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ABSTRACT
The development of B and T cells from hematopoietic precursors and the 

regulation of the functions of these immune cells are complex processes that involve 
highly regulated signaling pathways and transcriptional control. The signaling 
pathways and gene expression patterns that give rise to these developmental 
processes are coordinated, in part, by two opposing classes of broad-based enzymatic 
regulators: histone acetyltransferases (HATs) and histone deacetylases (HDACs). 
HATs and HDACs can modulate gene transcription by altering histone acetylation to 
modify chromatin structure, and by regulating the activity of non-histone substrates, 
including an array of immune-cell transcription factors. In addition to their role in 
normal B and T cells, dysregulation of HAT and HDAC activity is associated with a 
variety of B- and T-cell malignancies. In this review, we describe the roles of HATs 
and HDACs in normal B- and T-cell physiology, describe mutations and dysregulation 
of HATs and HDACs that are implicated lymphoma and leukemia, and discuss HAT 
and HDAC inhibitors that have been explored as treatment options for leukemias and 
lymphomas.

INTRODUCTION

B and T cells have a variety of cellular subtypes that 
arise through a complex series of developmental events. 
The function of these various immune cell subtypes can 
be altered by numerous extracellular factors, including 
antigens, cytokines, and growth factors. Many of these 
developmental and functional processes are controlled 
by large-scale changes in gene expression, either due 
to epigenetic changes in chromatin structure or to the 
activity of specific transcription factors (TFs). Histone 
acetyltransferases (HATs) and histone deacetylases 
(HDACs) are two opposing classes of enzymes that play 
widespread roles in regulating transcription either by 
altering chromatin structure or by modulating the activity 
of specific TFs. Thus, it is perhaps not surprising that 
HATs and HDACs play roles in maintaining hematopoietic 
precursors and in coordinating their maturation into 
various subtypes of B and T cells.

As with many proteins that have important roles in 
normal developmental and cell-specific proliferation and 
survival processes, HAT and HDAC activity is altered 

in many B- and T-cell malignancies. Moreover, several 
HDAC inhibitors (HDACi) have been found to reduce 
the proliferation of B and T cancer cells in vitro and in 
vivo. As an outcome of such basic research, there are four 
FDA-approved HDACi being used clinically to treat T-cell 
lymphoma and multiple myeloma, and there are several 
clinical trials using HDACi for the treatment of B- and 
T-cell cancers. 

In this review, we describe the roles of HATs and 
HDACs in normal B- and T-cell development and function, 
and also discuss alterations in HAT/HDAC activity in 
B- and T-cell malignancies. Finally, we summarize the 
current status of HAT and HDAC inhibitors as potential 
therapies for cancers affecting B and T cells.

Overview of the Regulation of Transcription by 
HATs and HDACs

HATs and HDACs carry out acetylation and 
deacetylation, respectively, of the ε-amino group of 
specific lysine residues on target proteins. The addition of 
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an acetyl group prevents the formation of positive charges 
on the lysine amino group, and thus, can affect protein 
activity. Through this reversible catalytic event, HATs 
and HDACs can regulate transcription in two general 
ways: 1) by altering histone acetylation patterns, thereby 
modulating chromatin structure and its accessibility 
to transcriptional regulatory proteins [1, 2], and 2) by 
acetylating and affecting the activity of non-histone 
substrates that directly regulate transcription, including a 
diverse array of TFs [3]. 

HATs are a subtype of transcriptional coactivators, 
in that they possess intrinsic acetyltransferase activity and 
can enhance the ability of a TF to activate transcription. 
In general, HAT-mediated acetylation of nucleosomal 
histones increases the accessibility of DNA to TFs 
and leads to increased transcription at a given DNA 
locus. Acetylation of specific TFs by HATs can also 
increase their ability to bind DNA, resist proteasomal 
degradation, or interact with other TFs or coactivators, 
and consequently, direct acetylation of TFs can also be a 
transcriptional activating event [3]. In addition, by serving 
as protein scaffolds, HATs can promote the formation of 
transcriptional activating complexes near a gene promoter. 
This scaffolding function does not necessarily require HAT 
enzymatic activity, but rather is defined by the protein-
interaction domains of these relatively large molecules.

HDACs, on the other hand, generally act as 
transcriptional corepressors by deacetylating nucleosomal 
histones, which can lead to chromosomal condensation 
and the exclusion of transcriptional activating complexes. 
Additionally, large HDAC-containing repressor complexes 
can localize to specific gene loci and exclude activating 
molecules, including HATs, from interacting with TFs. 
HDACs can also deacetylate specific TFs, decreasing 
their DNA-binding activity, inducing their degradation, or 
changing their subcellular localization or protein-protein 
interactions [4]. 

Families of Human HATs and HDACs

HAT families

There are 17 human HATs, which are divided into 
five families based primarily on the extent of sequence 
similarity [5] (Figure 1). Although HATs can act on 
a broad range of substrates in vitro, HATs are usually 
directed to specific targets in vivo, and thus, HAT families 
generally have distinct biological functions. The non-
catalytic domains of HATs are responsible for dictating 
this substrate specificity, and HAT families generally have 
conserved protein-protein interaction and reader domains 
(e.g., bromodomains, PHD fingers), which enable them to 
localize to particular genomic sites and recognize specific 
chemical or epigenetic modifications. The size of the 

catalytic HAT domain and the mechanism of catalysis also 
differ between HAT families. For example, CBP and p300 
utilize a “hit and run” kinetic model defined by an initial 
binding of acetyl-CoA followed by transient binding to the 
target lysine [6, 7], whereas the GNAT family HATs adopt 
a ternary complex during catalysis [8].

GNAT family HATs (GCN5, HAT1, PCAF, ATF2) 
are generally part of large, multi-protein complexes 
that contain TBP-associated factors (TAFs) and a single 
catalytic HAT subunit (reviewed in [9]). Two well-
characterized complexes found in humans are the 700 kDa 
(i.e., ATAC) and 2 MDa (i.e., TFTC, STAGA, and PCAF) 
complexes. These large HAT-containing complexes play 
roles in global chromatin acetylation (i.e., the deposition 
of acetyl marks on histones) and as coactivators of genes 
when recruited to DNA by specific TFs or regulatory 
proteins. Members of the GNAT family, especially PCAF, 
also acetylate specific TFs and modulate their activity 
(e.g., p53, BRCA2, PTEN). GNAT family members have 
a conserved C-terminal bromodomain, which has been 
shown to be an acetyl-lysine targeting motif. GNAT family 
member ATF2 is the only sequence-specific DNA-binding 
transcriptional activator with intrinsic HAT activity. 

The CBP/p300 HATs are large (~300 kDa), 
highly related proteins with a single HAT domain, a 
bromodomain, and several cysteine–histidine-rich (CH) 
domains that participate in a variety of protein-protein 
interactions [5]. Indeed, CBP/p300 have been shown to 
acetylate over 75 target proteins, including all histone 
proteins, as well as numerous TFs. By virtue of their 
multiple protein-protein interaction domains, CBP/p300 
can also promote transcriptional activation by nucleating 
transcriptional complexes at promoters in a non-enzymatic 
manner. Although they generally act as coactivators, 
in some cases, CBP/p300 appear to be involved in 
transcriptional repression [10]. 

The MYST family of HATs (TIP60, MOZ, 
MORF, HBO1, MOF) is characterized by a conserved 
MYST domain that contains the catalytically active 
HAT domain. The two largest family members, MOZ 
and MORF, also have a PHD zinc finger domain, which 
recognizes methyl-lysine-containing motifs [11], and 
a C-terminal transactivation domain that interacts with 
various transcription factors, including hematopoietic 
cell regulators PU.1 and Runx1 [12-14]. Most MYST 
family HATs act as catalytic subunits of large multiprotein 
complexes, including the ING family of tumor suppressors 
[15]. 

The steroid receptor coactivators (SRCs) include 
three HATs (NCOA1, NCOA2, NCOA3) that enhance 
transcription of genes responsive to liganded nuclear 
receptors [16]. In addition to the HAT domain, SRCs 
contain three conserved domains: 1) an N-terminal bHLH-
PAS (basic helix-loop-helix-Per/ARNT/Sim), which 
is necessary for interaction with other coactivators; 2) 
one or more LXXL repeats, which mediate interactions 
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Figure 1: The general structures of human HATs and HDACs. Schematic representations are drawn approximately to scale. 
The catalytically active domains and other conserved domains are shown: acetyltransferase domain (KAT), bromodomain (Br), cysteine/
histidine domain (CH), KIX domain, PH-D finger (PHD), helix-loop-helix domain (HLH), LXXLL motif (LX), PAS domain (PAS). All 
human HATs are listed with the gene alias in parentheses. Size of each HAT is shown as number of amino acids. A representative HAT 
(indicated by asterisk) is shown for each family. All HDACs are listed with their predominant subcellular localizations; those that shuttle 
between the nucleus and cytoplasm are indicated as nuc/cyt. Catalytic domains are indicated with green boxes.
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with other nuclear receptors and cofactors; and 3) two 
C-terminal transcriptional activation domains (AD1 and 
AD2). Although SRCs have been associated with various 
human cancers, currently they are not known to have a 
role in hematopoiesis or B-/T-cell function.

