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Background: The head and neck squamous cell carcinomas (HNSCC) is one of the most
frequent cancers in the world, with an unfavorable prognosis. Cancer stem cells (CSCs)
have been found to be responsible for HNSCC recurrence and therapeutic resistance.

Methods: The stemness of HNSCC was measured using a stemness index based on
mRNA expression (mRNAsi). Stemness-related genes were discovered using
weighted gene co-expression network analysis, least absolute shrinkage and
selection operator analysis, and Cox regression, and a stemness-related
prognostic index (SPI) was constructed. This research was based on TCGA and
GSE65858.

Results: Stemness was found upregulated in HNSCC compared with normal tissues. The
risk score model including five stemness-related genes exhibited a good accuracy in
predicting outcomes. High SPI predicted a shorter overall survival (OS) in HNSCC patients,
in the meantime, also demonstrated a lower CD8+ T cell infiltration and a higher enrichment
of macrophages and fibroblasts than the low-SPI group, focusing on several up-regulated
pathways such as epithelial mesenchymal transition (EMT), MYC targets v1, E2F targets,
mTORC1 signaling, hypoxia, MYC targets v2, angiogenesis, G2M checkpoint, and
glycolysis.

Conclusion: The SPI signature, which includes five stemness-related genes, could be
utilized as a prognostic biomarker for HNSCC, implying that stemness may impact
HNSCC immunologic profiles and be a feasible therapeutic target.

Keywords: head and neck squamous cell carcinomas, stemness, prediction, immune cell infiltration, bioinformatics,
TCGA

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC), one of the most common cancers worldwide, include
a wide range of phenotypes such as cancers of the tongue, oral cavity, nasopharynx, oropharynx, larynx,
and hypopharynx. HNSCC patients generally present with a locally advanced stage, and a significant
proportion of them undergo surgery as well as combined treatment such as chemotherapy, radiotherapy,
andmolecular targeted therapies if metastatic and/or recurrent disease is present. HNSCC is said to have a
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poor prognosis, with a 5-year survival rate of 40–50%, and patients
with advanced disease only having a 34.9 percent survival rate
(Leemans et al., 2011).

Cancer stem cell research has revealed the unique function of
cancer stem cells, which are defined as cells with stem cell
characteristics, the capacity for self-renewal, and the ability to
promote tumor cells to invade and grow in cancer (Korkaya and
Wicha, 2010). They have the ability to produce all cell types.
Furthermore, because of their distinct characteristics, cancer stem
cells appear to be less susceptible to chemotherapy. Many studies
have also found that cancer stem cells play an important role in
cancer metastasis and differentiation (Friedmann Morvinski and
Verma, 2014; Shibue and Weinberg, 2017). Cancer stem cells
were found in HNSCC bulk tumors and gave rise to new tumors
in immunodeficient mice, which may shed light on how residual
stem cells cause tumor recurrence and regrowth in patients after
treatment (Prince et al., 2007; Okamoto et al., 2009). Thus, to
improve the therapeutic efficacy of HNSCC, a thorough
understanding of cancer stem cells is required.

Malta et al. developed a scoring system using the one-class
logistic regression (OCLR) machine learning algorithm to
compare the similarity between tumor cells and different types
of stem cells obtained from the Progenitor Cell Biology
Consortium (https://www.synapse.org/pcbc) in order to better
understand and describe the unique characteristics of cancer stem
cells, and thus obtained two stemness indexes, mDNAsi and
mRNAsi (Malta et al., 2018), which were estimated based on the
level of DNA methylation and mRNA expression, respectively.
The importance of stemness-related indicators in solid tumors is
becoming recognized, while their involvement in the risk of
HNSCC has yet to be determined.

In this work, we conducted an integrative analysis to create a five-
gene signature for predicting prognosis in patientswith squamous cell
carcinoma of the head and neck (HNSCC). In the TCGA-HNSC
datasets, WGCNA, Cox regression, and least absolute shrinkage and
selection operator analysis (LASSO) regression analysis revealed five
genes (SPOCK1, BOC, KNSTRN, MME, and GRIA3). Based on the
stemness-score-related prognostic index (SPI), the immune
landscape was visualized and GSEA revealed the associated
functional signaling pathways.

