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Abstract
A proliferation-inducing ligand (APRIL) is a member of the tumor necrosis factor (TNF)

superfamily. Despite advances in clinical and genetic studies, the details of the pathological

roles of APRIL in IgA nephropathy (IgAN) remain to be fully defined. The present study

aimed to further assess the pathological role of APRIL using a mouse model of IgAN. Mice

with IgAN designated “grouped ddY” (gddY) were intraperitoneally administered an anti-

APRIL monoclonal antibody (anti-APRIL Ab) or control IgG (Control Ab) twice each week

for 2 weeks starting during the early stage of IgAN (6–7 weeks of age). Urinary albumin,

serum IgA, and glomerular IgA deposition were evaluated. We further assessed the inflam-

matory responses during treatment by measuring the levels of the chemokine fractalkine

(FKN) and its receptor CX3CR1 as well as the level of peripheral blood monocytosis. Anti-

APRIL Ab treatment significantly decreased albuminuria and tissue damage combined with

decreases in serum IgA levels and deposition of glomerular IgA. In contrast, the abundance

of IgA+/B220+ or CD138+/B220+ B cells in the spleen and bone marrow, respectively, was

unchanged. Treating gddY mice with anti-April Ab reduced the overexpression of FKN/

CX3CR1 in the kidney and the increase in the population of circulating Gr1−/CD115+ mono-

cytes. The size of the population of Gr1−/CD115+ monocytes correlated with renal FKN and

urinary albumin levels. Moreover, mice treated with anti-APRIL Ab exhibited reduced pro-

gression of IgAN, serum IgA levels, and glomerular IgA deposition as well as an attenuated

inflammatory process mediated by FKN-associated activation of monocytes. To the best of

our knowledge, this is the first study to implicate the APRIL signal transduction pathway in

the pathogenesis of nephrogenic IgA production. Moreover, our findings identify APRIL as a

potential target of therapy.
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Introduction
IgA nephropathy (IgAN) is the most frequently occurring form of primary glomerulonephritis
worldwide, affecting 20%–50% of patients [1]. Although IgAN was initially considered a
benign glomerulonephritis, several studies have revealed its poor prognosis, variable clinical
course, and pathological manifestations [2,3]. It has been reported that 30%–40% of patients
with IgAN progress to end-stage renal disease within 20 years. Thus, IgAN is considered to be
a major cause of end-stage renal disease in many countries [4,5].

It is widely accepted that IgA1 molecules lacking galactosyl residues in the hinge region of
the heavy chain are recognized by glycan-specific antibodies and that subsequent binding
forms nephritogenic IgA1–IgG immune complexes [1,6]. When these aberrantly glycosylated
IgA1 and IgA1–IgG immune complexes are deposited in the glomerulus, they induce eventual
renal injury. However, the underlying mechanisms of the production of nephritogenic IgA and
glycan-specific IgG are not fully understood. Therefore, there are no effective treatment strate-
gies to control the activities of nephritogenic effector molecules.

Transforming growth factor-β (TGF-β) is required for IgA production through a B cell class
switch [7], and recent investigations have revealed the roles of members of the tumor necrosis
factor (TNF) family, including the B-cell activation factor (BAFF) and a proliferation-inducing
ligand (APRIL) [8–10]. Evidence indicates that BAFF induces a T cell-independent class switch
of IgA and IgG and may therefore affect IgA production [11–13]. BAFF transgenic mice exhibit
clinical phenotypes that resemble human IgAN, such as mesangial IgA deposits and high
serum IgA levels in the presence of a commensal gut flora [14].

Increased IgA production by tonsillar mononuclear cells of patients with IgAN is sup-
pressed by treatment with an anti-BAFF antibody (Ab) [15]. Moreover, recent studies have
shown that the axis represented by APRIL and the transmembrane activator and calcium mod-
ulator and cyclophilin ligand interactor (TACI) play a critical role in IgA production and that
the coupling between the myeloid differentiation primary response protein (MyD88) and
TACI is required for B cell class switch [9,10,16,17]. Recent findings that TACI directly acti-
vates MyD88 suggest that innate immunity may be associated with the BAFF–APRIL system
[18]. APRIL drives TACI-mediated switching from IgA1 to IgA2 through the Toll-like receptor
(TLR) [19].