Other HATs that are not clearly part of a family 
include the following; TAF1 (TAFII250), a subunit of the 
TFIID general TF complex; CLOCK, which is primarily 
involved in circadian rhythm; and the 90 kDa subunit 
of TFIIIC, which is involved in the control of general 
transcription in a complex with RNA polymerase III.

HDAC families

To counterbalance the impact of HATs on protein 
function and genome structure, there are 18 human 
HDACs, which are commonly divided into four major 
classes based on homology to yeast orthologs (Figure 
1): class 1 (HDAC1, 2, 3 and 8), class 2 (HDAC4, 5, 6, 
7, 9, and 10), class 3 (aka sirtuins; SIRT1, 2, 3, 4, 5, 6, 
and 7), and class 4 (HDAC11) [17-20]. HDAC classes 
differ in their structure, substrate specificity, enzymatic 
mechanism, subcellular localization, and tissue-specific 
expression. Even though most HDACs contain a nuclear 
localization signal (NLS) and, in some cases, a nuclear 
export signal (NES), HDACs often localize to specific 
subcellular regions due to protein-protein interactions with 
proteins that direct their cellular localization. 

The “classical” HDACs are those in classes 1, 2a, 
2b, and 4, and they have a conserved ~390 aa catalytic 
domain and Zn2+-dependent deacetylase activity. The 
conserved, ~275 aa catalytic domain of the class 3 sirtuins 
is NAD+-dependent and unrelated to the catalytic domain 
of the classical HDACs [21, 22]. These differences in their 
catalytic mechanisms have implications for inhibition of 
HDAC activity, and thus, many of the HDAC inhibitors 
(HDACi) used in cancer therapeutics target the classical 
HDACs (discussed below).

Class 1 HDACs are ubiquitously expressed and 
localize almost exclusively to the nucleus. The class 2 
HDACs are generally much larger than class 1 HDACs, 
show tissue-specific expression patterns, and often 
shuttle in and out of the nucleus. In general, HDACs in 
both classes 1 and 2 are found in large transcriptional 
repressing complexes, and are recruited to DNA either 
by other proteins in those complexes or by other DNA-
binding proteins. These large protein complexes play roles 
in HDAC localization and substrate specificity, can act as 
scaffolds to recruit DNA-binding proteins, and provide 
the cofactors required for HDAC function. Indeed, lack 
of these cofactors limits the activity of some recombinant 
HDACs [23]. HDAC 11 is the only class 4 HDAC, and 
although it shows sequence similarity to class 1 and 2 
HDACs, it does not exist within any of the known HDAC 
complexes.

Class 3 sirtuins vary in their subcellular localization 

and interact with a diverse array of TFs and other, 
primarily non-histone, substrates [24]. For example, 
SIRT1 can directly interact with substrates involved in 
the stress response, including p53, FOXO proteins, and 
NF-κB. The mitochondrially-localized sirtuins (SIRT3, 
4, 5) can regulate mitochondrial function, respiration, 
and energy consumption [25]. Some sirtuins (SIRT4 and 
6) lack deacetylase activity, but possess ADP-ribosyl-
transferase activity and play roles in metabolism and DNA 
repair.

HATs and HDACs in B- and T-cell Development

HATs and HDACs in early hematopoietic 
development

B- and T-cell development involves controlled 
stages of gene expression programs and genomic 
instability, which ultimately give rise to the diversity of 
cells that provide adaptive immunity. These developmental 
stages are tightly regulated by a large variety of TFs and 
are coupled with the accessibility of DNA to factors 
that coordinate chromosomal rearrangements. HATs 
and HDACs play major roles in normal B- and T-cell 
development because they can interact with hematopoietic 
regulators and TFs, as well as affect DNA accessibility by 
modifying chromatin structure near relevant target genes. 
In this section, some roles of HATs and HDACs in normal 
hematopoiesis, lymphopoiesis, and B- and T-cell function 
are discussed (summarized in Table 1).

Much of what is known about the role of HATs and 
HDACs in the development of mammalian B and T cells 
comes from the study of whole knockout (KO) mice and 
of mice with tissue-specific inactivation of individual 
HATs and HDACs. In most cases, whole-mouse HAT and 
HDAC KOs are embryonic lethal. Therefore, to explore 
the roles of these HATs/HDACs in hematopoiesis, either 
hematopoietic progenitors have been isolated from KO 
mice or hematopoietic lineage-specific gene KOs have 
been generated. 

Mice with cell-specific KOs of CBP or p300 
have defects in maintenance and differentiation of 
hematopoietic stems cells (HSCs) [26, 27]. The defect 
in hematopoiesis in p300-null stem cell lines can be 
rescued by re-expression of wild-type p300 or when an 
extra copy of CBP is placed under control of the p300 
locus, suggesting that the total dosage of HAT activity by 
CBP/p300 is critical for hematopoietic maintenance and 
differentiation rather than the specific activity of either 
individual HAT [26, 27]. Likewise, in the MYST family, 
whole animal KO of MOZ is embryonic or perinatal 
lethal, and MOZ KO embryos show a dramatic reduction 
in the number and repopulation capacity of hematopoietic 
progenitors, whereas mice with heterozygous KO or 
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Table 1: Roles of HATs and HDACs in B- and T-cell development and function
HAT or 
HDAC

Role in early 
hematopoiesis Role in B cell Role in T cell

GCN5  
Regulates transcription of IgM H-chain. 
Activates IRF4 (Required for B-cell 
differentiation)

 

PCAF  HSC maintenance (via TRAPP), acetylates 
E2A (major role in B-cell differentiation) Positively regulates FOXP3 expression

CBP HSC maintenance Development of peripheral B cells  

p300 HSC maintenance Development of peripheral B cells
Regulates CCR9 expression during 
thymocyte migration. Acetylates FOXP3, 
which is required for survival of Tregs

TIP60 HSC maintenance  Acetylates FOXP3, and is important for 
survival of Tregs

MOZ HSC maintenance Enhances HOXA9 expression, activates PU.1  

HBO1   
Regulates CD4/CD8 expression patterns in 
thymocytes. Activates CD8 expression via 
global H3K14 acetylation

MOF
HSC maintenance 
and expression 
of hematopoietic 
regulators

  

HDAC1
HSC maintenance. 
ERK1/2 repression 
via SMAD1/5

 

No effect on T-cell development, but leads 
to upregulation of HDAC2. Represses 
cytokine production (IL-4, IL-5, IL-10) 
in activated T cells and during T effector 
cell differentiation. Negatively regulates 
FOXP3 expression.

HDAC2 HSC maintenance   

HDAC3
Repopulation of 
B and T cells and 
HSC self-renewal

 Deacetylates FOXP3, which reduces Treg 
development and suppressive function

HDAC4  
Deacetylates BCL6, activating genes 
(lymphocyte activation, differentiation, 
apoptosis)

 

HDAC5  

Phosphorylated by protein kinases D1 and D3 
and exported as a result of BCR signaling. 
Deacetylates BCL6, which activates genes 
for lymphocyte activation, differentiation, 
and apoptosis

 

HDAC7  

Phosphorylated by protein kinases D1 and D3 
and exported as a result of BCR signaling. 
Deacetylates BCL6, which activates genes 
for lymphocyte activation, differentiation, 
and apoptosis

Represses Nur77 expression during 
TCR negative selection. Regulates gene 
expression during TCR positive selection

HDAC9   
Deacetylates FOXP3, which reduces Treg 
development and immunosuppressive 
activity

HDAC6   

Controls IgM and IgG levels upon antigen 
stimulation. T-cell migration. Immune 
synapse formation. Deacetylates FOXP3, 
which reduces Treg development and 
immunosuppressive activity

HDAC11   Represses IL-10 expression in APCs

SIRT1   
Deacetylates FOXP3, which reduces Treg 
cell development and immunosuppressive 
activity
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with a HAT deletion of MOZ often show intermediate 
phenotypes, suggesting a dose-dependent requirement for 
activity of this HAT [13, 28].

To study the role of specific p300 domains in 
hematopoiesis, a series of p300 deletion mutants were 
re-expressed in p300-null embryonic stem cells (ESCs), 
and their ability to contribute to hematopoiesis was 
analyzed. These studies showed that p300 mutants 
lacking the KIX or CH1 domain had reduced abilities 
to induce hematopoiesis, and these defects were similar 
to the parental p300-null cells [27]. This reduction in 
hematopoiesis is thought to be due to an inability of 
KIX and CH1 deletion mutants to interact with the TF 
MYB [27, 29]. Interestingly, the presence of a functional 
HAT domain in p300 appears to play a role in limiting 
the proliferation of hematopoietic precursors, in that 
expression of a HAT-deficient p300 mutant in p300-
null cells leads to increased numbers of hematopoietic 
cell populations, as compared to re-expression of wild-
type p300 [27]. The dispensability of the CBP/p300 
HAT domain for hematopoiesis may be due to their 
interaction with the HAT PCAF, which provides catalytic 
HAT activity in some CBP/p300 signaling contexts 
(e.g., myogenic differentiation) [30]. Thus, unlike the 
MYST family, which relies on HAT activity for proper 
proliferation of HSCs (described below), the HAT domains 
of CBP/p300 may actually reduce the proliferation of 
some hematopoietic cell types. 