MATERIALS AND METHODS

Data Preparation
The RNA-Seq data of 499 HNSCC patients was obtained from
The Cancer Genome Atlas (TCGA) database (https://
cancergenome.nih.gov/), together with the related clinical
information such as age, gender, American Joint Committee
on Cancer (AJCC) stage, and survival statistics, meanwhile,
gene expression profiles and survival data from 270 GSE65858
HNSCC patients were acquired from the Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/)
(Supplementary Table S1). Each gene’s expression level was
log2 transformed, and the average value was calculated for
many probes corresponding to the same gene. Paired
differential gene analysis was done in 43 HNSCC patients

from the TCGA, with a false discovery rate (FDR) of 0.05 and
an absolute of log2 fold change > 1 utilized for filtering of
differentially expressed genes (DEGs). Meanwhile, the
Progenitor Cell Biology Consortium (PCBC) database
expression data of pluripotent stem cells (embryonic stem cells
and induced pluripotent stem cells) were evaluated, and the one-
class logistic regression (OCLR) method was used to predict
mRNA expression-based stemness score.

Weighted Gene Co-Expression Network
Analysis
WGCNA is a valuable approach for identifying modules of
highly correlated genes and investigating the substantial
relationship between modules and external sample features.
A scale-free co-expression network was built in the study to
investigate stemness-score-related genes. As a soft-threshold
parameter, a power of = 7 with a scale-free R2 > 0.90 was
chosen. The expression matrix was transformed into an
adjacency matrix, which was then transformed into a
topological overlap matrix (TOM). To cluster genes based
on TOM, average linkage hierarchical clustering was
performed. The gene dendrogram’s minimum genome
number was 50, and nongray modules were detected by
setting the merging threshold function to 0.25. The module
eigengenes (MEs) were defined as the primary component of
each module’s gene expression matrix. The association
between MEs and stemness score revealed the relevant
module. As a consequence, one highly correlated module
(brown) and two highly correlated modules (yellow and
green) were discovered.

Prognostic Gene Screening and Validation
To begin, univariate cox regression and Pearson correlation
analysis were utilized to identify the statistically significant
stemness-related prognostic genes, using all genes in the
brown, yellow, and green modules to show the strong link
to prognosis in TCGA HNSCC. The 499 TCGA tumor samples
were then randomly split into training and validation cohorts
in a 2:1 ratio. The LASSO regression with 10-fold cross-
validation was then used to filter prognostic genes, and a
stemness-related prognostic index (SPI) was constructed
using regression coefficients from the multivariate cox
regression in the trial set, where the Akaike information
criterion (AIC) was utilized to optimize the data. Finally,
five genes were found and the formula of the risk score
model was described as:

SPI � ∑ i Coefficient (mRNAi) × Expression (mRNAi)
Following that, the model was validated using the TCGA inner

validation set and the GSE65858 outer validation set from the
GEO dataset. In addition, clinical parameters such as age, gender,
and TNM stage were included in the multivariate cox regression
model to explore the importance of SPI. The signature’s
prognostic efficiency was evaluated using a time-dependent
receiver operating characteristic (ROC) curve.
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Clinical Correlation
The Pearson’s correlation was used to depict the association
between stemness score and five genes. The Kaplan–Meier
curve was used for each stemness score-related gene signature
in the TCGA cohort, and it clearly distinguished between high
and low expression groups. Following that, the
relationship between various clinical features and SPI was
investigated.

Detection of Gene Expression
The proteins encoded by the five stemness-related genes were
studied using clinical samples from the Human Protein Atlas
(HPA) database (https://www.proteinatlas.org).

Analysis of Immune Status in SPI Groups
The CIBERSORT (Newman et al., 2015), CIBERSORT-ABS
(Newman et al., 2015), QUANTISEQ (Finotello et al., 2019),
XCELL (Aran et al., 2017), MCP-counter (Becht et al., 2016),
EPIC (Racle et al., 2017), and TIMER2.0 (Li et al., 2020)
algorithms were used to compare the proportion of tumor-
infiltrating immune cells between the high and low SPI risk
groups based on the five gene signatures discovered.

