [38]. This indicates that metabolic activity
allows for more flexibility when a fungus starts the germination process and explains why
the increment rate of FBMds was higher than that of DM, with more damage-repair activity
necessary for rapid growth.

Several signaling pathways, mainly including the MAPK signaling pathway, the
cAMP–PKA pathway, the TOR pathway, the Rim101 pathway, and the Ca2+/calcineurin
pathway, were reported to be related to fungal dimorphism. The MAPK signaling pathway
is conserved in eukaryotic cells, amplifying extracellular signals through the step-by-
step phosphorylation process so that cells can easily perceive changes in the external
environment. In Saccharomyces cerevisiae, the MAPK signaling pathway mainly includes
Fus3-mediated pheromone response, Kss1-mediated filamentation and invasive growth,
Slt2-mediated cell wall integrity, and Hog-mediated high-osmolarity stress response [39,40].
The Fus3-MAPK signaling pathway plays an important role in the morphological transfor-
mation of dimorphic fungi. In Saccharomyces cerevisiae, Fus3, as the downstream primary
protein kinase of the mating pheromone signal pathway, is mainly involved in the response
to mating pheromones and cell fusion [41]. In Ustilago maydis, Kpp2, the homologous
protein of Fus3, is very important for germ tube formation. When Kpp2 was knocked
out, hyphae-formation ability and the perception of mating pheromones were greatly
weakened, so the pathogenicity also was reduced [42,43]. Our data showed that the MAPK
signaling pathway was highly upregulated in DM, with 16 upregulated proteins, and that
the MAP kinases Fus3 (AX1574), Slt2 (AX1270), Kss1 (AX1067), and Hog (AX989) were all
upregulated in DM, especially Hog (AX989), which leads to high-level phosphorylation.
The cAMP–PKA signaling pathway also plays an important role in fungal dimorphism.
In Saccharomyces cerevisiae and Candida albicans, extracellular signals are transmitted to
small G protein Ras1/Ras2 and G protein α subunit Gpa1 through cell membrane receptor
Gpr1/Mep2, thus activating adenylate cyclase Cyr1 to regulate the concentration of second
messenger cAMP. Then, cAMP further activates PKA to phosphorylate downstream target
proteins and promote mycelium growth [44,45]. KEGG enrichment also showed that this
pathway was highly upregulated in hyphae. In Schizosaccharomyces japonicas and Paracoccid-
ioides brasiliensis, Ras1–cdc42 and Ras-GTPase–Hog1 interaction regulated mycelial growth,
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and the Ras signaling pathway cooperated with the MAPK signaling pathway by the
interactions of Ras1–cdc42 and Ras-GTPase–Hog1 [40,46]. In our results, it was interesting
that the MAPK signaling pathway, the cAMP signaling pathway, and the Ras signaling
pathway formed a complex regulatory network, including the activation of phosphorylated
modifications. Therefore, we also saw the enrichment of phosphorylated molecules in the
mycelial state, which corresponded to the phosphorylation of kinases and transcription
factors in the MAPK signaling pathway of T. fuciformis. All these results showed that the
dimorphism regulation of T. fuciformis is a complex network involving multiple signaling
pathways. The MAPK signaling pathway may play the most important role in the network.
Next, it is very important to verify the hub proteins of the MAPK signaling pathway affect-
ing dimorphism in T. fuciformis and study its upstream and downstream interaction factors:
MAP kinases and their direct-acting transcription factors seem to be good candidates.

5. Conclusions

This study used HRMS1-DIA-based and PRM targeted proteomics to compare the
differential protein abundance between FBMds and DM of T. fuciformis TWW01-AX. The
results revealed a large difference in protein levels between FBMds and DM, which involved
many biological processes such as carbon metabolism and amino acid metabolism; the
subsequent comparative metabolism analysis further demonstrated that the metabolic
process was highly implicated in FBMds. Additionally, several signaling pathways such
as the MAPK signaling pathway, the Ras signaling pathway, and the cAMP signaling
pathway may regulate the morphological transformation of T. fuciformis by forming a
complex network centering on the MAPK signaling pathway. The results of this study
provide proteomic insights into T. fuciformis dimorphism.
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Abbreviations

FBMds Dikaryotic yeast-like conidia from fruiting bodies and mycelia
DM Dikaryotic mycelia
DIA Data-independent acquisition
HRMS1-DIA high-resolution MS1-based quantitative data-independent acquisition
PRM Parallel reaction monitoring
DEPs Differentially expressed proteins
GO Gene ontology
KEGG Kyoto encyclopedia of genes and genomes
MAPK Mitogen-activated protein kinase
TPS Tremella polysaccharide
cAMP–PKA cAMP–protein kinase A
TOR Target of rapamycin
DDA Data-dependent acquisition
SWATH-MS Sequential window acquisition of all theoretical mass spectra
PDA Potato dextrose agar
FDR False discovery rate
BP Biological process
MF Molecular function
CC Cellular component
PCA Principal components analysis
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