Among the MYST family proteins, the role of 
MOZ in hematopoiesis was determined by analyzing the 
hematopoietic progenitors in MOZ KO mice. Whole-
mouse MOZ KO reduces the number of HSCs, and 
also affects the ability of these stem cells to renew and 
reconstitute the hematopoietic system [13]. HSCs from 
MOZ KO mice have reduced HOXA9 expression, which 
is known to reduce the differentiation potential of HSCs. 
MOZ is also a transcriptional coactivator of PU.1, and 
reduced PU.1 activity can explain many of the phenotypes 
seen in MOZ KO mice [13, 31, 32]. In mice expressing 
HAT-deficient MOZ, hematopoietic progenitors are 
severely defective in competitive repopulation assays, 
demonstrating a critical role of the MOZ catalytic domain 
in HSC functionality [33]. These defects were linked to a 
marked deficiency in the proliferative capacity of HAT-
deficient MOZ precursors [33]. Loss of MYST family 
member MOF in ESCs is associated with a reduction in the 
expression of some hematopoietic genes, suggesting a role 
for MOF in hematopoiesis [34]. Additionally, conditional 
KO of the coactivator TRRAP, which can act as a subunit 
of TIP60 and PCAF HAT-containing complexes, leads to 
loss of HSCs [35].

HDAC1 and 2 have overlapping critical roles in 
early hematopoiesis and HSC homeostasis, largely by 
acting in a SIN3A/HDAC1/2-repressor complex. While 
mice with bone marrow-specific deletions of either 
HDAC1 or HDAC2 show only moderate phenotypes, the 

simultaneous deletion of HDAC1 and HDAC2 (or SIN3A 
alone) leads to nearly complete loss of hematopoietic 
progenitors, causing severe reduction in the numbers of 
spleen, thymic and bone marrow cells [36-38]. During 
HSC emergence in zebrafish, HDAC1 is recruited to 
the erk promoter by SMAD1/5, and represses erk1/2 
expression by deacetylating H3K9 and H3K27 [39]. 
Conditional KO studies have shown that HDAC3 is 
required for DNA replication in HSCs, which is essential 
for their ability to produce B- and T-cell progenitors [40]. 

HATs and HDACs in B-cell development and 
function

Disruption of p300 or CBP at the pro-B cell stage 
results in a 25-50% reduction in the number of B cells in 
the peripheral blood; however, the number of pro-B, pre-B, 
and immature B cells in the bone marrow is unaffected 
[41]. Loss of CBP at this stage does not drastically perturb 
gene expression in resting B cells, as ~99% of microarray 
transcripts measured in CBP-null cells were within 1.7-
fold of controls [41]. These results indicate that loss of 
either p300 or CBP starting at the pro-B cell stage is not 
required for B-cell function, possibly due to functional 
redundancy of these two HATs. In contrast to the single 
KOs, the double KO of CBP and p300 in pro-B cells 
causes a dramatic reduction in the number of peripheral 
B cells [41]. 

With the exception of mature B cells, the HAT 
activity of MOZ is required for the cell proliferation 
required to maintain healthy numbers of hematopoietic 
precursors. That is, mice expressing a HAT-deficient 
MOZ protein show an approximately 50% reduction in the 
numbers of pro/pre-B cells and immature B cells, whereas 
the number of mature B cells and their ability to carry out 
antibody responses is unaffected [33]. 

KO of GCN5 in the chicken immature B-cell line 
DT40 showed that GCN5 regulates transcription of the 
IgM H-chain gene, and GCN5 deficiency decreased 
membrane-bound and secreted forms of IgM proteins [42]. 
GCN5 also directly activates expression of the TF IRF4, 
which is required for B-cell differentiation [43]. PCAF 
acetylates the TF E2A, which plays a major role in the 
differentiation of B lymphocytes [44]. 

HDACs also appear to play a role in signaling 
from the B-cell receptor (BCR). During BCR activation, 
HDACs 5 and 7 are phosphorylated by protein kinases 
D1 and D3 and exported from the nucleus, suggesting a 
link between BCR function and epigenetic regulation of 
chromatin structure [45]. 

A major regulator of B-cell differentiation is the TF 
BCL6, which represses a set of target genes during proper 
germinal center (GC) development [46]. BCL6 also serves 
as an anti-apoptotic factor during an immune response, 
which enables DNA-remodeling processes to occur 
without eliciting an apoptotic DNA damage response 
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[47, 48]. To achieve GC-specific gene expression, BCL6 
is recruited to a large repressor complex that contains 
HDAC4, 5, and 7, and localizes to the nucleus to regulate 
its target genes [49]. Treatment of cells with an HDACi 
results in hyper-acetylation of BCL6, which derepresses 
expression of BCL6 target genes involved in lymphocyte 
activation, differentiation, and apoptosis [50, 51].

In B cells, HDAC1 and 2 play a key, redundant role 
in cell proliferation and at certain stages of development. 
That is, in early B cells the combined KO of HDAC1 and 2 
results in a loss of further B-cell development and the few 
surviving pre-B cells undergo apoptosis due to a cell cycle 
block in G1, whereas individual KOs of these HDACs has 
no effect [52]. In mature B cells, the combined KO of 
HDAC1 and 2 has no effect on cell survival or function 
in the resting state, but these double KO cells fail to 
proliferate in response to lipopolysaccharide and IL-4 
[52].

HATs and HDACs in T-cell development and 
function

HATs and HDACs also play roles in T-cell 
development and function. For example, the HAT p300 
is important for the expression of chemokine CCR9, 
which is expressed in thymocytes during their migration 
and development into mature T cells [53]. Early in this 
developmental process, NOTCH signaling prevents p300 
recruitment to, and acetylation of, core histones at two 
CCR9 enhancers, thus reducing CCR9 expression [53]. 
This NOTCH-dependent repression of CCR9 occurs via 
effects on p300 in multipotent progenitor cells and is also 
observed in T-lymphoma cell lines [53].

Thymus-specific deletion of the bromodomain-
containing protein BRD1, which is a subunit of the HAT 
HBO1 complex [54], alters the pattern of CD4/CD8 
expression in thymocytes and decreases the abundance of 
CD8+ mature T cells in the periphery [55]. Furthermore, 
the HBO1-BRD1 complex is responsible for activating 
CD8 expression by increasing global acetylation of 
H3K14 in developing T cells [55].

T cell-specific KO of HDAC1 does not affect 
late T-cell development or the number of T cells in the 
periphery [56]. The lack of an effect is likely due to 
compensation by HDAC2, whose expression is increased 
when HDAC1 is inactivated [56]. Moreover, T cell-
specific KO of both HDAC1 and 2 results in arrested 
T-cell development [57], similar to what is seen in HSCs 
and early B cells (see above). Nevertheless, T cell-specific 
KO of HDAC1 alone does cause an increased Th2-type 
inflammatory response in a mouse model of asthma, 
which is characterized by elevated expression of IL-4, IL-
5, and IL-10, suggesting that HDAC1 represses cytokine 
production in activated T cells and during T effector 
(Teff) cell differentiation [56]. Of note, the HDAC1-

deficient increased expression of IL-4 in T cells is seen 
only after several rounds of cell division, suggesting that 
the effect of HDAC1 on IL-4 expression occurs via an 
epigenetic mechanism, and that the removal of repressive 
marks occurs during DNA replication [56]. In T cells, an 
HDAC1/mSIN3A complex represses IL-2 expression [58], 
and during T-cell activation, HDAC1-mediated repression 
of IL-2 is relieved by phosphorylation of mSIN3A by 
CDK5, which disrupts the formation of the HDAC1/
mSIN3A complex [58]. 

HDAC6-null mice exhibit normal B-cell 
development, but have reduced IgM and IgG levels 
following antigen stimulation [59]. This defect may be due 
to the role of HDAC6 in immune synapse formation and 
T-cell migration [60, 61]. 