Gene Enrichment Analysis
In the TCGA cohort, “fgsea” was used for the GSEA analysis to
compare the KEGG functional enrichment analysis in the high-
SPI group to the low-risk group.

Statistical Analyses
R was used to conduct all statistical analyses (Version 4.1.0). The
Kaplan-Meier method and the log-rank test were applied to
evaluate the prognostic impact of core genes and signature
score on the overall survival (OS). Statistical significance of
continuous parameters was assessed using either the student’s
t test or the Wilcox test, depending on whether the data was
regularly distributed or not. A p value of 0.05 was deemed
statistically significant.

RESULTS

Co-Expression Network Construction
The research constructure was shown in Figure 1. PCBC was
used to obtain 78 examples of expression data from pluripotent
stem cells. After that, it was discovered that the mRNA

FIGURE 1 | Flowchart of the study.
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expression-based stemness score in TCGA HNSCC tissues was
substantially greater than that of normal tissues (p < 0.05)
(Supplementary Figure S1), which, however, had no statistical
significance in OS (p = 0.84) (Supplementary Figure S2).
Therefore, we conducted an integrated analysis to find a more
valuable gene signature based on stemness score. First, according
to TCGA data, differential gene analysis was done in 43 tumor
and matched normal tissues to look for significantly different
expressed genes. In all, 4,197 DEGs were discovered, comprising
2,391 down-regulated genes and 1806 up-regulated genes
(Figures 2A,B). Then, the resulting expression matrix of
HNSCC samples in TCGA data was then utilized to perform
WGCNA analysis. To quantify the distance between each gene, a
Pearson correlation matrix was constructed. We chose = 7 as the
soft-threshold for constructing a matrix of similarity among all
pairs of genes (Supplementary Figure S3). Then, applying

average linkage hierarchical clustering, a variety of gene
modules were selected out (Figure 2C).

Significant Module Identification
To investigate co-expression similarity, we computed and grouped
eigengenes based on their correlations, and the results were displayed
(Figure 3A). We next used statistical analysis to discover modules
that are closely associated to stemness score in order to uncover genes
with stemness associations. The module eigengene of the yellow
module was shown to have the strongest linkage with stemness score
in HNSCC patients, followed by the brown module and green
module (Figure 3B). The interactive relationships of the gene
modules were computed and clustered in a heatmap, and it was
discovered that brown, green, and yellow modules exhibited strong
co-expression gene interaction interactions (Figure 3C). Figures
3D–F showed the associations between module membership and

FIGURE 2 | Differential gene expression analysis based on 43 normal-tissue-matched HNSCC patients and construction of co-expression network. (A) Heatmap
of differentiated expressed genes (DEGS). (B) Volcano plot of DEGS. (C) A cluster diagram of gene cluster of HNSCC.
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gene importance in the yellow, brown, and green modules,
respectively.

Identification of Stemness-Related Genes
and Construction of a Prognostic Model
First, univariable Cox regression was used to filter prognostic
genes from significant WGCNA modules, which included 395
genes in the yellow module, 433 genes in the brown module, and

275 genes in the green module. Second, 226 potential prognostic
genes were identified, and correlation analysis was performed to
further identify the significant stemness-related genes statistically
(|Pearson correlation coefficient| > 0.4, p < 0.05). Third, LASSO
regression was done using 10-fold cross-validation to further
filter the results (Figures 4A,B). Finally, the identification of five
genes signature (SPOCK1, BOC, KNSTRN, MME, and GRIA3)
was assisted by the lowest AIC score in the multivariate Cox
regression analysis. The SPI was calculated using the expression

FIGURE 3 | Identification of modules significantly correlated to stemness (A) Heatmap of the adjacencies in the hub gene network. (B) Heatmap of the correlation
between module eigengenes and the stemness score. (C) Interaction relationship of co-expression genes. (D–F) Scatterplot of module eigengenes in yellow, brown and
green modules.
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levels of each core gene as well as the coefficient from the
multivariate Cox regression.