In developing T cells, the interaction of class 
2 HDACs with the TF MEF2D plays a major role in 
regulating T-cell receptor (TCR)-mediated apoptosis 
during negative selection of T cells with a TCR that 
interacts with self-antigen. For example, HDAC7 is 
recruited to the NUR77 promoter by MEF2D, where 
it acetylates chromatin and represses the expression 
of this apoptotic regulator [62]. In T cells undergoing 
negative selection, HDAC7 or class 2 HDACs become 
phosphorylated near their N-termini by protein kinase 
D, which allows recognition by 14-3-3, disruption of the 
interaction with MEF2D, and results in nuclear export of 
the repressive HDAC [62-64]. In addition to its role in 
negative selection, HDAC7 regulates the expression of 
genes involved in positive thymic selection. For example, 
HDAC7 KO and mutation studies in mouse thymocytes 
have shown that transcription of HDAC5 is regulated by 
MEF2D but not by NUR77; thus, HDAC5 may be a direct 
target for transcriptional regulation by HDAC7 during 
positive, but not negative T-cell selection [65, 66]

Class 4 HDAC11 represses the expression of IL-
10 in antigen-presenting cells (APCs) by interacting with 
the distal region of the IL-10 promoter [67]. HDAC11 
localization at the IL-10 distal promoter is coupled to 
increased binding of the transcriptional repressor PU.1 
at the distal promoter and decreased acetylation of 
histones H3 and H4 at the proximal IL-10 promoter [67]. 
APCs that overexpress HDAC11 are able to restore the 
responsiveness of tolerant CD4+ T cells [67].

HATs and HDACs in the development of 
T-regulatory cells

T-regulatory cells (Tregs) play an important role in 
limiting T-cell immune responses, and HATs and HDACs 
have a variety of roles in Treg function. p300 and other 
HATs maintain the stability and function of Tregs by 
acetylating the TF FOXP3, whose transcriptional output 
is required for Treg-mediated immunosuppression [68]. 
FOXP3 expression in Tregs can be either positively 
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or negatively regulated by the TF KLF10 through its 
association with PCAF or SIN3-HDAC1, respectively 
[69]. Interestingly, p300-deficient Tregs show many of 
the same defects in activity, survival and proliferation 
that occur in FOXP3-deficient Tregs [68], suggesting that 
the effects of p300 deficiency on Treg function are due 
to a reduction in FOXP3 activity. FOXP3 has also been 
found in a transcriptional regulatory complex with TIP60, 
HDAC7, HDAC9, and other proteins [70].

The acetylation of FOXP3 by either p300 or TIP60 
both protects FOXP3 from degradation and increases its 
DNA-binding activity, and as a result, p300- or TIP60-
deficient Tregs have defects in activity, survival, and 
proliferation [68, 71]. Deleting either p300 or CBP 
in FOXP3+ Tregs in mice does not affect the overall 
proportion of T cells under basal conditions, and thus, 
these two HATs appear to have redundant roles in Treg 
production under resting conditions [72, 73]. When the 
Tregs are activated, however, p300- or CBP-deficient 
FOXP3+ Tregs undergo apoptosis, are unable to suppress 
homeostatic Teff cell proliferation, and reject transplanted 
allografts [72, 73]. Mice with simultaneous Treg-specific 
deletion of p300 and CBP develop severe autoimmunity, 
as both p300 and CBP interact not only with FOXP3, but 
also with many FOXP3-regulating TFs including NFAT, 
STAT1, FOXO1, FOXO3, NF-κB, RUNX1, and STAT5 
[72, 74-78]. Nevertheless, p300 and CBP also have 
distinct roles in Tregs; for example, only p300 is required 
for efficient GATA-3 expression, which is important for 
FOXP3 expression and Treg accumulation [72]. 

Countering the HATs, the HDACs deacetylate 
FOXP3, which reduces Treg development and 
immunosuppressive function, and also provides a 
therapeutic target for enhancing immunosuppressive (and 
potentially anti-tumor) activity in patients [79-81]. FOXP3 
can be deacetylated by certain HDACs (i.e., HDAC3, 6, 
7, 9 and SIRT1), which decreases FOXP3 protein levels 
and activity [80, 82, 83]. Of note, HDAC6, which is 
normally cytoplasmic, translocates to the nucleus of some 
Tregs where it can deacetylate FOXP3 [81]. Treg-specific 
deletion of these HDACs or treatment with HDACi has 
been shown to enhance immunosuppressive activity and 
Treg function [79]. Taken together, these results suggest 
that acetylation of FOXP3 favors Treg development. 
However, while Treg development is important in limiting 
host autoimmunity, it may also reduce host immune 
responses and anti-tumor activity. Thus, inhibition of 
FOXP3 acetylation is a promising anti-tumor strategy 
[73]. 

Regulation of Immune Cell-Related TFs by 
Acetylation

The activities of several TFs that play key roles 
in immune responses are affected directly and indirectly 
by HATs/HDACs. In most cases, the ability of CBP/

p300 to acetylate a given TF and affect its activity has 
been investigated (summarized in Table 2). There 
are four general ways that direct acetylation has been 
shown to affect TF function: 1) lysine acetylation can 
increase protein stability by blocking ubiquitination of 
the same lysines that promote proteasome-mediated 
degradation; 2) lysine acetylation within the DNA-
binding domain can decrease the ability of the TF to bind 
DNA; 3) lysine acetylation can increase (or decrease) 
protein-protein interactions with TF regulators; and 4) 
acetylated lysines on TFs can serve as a docking domain 
for the bromodomain of HATs, which can increase 
their transactivation activity [18]. For example, NF-κB 
and STAT subunits are important regulators of B- and 
T-cell development and function. Both of these TFs 
undergo acetylation/deacetylation at several lysines, 
and acetylation at different residues can positively or 
negatively impact their activity in distinct ways depending 
on the lysine residue [84, 85]. Furthermore, the activity of 
NF-κB and STAT can be indirectly affected by acetylation, 
for example, by acetylation of their specific co-activators, 
the TFs that interact with them, or histones at their target 
gene promoters. Moreover, the ability of acetylation to 
affect NF-κB and STAT activity can depend on the specific 
target gene studied.

In a small number of cases, it is known how 
acetylation alters the activity of a TF in a way that 
affects B- or T-cell function. As described above, the 
TF FOXP3 is a direct substrate of p300 and other HATs, 
and acetylation of FOXP3 plays a key role in Treg 
development and maintenance [68]. Acetylation increases 
FOXP3 activity by stabilizing the protein and enhancing 
its DNA-binding activity at certain promoters [68]. 

BCL6 is a transcriptional repressor that is 
essential for GC formation and lymphocyte function 
and proliferation [86, 87]. p300 can directly bind to 
and acetylate BCL6, which interferes with its ability to 
bind HDAC-containing complexes and consequently 
inactivates its repressor activity [50]. CBP/p300 mutant 
proteins found in some diffuse large B-cell lymphomas 
(DLBCLs) show a reduced ability to acetylate BCL6 [88], 
and therefore such lymphoma cells have increased BCL6 
activity, which is related to the oncogenic state of these 
cells.

GATA-3 plays a key role in T-cell differentiation 
and survival, and acetylation has been shown to increase 
GATA-3 transactivation activity [89]. Moreover, 
overexpression of an acetylation-defective GATA3 protein 
affects T-cell homing to lymph nodes and increases T-cell 
survival after antigen stimulation [89].

HATs and HDACs in B- and T-cell Malignancy

Given their broad role in control of lymphoid 
cell gene expression and TF activity, it is not surprising 
that misregulated acetylation is found in many cancers. 
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As described in more detail below, in B- and T-cell 
cancers one often finds gene deletions and mutations 
that inactivate or reduce HAT activity (e.g., in CBP/
p300) or overexpression of non-mutant forms of HDACs. 
As a consequence, reduction of global histone and TF 
acetylation appears to be correlated with B- and T-cell 
proliferation and survival, whereas increased acetylation 
is associated with B- and T-cell tumor growth arrest and 
cell death.

Mutations of HATs in B- and T-cell leukemia/
lymphoma 

Although chromosomal translocations involving 
p300, CBP and MYST are well-documented in acute 
myeloid leukemia [90], they have not been found in B- 
and T-cell malignancies. However, other types of HAT 
gene mutations are common in certain types of B- and 
T-cell cancers. Namely, the genes encoding CBP and 

Table 2: B- and T-cell transcription factors that are regulated by acetylation
Transcription
Factor

Effect of
Acetylation Mechanism of Action Refs

C/EBPβ Activation Transactivation [155]
E2A Activation Transactivation, protein stability [156, 157]
E47 Activation Transactivation [157]

FOXP3 Activation DNA binding, protein stability [68]
GATA-2 Activation DNA binding [158]

GATA-3 Activation Transactivation [89]
IRF2 Activation Transactivation [159]
JUN Activation Protein-protein interaction [160]

MYB Activation Transactivation [161]
MYC Activation Protein stability [162]

NFATc1 Activation DNA binding [163]
NOTCH1 Activation Protein stability [164]

NOTCH3 Activation Protein stability [165]
p53 Activation Protein stability [166]

PAX5 Activation Transactivation [167]
PU.1 Activation Transactivation [168]
RUNX1 Activation DNA binding/transactivation [169]

RUNX2 Activation Protein stability [170]
RUNX3 Activation Protein stability [171]

SMAD3 Activation Transactivation [172]
SP3 Activation Transactivation [173]
STAT3 Activation DNA binding, transactivation; protein-protein interactions [85]

STAT5 Activation Dimerization, transactivation [174]
TCF4 Activation Protein-protein interaction [175]

YY1 Activation DNA binding [176]

NF-κB Activation
Inhibition

DNA binding, IκB binding, transactivation
DNA binding; IκB binding, nuclear export [84]

BCL6 Inhibition HDAC recruitment interference [50]
CIITA Inhibition Protein degradation [177]

ETS-1 Inhibition DNA binding [178]
HIF-1α Inhibition Protein degradation [179]
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p300 harbor point mutations or deletions in approximately 
20–40% of DLBCL [88, 91, 92], about 70% of follicular 
lymphomas (FL) [93], and less frequently in T-cell 
leukemia, acute lymphoblastic leukemia (ALL) and 
myelodysplastic syndrome [94, 95]. The TIP60 gene 
frequently suffers mono-allelic loss and reduced expressed 
in several types of B-cell lymphoma [95]. Moreover, our 
analysis of the Cancer Cell Line Encyclopedia (CCLE) 
database [96] finds that mutations in CBP/p300 and other 
HATs (especially MORF) are common in a variety of B- 
and T-cell cancer cell lines (Table 3). With CBP and p300, 
the majority of these lymphoma mutations occur within 
or near the HAT domain or introduce frame-shifts or stop 
codons N-terminal to the HAT domain (see Figure 2). 
Thus, many of the CBP/p300 mutations found in DLBCL 
and FL are predicted to reduce acetyltransferase activity 
[88]. Indeed, several of these point mutations have been 
demonstrated to impair the affinity of CBP for acetyl-
CoA and consequently compromise the ability of CBP to 
acetylate the TFs BCL6 and p53 [88]. Of note, acetylation 
of BCL6 decreases its gene repressing activity, whereas 
acetylation of p53 is required for its gene activation 
function (Table 2) [50, 97]. Thus, DLBCL cells with HAT 
gene mutations have higher levels of active BCL6 and 
lower levels of active p53 [88], consistent with decreased 
acetylation being associated with increased tumor cell 
growth.

In contrast to the more common point mutations, 
genomic alterations that completely remove the HAT 
domain in CBP or p300 are present in a minority of 
DLBCL and FL tumors and cell lines [88, 93]. Expression 
of C-terminally truncated CBP/p300 proteins missing the 
HAT domain has been demonstrated in some DLBCL 
cell lines [88, 98, 99]. A variety of evidence suggests 
that these HAT-deficient p300 mutants play an active 

role in lymphomagenesis. First, expression of the HAT-
deficient p300 proteins is preferentially retained in 
these cell lines, whereas the wild-type allele is silenced 
[98, 99]. Second, knockdown of p300 mutant protein 
expression reduces the growth of some DLBCL cell lines 
[98, 99]. Third, HAT-deficient p300 mutants localize to 
sites of active transcription in cell nuclei, interact with 
the lymphomagenic TF REL, and affect transcription of 
REL target genes [98-100]. Moreover, expression of a 
HAT-deficient mutant of p300 increases the proliferation 
of HSCs that lack wild-type p300 [27]. DLBCL cell lines 
that express HAT-defective p300 mutants have generally 
lower levels of histone H3 acetylation at K14 and K18 
[99]. Low levels of H3K14 and H3K18 acetylation have 
been associated with proliferation in other cell types [101], 
and CBP/p300 catalyze nearly all H3K18 acetylation in 
mice [102]. Thus, even though they are defective for 
HAT activity, C-terminally truncated p300 proteins 
appear to contribute to B-cell transformation, at least in 
part, by acting as aberrant scaffolds that organize altered 
transcription complexes at a variety of gene promoters/
enhancers to cause a broad-range of transcriptional 
deregulation. For example, we have previously suggested 
that dampening of global REL/NF-κB-dependent gene 
transcription is one oncogenic effect of p300 mutants in 
DLBCL [99]. 

Similar to the effects of mutations on HAT activity 
in lymphoma, the HBZ protein of Human T-cell Leukemia 
Virus type 1 (HTLV-1) binds to and inactivates the HAT 
domains of CBP and p300, and consequently reduces 
cellular levels of H3K18 acetylation [103, 104]. Thus, 
inhibition of CBP/p300 HAT activity may also be 
important for HTLV1-induced T-cell leukemia.

Interestingly, the TF BCL6, which is upregulated 
in and required for the growth of approximately 70% 

Figure 2: CBP/p300 mutations reported in CCLE in B- and T-cell cancer cell lines. Schematic diagram of the CBP/p300 
proteins with conserved domains indicated in the shaded regions as follows: cysteine/histidine domain (CH), KIX domain, bromodomain 
(Br), acetyltransferase domain (KAT). Symbol shapes designate types of mutations as follows: missense (circle); nonsense (triangle); 
and frameshift, splice site, or deletion (square). Symbol color indicates the disease type: DLBCL (red); Hodgkin’s lymphoma (blue); 
T-cell leukemia (acute lymphoblastic or anaplastic large cell) (green); plasma cell myeloma (yellow); acute lymphoblastic B-cell leukemia 
(purple); B-cell lymphoma unspecified (black); and Burkitt’s lymphoma (white). CBP mutations are (in order, left to right) Q170*, M395T, 
L470fs, A620V, Q790*, P901L, P928A, P975L, S1108L, K1203 splice, E1238*, T1332I, R1360*, S1432P, D1435E, F1440L, R1446L, 
Q1491K, S1680del, and S1687P. p300 mutations are Q160*, M165I, V279I, S281T, L415P, M514V, R728W, E1011*, E1160V, A1268V, 
R1391 splice, H1415P, G1506V, L1520V, K1546fs, R1627W, S1650F, R1773W, Q1904P, A2259T, P2358L, P2367L.
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of DLBCLs [105], appears to be a direct transcriptional 
repressor of the p300 gene [106]. Furthermore, induced 
expression of p300 is required for the anti-proliferative 
effects of BCL6 inhibitors on DLBCL cell lines [106]. 
Consequently, DLBCL cell lines with defective p300 
proteins are resistant to the anti-growth effects of BCL6 
inhibitors, and in these cell lines, HDACi synergize with 
BCL6 inhibitors for inhibition of DLBCL cell growth 
[106].

Overall, there are no good mouse models for HAT 
gene mutations in B- and T-cell malignancy. In one 
report [107], a single mouse reconstituted with CBP-null 
HSCs developed a thymic lymphoma that arose from 
the CBP-null cells, but that mouse has not been further 
characterized. Based on the inactivation of the wild-
type EP300 allele in DLBCLs containing certain p300 
mutations [98, 99], expression of truncated or mutant 
p300 proteins (from human DLBCLs) in p300-/- B-cell 
precursors may lead to B-cell malignancy in a transgenic 
mouse model. 

HDAC dysregulation in B- and T-cell lymphoma/
leukemia

Unlike the case with HATs, mutations in genes 
encoding HDACs have not been found in any B- and 
T-cell malignancies. However, HDACs have been reported 
to have altered (usually increased) expression in a variety 

of B- and T-cell malignancies, including DLBCL, FL, 
and chronic lymphocytic leukemia (CLL) (Table 4). 
For example, HDAC1 is overexpressed in some T-cell 
lymphomas [108-112], while HDAC6 has been reported 
to be both overexpressed [110, 113] and underexpressed 
[114] in DLBCL. 

At this point, two of the most relevant questions are 
whether altered expression of a specific HDAC contributes 
to the growth or survival of the tumor cells (and how it 
does so) and whether altered HDAC expression can be 
prognostic for therapy. In a smattering of cases, there are 
data addressing these questions, but the overall picture 
is still not clear. Inhibition of HDAC8 induces apoptosis 
in T cell-derived lymphoma and leukemic cells, but 
not in solid tumors [115]. High HDAC4 expression is 
associated with a poor response to prednisone in ALL, and 
siRNA-mediated inhibition of HDAC4 has been shown 
to sensitize a T-ALL cell line to etoposide-induced cell 
death [116]. Moreover, the interaction of HDAC4 with 
the leukemic PLZF-RARα fusion protein contributes to 
oncogenesis because it is required for the repression of 
differentiation-associated genes [117].