SPI � 0.17346 × SPOCK1 − 0.29808 × BOC

+ 0.26439 × KNSTRN + 0.18580 × MME

− 0.15037 × GRIA3

The survival result, risk status, and core gene expression levels of
499HNSCCpatients from the TCGAwere presented, and patients in
the high-SPI group had a larger risk of mortality than patients in the
low-SPI group (Figure 4C). The area under ROC curve (AUC) of the
training set was 0.700 at 1 year, 0.711 at 3 years and 0.655 at 5 years
(Figure 4D). The results of multivariate Cox regression of five genes
signature were also shown (Supplementary Table S2).

Validation of the Prognostic Model
According to the formula derived in the training cohort, we
estimated the SPI of the TCGA internal validation cohort (n =
167) and an outside validation cohort of GSE65858 (n = 270).
Similarly, as shown in Figure 4E, the AUC of the TCGA
internal validation was 0.626 at 1 year, 0.698 at 3 years and
0.727 at 5 years, respectively. Furthermore, multivariate
survival analysis was performed in training and validation
sets, taking into account clinical characteristics such as age,
gender, and TNM stage, suggesting a substantial influence of
SPI on the OS of HNSCC patients (training set: HR = 2.63, 95%
CI = 1.74–3.98, p < 0.001; validation set of TCGA: HR = 2.14,
95% CI = 1.43–3.20, p < 0.001; validation set of GSE65858, HR
= 1.85, 95% CI = 1.16–2.95, p = 0.001) (Supplementary Table

FIGURE 4 | (A) Stemness-related genes were selected by the least absolute shrinkage and selection operator (LASSO) regression model according to minimum
criteria. (B) The coefficient of stemness-related genes was calculated by LASSO regression. (C) Risk score distribution in 499 TCGA-HNSCC based on the five
stemness-related genes. Area under time-dependent receiver operating characteristic curve (AUC) verified the prognostic accuracy of stemness prognostic index (SPI)
in the training (n = 332) (D) and validating (n = 167) TCGA cohort (E). AUC verified the prognostic accuracy of multivariate Cox regressionmodule including SPI, age,
gender, T stage, N stage, and M stage in the validating TCGA cohort (n = 167) (F), the total TCGA cohort (n = 499) (G), and the external GSE65858 cohort (n = 270) (H).
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S3). According to clinical variables and SPI, the AUCs of the
TCGA internal validation and total TCGA cohort were 0.732
and 0.705 at 1 year, 0.727 and 0.679 at 3 years, and 0.709 and
0.657 at 5 years, respectively, (Figures 4F,G). The external
validation set of GSE65858 also showed good prognostic
prediction of SPI with AUCs of 0.687, 0.716, and 0.661 at
12, 18, and 24 months (Figure 4H).

Protein Level Expression and Correlation of
Stemness-Related Genes
An association study was done between the stemness score
based on mRNA data and the five genes identified in the
investigation progress mentioned above. It was discovered
that four genes, including SPOCK1, BOC, MME, and GRIA3,
had a negative association with stemness score, whereas
KNSTRN had a positive correlation with stemness score
(Figures 5A–E). According to the findings of the Kaplan-
Meier survival analysis, all five genes showed a substantial
capacity to discriminate high expression group from low
expression group in HNSCC patients (Figures 5F–J).
Multivariate Cox regression further indicated that these five
genes had strong prognostic significance (Supplementary
Table S2). Besides, using clinical specimens from the HPA
database, we examined the expression of the proteins
produced by the stemness-related genes. SPOCK1, BOC,
MME, and GRIA3, and KNSTRN were all shown to be
positive in HNSCC tissue (Figures 5K-O). Kaplan–Meier

plot demonstrated that SPI considerably shorten the OS of
HNSCC in TCGA set (p < 0.01) (Figure 6A). HNSCC patients
with TNM stage III/IV exhibited considerably higher SPI than
those with TNM stage I/II, (Figure 6B), whereas no significant
gender difference was detected between the high and low SPI
groups (Supplementary Figure S4).