In childhood acute lymphoblastic leukemia (ALL), 
high HDAC3 expression has been associated with a better 
prognosis, whereas overexpression of HDAC7 and 9 have 
been associated with a poorer prognosis [118]. A study of 
over 200 adult CLL B-cell tissue samples reported that 
overexpression of HDAC7 and 10 and underexpression of 
HDAC6 and SIRT3 are correlated with a poor prognosis 

Table 3: HAT gene mutations in B- and T-cell malignancies

HAT Percent of B- and T- cell lines with HAT 
gene mutations from CCLE [96]

Percent of HAT gene mutations in leukemia/
lymphoma from select genome-wide studies

ATF2 0.6  

CBP 13.3
DLBCL, 19% (443) [88, 91-93, 180, 181] 
FL, 50% (52) [92, 93], 
Relapsed ALL, 18% (71) [182]

p300 10.5 DLBCL, 11% (546) [88, 91-93, 106, 180] 
FL, 19% (52) [92, 93]

TIP60 0 DLBCL, 2% (49) [180]

MOZ 7.7 DLBCL, 4% (53) [181]

MORF 27.6  

HBO1 0.6  
NCOA1 2.2  
NCOA2 3.9 DLBCL, 2% (53) [181]

NCOA3 39.8 DLBCL, 4% (53) [181]
CLOCK 0 DLBCL, 2% (102) [180, 181]

TAF1 3.3 FL, 10% (39) [93] 
DLBCL, 5% (102) [180, 181]

Percentage of cell lines mutated in CCLE (Cancer Cell Line Encyclopedia) indicates the percentage of 181 hematopoietic and 
lymphoid cell lines that had a mutation in the indicated HAT gene. DLBCL and FL genomic studies indicate the percentage of 
cases reported to have mutations in the indicated HAT gene in either DLBCL (diffuse large B-cell lymphoma) or FL (follicular 
lymphoma) patient samples and/or cell lines, with the total number of samples analyzed shown in parentheses.
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[119]. HDAC6 overexpression correlates with a more 
favorable outcome in DLBCL, but with a negative 

outcome in peripheral T-cell lymphoma [110]. Although 
HDAC1, 2 and 3 are all overexpressed in Hodgkin’s 

Table 4: Misregulated expression of HDACs in B- and T-cell malignancies
HDAC Disease Expression Refs

1 T-ALL Increased [118]
B-ALL Increased [119]
ALL Increased [116]

HL Increased [120]
DLBCL Increased [110]
CLL Increased [183]

2 ALL Increased [116, 118]
B-ALL Reduced [119]

HL Increased [120]
DLBCL Increased [110]

3 ALL Increased [118]
CLL Increased [183]

DLBCL Increased [184]
HL Increased [120]

4 T-ALL Increased [118]
5 B-ALL Increased [118]

6 ALL Increased [118]
B-ALL Increased [119]
CLL Increased [183]

DLBCL Increased [110]
7 ALL Increased [118]

B-ALL Increased [119]
CLL Increased [183]

8 ALL Increased [116, 118]

9 CLL Increased [183]
10 CLL Increased [183]
11 B-ALL Reduced [119]

B-ALL Increased [119]
SIRT1 CLL Increased [183]
SIRT3 B-ALL Increased [119]
SIRT4 B-ALL Decreased [119]
SIRT5 B-ALL Decreased [119]

SIRT6 B-ALL Increased [119]
CLL Increased [183]

SIRT11 B-ALL Increased [119]

ALL, acute lymphocytic leukemia; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large 
B-cell lymphoma; HL, Hodgkin’s lymphoma.
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lymphoma tissue samples, only high HDAC1 expression 
is correlated with a worse outcome [120].

As with HATs, there are no good mouse models for 
the role of HDACs in cancer. Based on most evidence, 
it is unlikely that overexpression of any HDAC would, 
by itself, be oncogenic. Thus, one method for evaluating 
the molecular mechanisms by which increased HDAC 
expression contributes to oncogenesis might be to create 
transgenic mice with B and/or T cell-specific expression 
of a relevant HDAC (e.g., HDAC6) and cross such mice to 
other common transgenic mouse tumor models (e.g., Eµ-
MYC mice). One could then determine whether increased 
HDAC expression leads to enhanced tumor development 
or if such mice develop chemo- or HDACi-resistant 
tumors. 

HAT and HDAC Inhibitors in the Treatment of 
B- and T-cell Cancers

Given that mutations and dysregulation of HATs and 
HDACs occur in many B- and T-cell cancers, as well as 
their global effects on protein activity and gene expression, 
these enzymes have been investigated for therapeutic 
targeting. Below we discuss the types of compounds that 
have been found to inhibit HAT and HDAC activity, and 
examples of such molecules being used in the treatment of 
lymphoid cancer cells. Overall, HDACi have been more 
useful in such settings than HATi, and HDACi are being 
used in the clinic to treat lymphoid cell cancers.

HAT inhibitors (HATi)

Several types of compounds have been characterized 
as HAT inhibitors, including a variety of synthetic 
compounds and natural products and their derivatives. 
In general, such compounds are pan-HAT inhibitors or 
inhibitors of GCN5 or CBP/p300 [121, 122].

There are few reports of HATi as inhibitors of B- or 
T-cell cancers, and no HATi are currently FDA approved. 
Anacardic acid, found in cashew nuts, is a potent inhibitor 
of p300, PCAF, and TIP60 [123, 124]. Anacardic acid 
and derivatives have been shown to inhibit Jurkat T-cell 
leukemia cells at micromolar concentrations [125]. Of 
note, Jurkat cells have been shown to express two TIP60 
variants, including one with a deleted HAT domain [126]. 
The natural products gallic acid and curcumin have both 
been shown to act as HAT inhibitors [127, 128], and can 
induce proliferation arrest and apoptosis in lymphoma 
cells [129, 130]. However, gallic acid and curcumin are 
not especially potent inhibitors of lymphoma cell growth 
and both have many protein targets [131, 132]; thus, it is 
not clear that their effects on lymphoma cell growth are 
due to their anti-HAT activity. The synthetic compound 
C646 is a specific p300 inhibitor, however, it was not 
especially effective against leukemia cell lines in a screen 

of the National Cancer Institute (NCI) 60-cell line panel 
[133].

HDAC inhibitors (HDACi) 

Given that increased HDAC expression and activity 
is found is many lymphoid malignancies (see above), 
it is perhaps not surprising that HDACs should emerge 
as targets for therapy. In contrast to HATi, HDACi have 
been extensively studied for anti-cancer activity. Indeed, 
since 2001, a number of HDACi have been used in the 
clinic for the treatment of various cancers, including B- 
and T-cell cancers [134]. Alone or in combination with 
other anti-cancer agents, a variety of HDACi have been 
shown to induce apoptosis in many different types of B- 
and T-cell lymphoma and leukemia cell lines (Table 5). 
Following from those studies, several HDACi have been 
tested clinically for the treatment of such human cancers, 
including cutaneous T-cell lymphoma (CTCL), DLBCL, 
multiple myeloma (MM), FL, Hodgkin’s lymphoma (HL), 
and several others (Table 6), and as of April 2015, there 
are at least 12 ongoing clinical trials testing HDACi alone 
or in combination with other cancer therapeutics for the 
treatment of several B- and T-cell malignancies (Table 7).

HDACi fall into five main classes, based in part on 
their chemical structures and in part on their specificity. 
These include the following: 1) hydroxyamic acids, 2) 
cyclic tetrapeptides, 3) benzamides, 4) ketones, and 5) 
aliphatic acids. In addition, HDACi can have broad-based 
pan-HDAC inhibitory activity, have class specificity, or 
even isozyme specificity. Currently, four HDACi have 
received FDA approval for clinical use. The first two 
FDA-approved inhibitors are the pan-HDACi vorinostat 
(aka suberoylanilide hydroxamic acid [SAHA]), which 
is available as an oral medication, and the class I 
HDACi romidepsin (a bacterial cyclic peptide), which is 
administered intravenously. HDACi treatment is especially 
effective in the treatment of CTCL, with favorable 
response rates (from a number of trials) of approximately 
70% when using romidepsin (Table 6). Although it is not 
known why CTLC responds well to HDACi treatment, 
increased expression of HDAC2 and histone H4 
acetylation have been correlated with aggressive CTCL 
[110]. The HDACi belinostat was approved in 2014 for 
relapsed and refractory peripheral T-cell lymphomas [135]. 
Finally, the HDACi panobinostat, another hydroxamate, 
has been approved by the FDA for refractory multiple 
myeloma [136]. Because of the role of HDACs in normal 
immune cell function, one problem with using HDACi 
treatment for anti-cancer therapy is the concomitant 
suppression of host immune responses required for anti-
tumor therapy (see also HATs and HDACs in development 
of T-regulatory cells section above) [137]. 