KEGG Enrichment Analysis
GSEA results revealed that some signaling pathways, such as
epithelial mesenchymal transition (EMT), MYC targets v1, E2F
targets, mTORC1 signaling, hypoxia, MYC targets v2,
angiogenesis, G2M checkpoint, and glycolysis, were up-
regulated in the high-SPI group of HNSCC (false discovery
rate < 0.25) (Figure 6C).

Altered immune profiles across the Low-SPI
and High-SPI groups
CIBERSORT, CIBERSORT-ABS, QUANTISEQ, XCELL, MCP-
counter, EPIC, and TIMER2.0 algorithms were used to examine
the immune cell and pathway profiles in the signature-identified
high and low SPI groups (Figure 6D). In the preceding algorithm,
we demonstrated the findings of the CIBERSORT, TIMER2.0,
and QUANTISEQ algorithms used to study the immune cell
infiltration landscape. SPI groups showed obvious differences in
the enrichment of non-tumor cells, with a characteristic of lower
infiltration of CD8+ T cells and higher infiltration of tumor

FIGURE 5 | Correlations between mRNA expression and stemness score of five stemness-related genes: SPOCK1 (A), BOC (B), MME (C), GRIA3 (D), and
KNSTRN (E). Kaplan-Meier curves of five gene signatures: SPOCK1 (F), BOC (G), MME (H), GRIA3 (I), and KNSTRN (J). The expression profiles of the proteins encoded
by SPOCK1 (K), BOC (L), MME (M), GRIA3 (N), and KNSTRN (O). p value < 0.05 was controlled.
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associated macrophages in the high-SPI group compared to the
low-SPI group (Figures 6E–G, Supplementary Figure S5).

DISCUSSION

According to a recent study, cancer stem cells play an important
role in cancer growth, progression, and therapy resistance. It

suggests that the role of cancer stemness in HNSCC should be
investigated further. In this study, we used a series of
bioinformatic algorithms to identify the gene signature of stem
cells, build a prognostic prediction risk score model, perform gene
enrichment analysis, and visualize immune infiltration profiles.

The process of oncogenic dedifferentiation is a critical
signature in the progression of normal tissue to precancerous
lesions and cancer, as evidenced by the discovery that tumor

FIGURE 6 | (A) Kaplan-Meier curves of stemness prognostic index (SPI) in HNSCC. (B) Correlation between stemness prognostic index (SPI) and TNM stage of
HNSCC. (C) GSEA for expression profiles in high SPI group over low SPI group. (D) Heatmap for immune cell infiltration landscape based on the CIBERSORT,
CIBERSORT-ABS, QUANTISEQ, XCELL, MCP-counter, EPIC, and TIMER algorithms among high and low SPI group. Box plot showed the different proportions of
tumor-infiltrating cells between different SPI groups based on CIBERSORT (E), TIMER (F), and QUANTISEQ (G). p value < 0.05 was controlled.
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samples were more stem-like than normal samples. Certain
mutations contribute to the oncogenesis of dedifferentiated
cells rather than mature cells, implying that the status of cell
dedifferentiation may be an oncogenic factor. Although stemness
score is critical and is linked to aggressiveness of tumor, it is not a
good index of prognostic prediction in HNSCC. Thus, we aimed
to find a more relevant and significant gene signature. First, using
WGCNA and the stemness score, we identified candidate
stemness-related genes. Next, using LASSO and Cox
regression, we built a prognostic risk score model which was
validated both internally and externally, indicating a strong
prediction ability. The SPI was calculated based the prognostic
model, including BOC, GRIA3, MME, SPOCK1, and KNSTRN,
which were associated with stemness, TNM stage, prognosis, and
tumor microenvironment (TME). Many prominent up-
regulation pathways related to tumor progression and
development were discovered in high-SPI HNSCC patients
compared to the low-SPI group, including EMT signaling,
MYC targets v1, E2F targets, mTORC1 signaling, hypoxia
signaling, MYC targets v2, angiogenesis, G2M checkpoint, and
glycolysis. These well-known pathways are intricate and
interactive (González-González et al., 2021), and there is a
significant difference between the high-SPI group and the low-
SPI group, demonstrating the utility of SPI in identifying HNSCC
patients based on functional level.

The protein expression of all five genes was discovered in
HNSCC using the public HPA database. BOC and GRIA3 were
found to be adversely linked with stemness score and to be
protective risk factors in the prognosis of HNSCC (Figures
5B,D,G,I). KNSTRN, on the other hand, had a favorable link
with stemness score but a negative relationship with prognosis
(Figures 5E,J). Surprisingly, MME and SPOCK1 were found to
have a negative relationship with both stemness score and
survival in HNSCC (Figures 5A,C,F,H).

Membrane Metalloendopeptidase (MME) is the prototype of
the membrane bound zinc-dependent endopeptidase family, and
it is also overexpressed in numerous malignancies, including
colorectal carcinoma, pancreatic endocrine tumors, and
metastatic melanomas. MME has suppressed and promoted
effects on tumor development depending on the cancer types.
Some suggested that low MME expression levels are associated
with poor prognosis in ovarian and prostate cancers, and that
MME depletion leads to Akt activation and hence contributes to
cancer clinical progression (Ffrench et al., 2017; Osman et al.,
2006). Moreover, it was interestingly proposed that MME
collaborated with PTEN in carcinogenesis suppression by
limiting the activities of prostate stem/progenitor cells (Cheng
et al., 2020), which was consistent with our outcome in HNSCC
(Figure 5C). Others found opposed results. For example, high
MME was significantly associated with poor OS in NSCLC (n =
342) (Leithner et al., 2014). MME was also found to be required
for proliferation of the neuroendocrine cells that were co-
repressed by MENIN and DAXX, and in vivo experiments
proved that knockdown of MME suppressing the tumor
growth (Feng et al., 2017). The clinical outcome of HNSCC is
related to the complicated TME consisting of tumor cells,
immune cells and stroma cells (Wondergem et al., 2020). It

was reported that cancer associated fibroblasts (CAFs) up-
regulated MME expression under hypoxia, while NSCLC cell
lines did not show a significant MME overexpression (Leithner
et al., 2014). This phenomenon was also found in our study that
the SPI high group of HNSCC had an up-regulated hypoxia
signaling (Figure 6C), as well as increased CAFs enrichment and
stroma score (Figure 6D, Supplementary Figure S5). The TCGA
data was bulk RNA data, so we proposed that CAFs or others
non-tumor cells in the TME of HNSCCmight up-regulatedMME
under hypoxia stress and reveal a poor prognosis in the end. More
evidence such as single-cell transcriptomics should be
investigated to prove this result in the future.

SPOCK1, a secreted matricellular protein and also called
SPARC, is a critical regulator of EMT induction and could be
a novel therapeutic target for cancer progression (Sun et al.,
2020). Previous study had confirmed the overexpression of
SPOCK1 in HNSCC clinical specimens which was negatively
related to the survival. Knockdown of the SPOCK1 validated its
promotional effect in HNSCC cell aggressiveness. Moreover,
SPOCK1 is reported promoting the proliferation and
migration in many other cancers like colon cancer, pancreatic
cancer and breast cancer via NF-κB pathway or AKT/mTOR
pathway (Xu et al., 2020; Cui et al., 2022; Liu et al., 2021).
However, SPOCK1 had a negative effect on CSCs in gastric
cancer (Ma et al., 2019). Gastric CAFs derived SPOCK1 was
significantly associated with tumor differentiation and
suppressing SPOCK1 expression in gastric CAFs facilitated the
phenotypic alteration of gastric cancer cells towards CSC-like
cells where AKT/mTOR and MEK/ERK pathways might
participate (Ma et al., 2019). An increased enrichment of
CAFs was observed in the high SPI group and further studies
are necessary to explore the source of SPOCK1 and validate its
role in HNSCC progress.