In the simplest scenario, HDACi treatment increases 
the level of acetylation of histones on chromatin, thereby 
increasing gene expression, and HDACi also increase the 
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Table 5: HDACi compounds that induce apoptosis in B- and T-cell cancer cells

HDACi Class Target of 
HDACi

Clinical 
trial 
stage

Hematopoietic 
malignancy (Patient and 
Cell Line)

Combination treatments 
that induce apoptosis Refs

Butyrate (NaB) Short-chain 
fatty acid Class 1, 2a Phase I, 

II B-lymphoma, BL Cisplatin, Etoposide
[142, 
185, 
186]

Valproic Acid 
(VPA)

Short-chain 
fatty acid

HDAC1-5, 
7, 8, 10

Phase I, 
II, III

AML, CML, CLL, DLBCL, 
HL, MM, NHL, NK cell 
lymphoma, SLL, T-cell 
lymphoma

5-Azacytidine, ATRA, 
Bortezomib, Cambinol, 
Cyclophosphamide, 
Decitabine, Enzastaurin, 
Etoposide, EX527, 
Imatinib, Pioglitazone, 
Prednisone, Rituximab, 
Sirtinol, Temozolomide, 
Vincristine

[142, 
187-
193]

Tricostatin A 
(TSA) Hydroxamate Class 1, 2, 4 AML, B-lymphoma, 

DLBCL, EBV+ BL, NHL Decitabine

[142, 
146, 
186, 
194-
197]

Vorinostat, 
Suberoylanilide 
hydroxamate 
(SAHA)

Hydroxamate Class 1, 2, 4 Phase I, 
II, III

ALL, AML, CLL, CML, 
CTCL, DLBCL, HL, MCL, 
MM, NHL

17-AAG, ABT-737, 
Azacitidine, Bexarotene, 
Bortezomib, Carboplatin, 
Carfilzomib, Cladribine, 
Cyclophosphamide, 
Decitadine, Eltrombopag, 
Enzastaurin, Etoposide, 
Ifosfamide, Lenalidomide, 
Melphalan, NPI-0052, 
Prednisone, Rituximab

[67, 
134, 
142, 
146, 
198-
209]

Belinostat 
(PDX101) Hydroxamate Class 1, 2, 4 Phase I, 

II, III
ALL, AML, CLL, MM, 
MCL, NHL, PTCL, T-cell 
lymphoma

17-AAG, Azacitidine, 
Bortezomib

[142, 
188, 
206, 
210-
214]

Dacinostat 
(LAQ824) Hydroxamate Class 1, 2, 4 Phase I

Acute eukemia, AML 
progenitor cells, CLL, 
meyloid leukemias 

Decitabine
[142, 
215-
219]

Panobinostat 
(LBH589) Hydroxamate Class 1, 2, 4 Phase I, 

II, III

AML, CLL, CML, CTCL, 
DLBCL, HL, MCL, MM, 
NHL, NK/T-cell lymphoma, 
PTCL

17-AAG, Bortezomib, 
Carboplatin, Cytarabine, 
Etoposide, Everolimus, 
Idarubicin, Imatinib, 
Ifosfamide, Lenalidomide, 
Pemetrexed, Rituximab

[134, 
142, 
203, 
220-
224]

Suberic 
bishydroxamate 
(SBHA)

Hydroxamate Class 1, 2, 4 ALL, Leukemia, MM ABT-737
[142, 
145, 
225, 
226]

Azelaic 
bishydroxamate 
(ABHA)

Hydroxamate Class 1, 2, 4 EBV+ B-cell lines ABT-737 [142, 
227]

SK-7041 Hydroxamate HDAC1, 2 Meyloid leukemia Imatinib [228, 
229]

ITF-A and 
ITF-B Hydroxamate Class 1, 2, 4 Phase I DLBCL, MCL, SMZL [151]

Tubacin Hydroxamate Class 2b ALL, AML, CML,  EBV+ 
BL, MM 17-AAG, Bortezomib

[142, 
230-
233]

JNJ 26481585 Hydroxamate Class 1, 2, 4 Phase I CTCL, Leukemia, MM Bortezomib, 
Dexamethasone [234]

PCI-24781 Hydroxamate Class 1, 2, 4 Phase I HL, NHL Bortezomib, Pazopanib [235, 
236]
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acetylation of non-histone proteins. For lymphoid cell 
TFs, increased acetylation can either increase or decrease 
their activity (Table 2). Because of the myriad effects of 
acetylation/deacetylation on gene expression and protein 
activity, it is almost certain that the effects of HDACi on 
tumor cell growth and survival are not through single or 
even a small number of targets. Moreover, the effects 
of HDACi would be expected to vary among tumor cell 
types, within a given tumor type, and, due to tumor cell 
heterogeneity, even within a given tumor. 

Consistent with those hypotheses, treatment of 
CTCL cell lines with vorinostat showed that HDACi 
treatment leads to hyperacetylation of all core histones, 
which is associated with changes in the expression of 
genes involved in regulation of the G1/S and G2/M 
transitions, apoptosis, anti-proliferation, and MAPK 
signaling [138]. Overall, gene expression profiling showed 
that up to 22% of genes are altered by HDACi as early 
as four hours post treatment in several cell types [139-
141]. Nevertheless, there does appear to be a common set 
of genes that change expression in response to HDACi 
treatment, and these genes include several cyclins, 

the cell-cycle inhibitor p21, p53, BAX, BCL2, MYC, 
PKCδ, ICAM-1, IL-6 receptor, IL-2, IL-8, IL-10, VEGF, 
NOTCH, GADD45 and GADD45, TGF receptor, CTP 
synthase, and TYMS (reviewed by [17, 134, 142]. At 
least in part, HDACi induce cell-cycle arrest by causing 
accumulation of hyperacetylated p53, which then induces 
expression of p21, leading to inhibition of cyclins D and 
A, which are required for cell-cycle progression (reviewed 
by [134, 142]). However, because CTCL tumors typically 
grow quite slowly in patients, it is unclear how the 
reported effects of HDACi on cell-cycle progression in 
rapidly growing cell lines in vitro reflect its effects on 
CTCL tumors in vivo. 

HDACi treatment of tumor cells has been frequently 
linked to the modulation of BCL2 family expression 
to favor a pro-apoptotic expression pattern (reviewed 
by [134, 142, 143]). In many cases, HDACi-induced 
apoptosis occurs via increased expression of pro-apoptotic 
BCL2 family members BIM, BAX, PUMA, and NOXA 
(reviewed by [142, 144, 145]). Moreover, resistance to 
HDACi-induced apoptosis can be achieved in DLBCL 
cells lines by artificial or induced expression of anti-

Entinostat (MS-
275) Benzamide HDAC1-3 Phase I, 

II
ALL, AML, CML, HL, 
MM

Azacitadine, 
Imatinib, Isotretinoin, 
Sargramostim, Sorafenib, 
Rapamycin, Rituximab

[142, 
237-
241]

Mocetinostat 
(MGCD-0103) Benzamide HDAC1-3, 

10, 11
Phase I, 
II AML, CLL HL, NHL

5-azacitadine, 
Bortezomib, Docetaxel, 
Gemcitabine, GX15-070 

[242-
250]

Romidepsin 
(FK228)

Cyclic 
tetrapeptide Class 1, 2, 4 Phase I, 

II, III
ALL, AML, CLL, CTCL, 
DLBCL, MM, MCL, NHL, 
PTCL, SLL

Bortezomib, Carboplatin, 
Cyclophosphamide, 
Decitadine, Etoposide, 
Ifosfamide, Prednisone, 
Rituximab, Vincrstine 

[206, 
210, 
223, 
251-
260]

Apicidin Cyclic 
tetrapeptide HDAC1, 3 APL, CML Imatinib, TRAIL

[142, 
261-
264] 

Nicotinamide Vitamin B 
member Sirtuins CLL [265]

Tenovin-6 (TV-
6)

Small 
Molecule SIRT1 CML Imatinib [266]

Amurensin G Natural 
Product SIRT1  TRAIL-resistant leukemia  [267]

Cell types: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; BL, Burkitt’s 
lymphoma; CLL, chronic lymphocytic leukemia; CML, chronic myelogenous leukemia; CTCL, cutaneous T-cell lymphoma; DLBCL, 
diffuse large B-cell lymphoma; EBV+ BL, Epstein-Barr virus-positive BL; HL, Hodgkin’s lymphoma; MCL, mantle cell lymphoma; MM, 
multiple myeloma; NHL, non-Hodgkin’s lymphoma; PTCL, peripheral T-cell lymphoma; SLL, small lymphocytic lymphoma.
Drug type: 17-AAG (Hsp90 inhibitor); ABT-737 (BH3-mimetic); ATRA (all-trans retinoic acid); azacitidine (DNA methyltransferase 
inhibitor); bexarotene (antineoplastic agent); bortezomib (proteasome inhibitor); cambinol (sirtuin inhibitor); carboplatin (antineoplastic 
agent); carfilzomib (proteasome inhibitor); cisplatin (alkylating agent); cladribine (adenosine deaminase inhibitor); cyclophosphamide 
(alkylating agent); cytarabine (DNA synthesis inhibitor); decitabine (DNA methyltransferase inhibitor); dexamethasone (glucocorticoid 
steroid); docetaxel (anti-mitotic agent); eltrombopag (thrombopoeitin receptor agonist); enzastaurin (PKCβ inhibitor); etoposide 
(topoisomerase inhibitor); everolimus (mTOR inhibitor); EX527 (sirtuin inhibitor); gemcitabine (nucleoside analog); GX15-070 (BH3-
mimetic); idarubicin (topoisomerase II inhibitor); imatinib (tyrosine kinase inhibitor); ifosfamide (alkylating agent); isotretinoin (retinoic 
acid analog); lenalidomide (tumor necrosis factor [TNF] inhibitor); melphalan (alkylating agent); NPI-0052 (proteasome inhibitor); 
pazopanib (tyrosine kinase inhibitor); pemetrexed (folate antimetabolites); pioglitazone (thiazolidinedione); prednisone (glucocorticoid 
prodrug); rituximab (anti-CD20 antibody); sargramostin (recominant GM-CSF); sirtinol (sirtuin inhibitor); sorafenib (tyrosine kinase 
inhibitor); temozolomide (alkylating agent); TRAIL (TNF-related apoptosis-inducing ligand ); vincristine (mitotic inhibitor).
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Table 6: Summary of published clinical trials of FDA-approved HDACi in lymphoma, leukemia, and myeloma

HDACi Trial 
phase

Combination 
drug Cancer type No. of 

patients CR PR SD % 
Response Refs

Vorinostat I DLBCL, HL, MM, T-cell 
lymphoma, MCL, SLL, ML 35 1 4 3 23 [268]

I FL, MCL, DLBCL, CTCL 10 3 1 3 70 [269]
I Idarubicin Relapsed or refractory leukemia 41 3 10 32 [270]

I Advanced MM 13 1 9 77 [271]

I Bortezomib Relapsed or refractory MM 21 9 43 [272]

I
Advanced leukemias, 
myelodysplastic syndromes 
(MDS)

41 4 3 17 [273]

I Advanced CTCL 74 22 30 [204]

I
HL, NHL, DLBCL, SLL, MCL, 
CTCL, PTCL, Myeloma, AML, 
MDS

23 1 1 4 26 [274]

II Idarubicin, 
Cytarabine AML, MDS 75 57 7 85 [275]

II Gemtuzumab 
ozogamicin AML 31 6 1 23 [276]

II Relapsed or refractory HD 25 1 7 32 [277]

II NHL, MCL, relapsed or 
refractory FL, MZL 35 5 5 1 31 [278]

II Refractory CTCL 33 8 1 27 [279]
IIb Advanced CTCL 6 5 1 100 [280]
IIb Refractory CTCL 74 22 30 [281]

Bortezomib Relapsed or refractory MM 6 5 1 100 [282]
   TOTALS 543 80 105 30  

Romidepsin I CTCL 4 1 3 100 [258]
II PTCL 130 33 14 33 62 [283]

II Low-dose beam 
radiation CTCL 5 4 80 [284]

II PTCL 45 8 9 5 49 [256]
II Refractory CTCL 96 6 27 45 81 [260]

II CTCL 71 4 20 26 70 [257]
TOTALS 351 52 77 109

Panobinostat I CTCL 10 2 4 1 [221]

I
Ifosfamide, 
Carboplatin, 
Etoposide

Relapsed or refractory cHL 21 86 [285]

I Everolimus Relapsed or refractory 
lymphoma 30 3 7 33 [286]

Ib Bortezomib Relapsed or refractory MM 62 2 34 61 [287]
Ia/II Refractory HL 13 13 [220]
I/II Melphalan Relapsed or refractory MM 40 3 23 [288]
II Relapsed or refractory MM 38 2 9 5 [289]

II Bortezomib, 
Dexamethasone Relapsed or refractory myeloma 55 1 28 8 35 [290]
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II Refractory CTCL 139 2 22 29 17 [291]
II Relapsed or refractory HL 129 5 30 71 27 [292]

II
Melphalan, 
Thalidomide, 
Prednisone

Relapsed or refractory MM 31 2 10 11 39 [293]

III Bortezomib, 
Dexamethasone Relapsed or refractory MM 387 42 216 65 67 [136]

TOTALS 955 59 369 217

Belinostat I NHL, HL, MM, CLL 16 5 [213]
II Relapsed or refractory CTCL 29 3 1 10 4 [294]
II Recurrent PTCL 24 2 4 4 6 [294]
III Relapsed or refractory CTCL 120 11 15 26 [135]

TOTALS 189 16 20 19

CR, complete response; PR, partial response; SD, stable disease.

Table 7: Ongoing clinical trials using HDACi for treatment of lymphoma, leukemia, and myeloma
Trial title HDACi Combination target Phase
WEE1 Inhibitor MK-1775 and Belinostat in Treating Patients With 
Relapsed or Refractory Myeloid Malignancies or Untreated Acute 
Myeloid Leukemia 

Belinostat WEE1 I

Belinostat and Yttrium Y 90 Ibritumomab Tiuxetan in Patients W/
Relapsed Aggressive B-Cell NHL Belinostat Radiotherapy II

Panobinostat and Everolimus in Treating Patients With Recurrent Multiple 
Myeloma, Non-Hodgkin Lymphoma, or Hodgkin Lymphoma Panobinostat mTOR I, II

Panobinostat in Treating Patients With Relapsed or Refractory Non-
Hodgkin Lymphoma Panobinostat  II

Romidepsin in Treating Patients With Lymphoma, Chronic Lymphocytic 
Leukemia, or Solid Tumors With Liver Dysfunction Romidepsin  I

Alisertib and Romidepsin in Treating Patients With Relapsed or 
Refractory B-Cell or T-Cell Lymphomas Romidepsin Aurora Kinase I

Rituximab, Romidepsin, and Lenalidomide in Treating Patients With 
Recurrent or Refractory B-cell Non-Hodgkin Lymphoma Romidepsin

CD20, 
immunomodulation, 
proliferation, 
angiogenesis

I, II

Romidepsin and Lenalidomide in Treating Patients With Previously 
Untreated Peripheral T-Cell Lymphoma Romidepsin

Immunomodulation, 
proliferation, 
angiogenesis

II

Alisertib in Combination With Vorinostat in Treating Patients With 
Relapsed or Recurrent Hodgkin Lymphoma, B-Cell Non-Hodgkin 
Lymphoma, or Peripheral T-Cell Lymphoma 

Vorinostat Aurora Kinase I

Vorinostat and Combination Chemotherapy With Rituximab in Treating 
Patients With HIV-Related Diffuse Large B-Cell Non-Hodgkin 
Lymphoma or Other Aggressive B-Cell Lymphomas 

Vorinostat CD20 I, II

Bortezomib and Vorinostat as Maintenance Therapy After Autologous 
Stem Cell Transplant in Treating Patients With Non-Hodgkin Lymphoma Vorinostat Proteasome II

Cytarabine and Daunorubicin Hydrochloride or Idarubicin and Cytarabine 
With or Without Vorinostat in Treating Younger Patients With Previously 
Untreated Acute Myeloid Leukemia 

Vorinostat DNA synthesis, 
Topoisomerase II III

Summary of ongoing clinical trials using HDACi taken from the National Cancer Institute at the National Institute of Health (www.cancer.
gov/clinicaltrials). HDACi lists the specific HDACi being tested and combination target describes the target of the other (non-HDACi) 
drug used in the study.
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apoptotic protein BCL-XL [146]. Increased activity of 
BCL2, thioredoxin, and CHK1 has also been associated 
with the development of HDACi resistance in lymphoma 
[147].

There is considerable interest in identifying markers 
that can predict responsiveness to HDACi therapy [148]. 
Markers that have been reported to predict better response 
to HDACi treatment include high levels of shuttling 
protein HR23B [149] and several induced mRNAs, 
including cyclin D1 [150] for CTCL and CDKN1A 
[151] for DLBCL. Interestingly, it has been reported 
that DLBCLs with mutations in p300 or CBP are more 
responsive to HDACi treatment [152-154], suggesting that 
decreased HAT activity makes HDACi treatment more 
successful and that combined treatment with HATi and 
HDACi could be a useful strategy.

One note of caution in the use of HDACi is the 
finding that loss of HDAC1/2 activity by gene KO 
in mouse T cells has been reported to lead to T-cell 
malignancy, and these malignant cells show increased 
expression of the oncoprotein MYC and aneuploidy [57].

CONCLUSIONS AND PERSPECTIVES

The role of acetylation in regulating chromatin 
structure, gene expression, and protein activity will 
undoubtedly continue to receive much attention. Given 
the complex signaling and gene expression changes that 
occur in B- and T-cell development, there is much more to 
be learned about the role of regulated acetylation in these 
processes. 

Although the use of HATi for therapy is at an 
early stage, HDACi treatment is likely to continue for 
the treatment of B- and T-cell malignancies and certain 
immune diseases. Thus, a deeper understanding of the 
proteins, genes, and pathways affected by deregulated 
acetylation will be crucial to applying HDACi in the clinic. 
Given the wide range of transcriptional regulators affected 
by acetylation, there are clearly many targets affected by 
HDACi treatment and these targets no doubt vary among 
different cancers. Thus, HDACi may be most effective 
when combined with therapeutics that target specific 
pathways in individual cancers. The use of HDACi in 
combination with other therapeutics is a strategy that is 
being used in many ongoing clinical trials (Table 7), and 
the ability to prescribe appropriate combined HDACi-
targeted drug regimens will improve as better ways are 
developed to molecularly profile pathways that are driving 
individual cancers. 
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