The SPI was related to stemness negatively and indicated a
critical role of stemness in survival of HNSCC. However, the
stemness score did not show statistically significant difference in
prognosis of HNSCC. The TME did not only depend on tumor
cells but also was consisted of numerous non-tumors including
immune cell and stroma cells. In addition, the expression of CSC
makers in human tumor tissues has been demonstrated to be
associated with the amount of tumor-infiltrating immune cells,
implying that CSCs have a close association with the tumor
immunological microenvironment (Xu et al., 2018; Sang et al.,
2020). Therefore, we further investigated the TME in HNSCC
based on the SPI.

CSCs originated from HNSCC have been shown to
downregulate MHC molecules, which is required for a
functional T-cell response against tumor cells (Chikamatsu
et al., 2011). CD44+ HNSCC cells exhibited CSC
characteristics and down-regulated HLA-A2, HLA class II, and
TAP2, as well as high levels of immune modulatory cytokines
such interleukin-8 (IL-8) and granulocyte colony-stimulating
factor (G-CSF), indicating antigen presentation and processing
dysfunction (Chikamatsu et al., 2011). SPI was calculated from
five stemness-related genes. To examine the relationship between
stemness and immune cell infiltration in HNSCC, we used the
CIBERSORT, CIBERSORT-ABS, QUANTISEQ, XCELL, MCP-
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counter, EPIC, and TIMER2.0 algorithms. As a result, we
demonstrated that the high-SPI group with poor prognosis
had an immunologic “cold” profile (almost no immune cells
visible), which was especially characterized by increased
macrophages and CAFs as well as low CD8+ T cells and
B cells (Figure 6, Supplementary Figure S5). “Cold” HNSCCs
are associated with poorer OS than immunologic “hot” (immune
cells in the stroma and between cancer cells) or “excluded”
(immune cells at tumor boundaries) HNSCCs (Ribbat-Idel
et al., 2021). And recurrent HNSCC always have significant
loss of CD8+ T cells and B cells vs. primary tumors
(Watermann et al., 2021). Interestingly, it was recently shown
that CSCs of HNSCC could avoid host immune responses in a
CD8+ T cell-dependent way (Wang et al., 2021). In HNSCC,
CSCs could highly express B7-H3 to evade immune surveillance
(Wang et al., 2021). Thus, low SPI HNSCC patients who have
high infiltration of CD8+ T cells might be benefited from immune
checkpoint blocker (ICB) therapy targeting B7-H3. Meanwhile,
we observed that more M0 and M2 macrophages. Previous
research found that M2 macrophage infiltration was negatively
related to CSC marker expression and significantly associated
with high tumor PD-L1 expression in oral squamous cell
carcinoma (Wang et al., 2021). The comparatively high
enrichment of macrophages and less both CD8+ T cells and
B cells indicated an immunosuppressed TME and poor survival
in the high-SPI group of HNSCC, who might be benefited from
ICBs targeting PD-L1 or macrophage in the future. And more
clinical trials are needed to prove this outcome.

Some studies have reported some subgroups or gene
signatures that can be used to classify the clinical features and
outcome of HNSCC. For example, Keck et al. used nearest
centroid to identify two biologically different HPV subtypes
and three non-HPV subtypes (Keck et al., 2015). The basal
(BA) HNSCC subtype (well differentiated) showed a
significant enrichment for hypoxia signaling and EMT
signaling, as well as a relatively reduced overall survival (Keck
et al., 2015). The inflamed/mesenchymal subtype (IMS), on the
other hand, had a better prognosis than the BA subtype (Keck

et al., 2015). Moreover, downregulation of epithelial
differentiation markers was detected in IMS subset and IMS-
HPV+ subtype tumors that were non-keratinizing and poorly
differentiated according to morphological evaluation (Keck et al.,
2015). These findings were consistent with our findings that the
SPI high group has a poorer prognosis and less stemness than the
SPI low group. Furthermore, our findings that the SPI low group
of HNSCC has increased CD8+ T cells matched into the
characteristic of IMS subset indicated above. To summarize,
our research revealed a set of novel gene signatures based on
stemness that were well-fitting to prior outcomes and had good
predictive value. However, specific mechanisms behind the
phenomenon needs further investigation. The study may open
the approach for improved anti-tumor immunity and the
development of innovative treatment approaches for HNSCC.
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