We recently established an IgAN-prone mouse model using grouped ddY (gddY) mice [20]
and found that deterioration of glomerular damage in these mice is induced through mucosal
activation of the TLR9/MyD88 pathway [21]. Further, we reported recently that mucosal acti-
vation of TLR9 possibly contributes to nephritogenic IgA production in patients with IgAN
[21–23]. These clinical and experimental findings suggest that nephritogenic IgA production
in humans and mice with IgAN is associated with the activation of APRIL–TACI during the
induction of mucosal innate immunity through the TLR9/MyD88 pathway. Furthermore, den-
dritic cells derived from patients with lupus nephritis mediate B cell differentiation, and these
B cells differentiate into IgG-secreting plasmablasts (PBs) in the presence of BAFF and IgA-
secreting PBs in the presence of APRIL [24]. Moreover, serum APRIL levels in patients with
IgAN are elevated significantly compared with BAFF levels [14].

Based on these findings, we hypothesized that APRIL contributes to the pathogenesis of
IgAN, particularly to IgA production. However, few data are available that implicate APRIL in
IgAN. A recent study found that a selective APRIL blockade in a mouse model of lupus reduces
serum IgA and IgM levels and ameliorates lupus nephritis by decreasing proteinuria and renal
injury [25]. Because IgAN is caused by the deposition of nephritogenic IgA in the glomerulus,
we reasoned that an APRIL blockade may reduce the burden of IgA and lead to the ameliora-
tion of IgAN. To the best of our knowledge, there are no studies on the effects of inhibition of
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APRIL signaling on the pathogenesis of IgAN. Therefore, in this study, we used this approach
to investigate the pathogenesis of IgAN in gddY mice.

Materials and Methods

Mice and experimental design
Type BB gddY mice [26] were raised on a diet of regular chow (Oriental Yeast, Tokyo, Japan)
and water ad libitum in pathogen-free conditions at the animal institution of Juntendo Uni-
versity. Since we did not find gender difference in the anti-APRIL treatment (data not
shown), we used female gddY mice in this study. The animals were randomly divided into an
anti-APRIL Ab group, comprising 15 gddY mice treated with anti-APRIL monoclonal Ab
[25], and a Control Ab group, comprising 10 gddY mice that received mouse IgG. We admin-
istered intraperitoneal injections of 100 μg each of anti-APRIL Ab or control IgG twice each
week for 2 weeks to 6–7-week-old female type BB gddY mice. For comparisons with
untreated gddY mice (n = 6), we evaluated other female control groups of mice of the same
ages, Balb/c (n = 6) and HIGA (High IgA) mice (n = 6). Mating the latter with ddY mice with
high serum IgA levels [27] generates progeny that serve as an IgAN-prone mouse model.
Blood and urine samples were obtained before injection and 7 and 14 days later. The mice
were sacrificed on day 14 after injection. The Ethics Review Committee for Animal Experi-
mentation of Juntendo University Faculty of Medicine approved all animal experiments.
Mice were euthanized using sodium pentobarbital, and appropriate efforts were made to
minimize suffering.

Evaluation of urinary albumin and serum IgA, IgG, and IgM levels
Serum IgA, IgG, and IgM levels were evaluated using sandwich ELISA kits (Bethyl Laborato-
ries). Urine was collected for 24 h, and albuminuria was defined according to the albumin/cre-
atinine ratio (ACR mg/g) using a DCA 2000 immunoassay system (Siemens Healthcare
Diagnostics, Tokyo, Japan).

Histological analysis
Kidney sections (3-μm thick) were fixed in 4% paraformaldehyde and stained with periodic
acid–Schiff reagent, and light microscopy was used to assess histological changes. The extent of
glomerular damage (glomerular pathological score) was evaluated using a previously described
semiquantitative scoring system with modifications [28]. In brief, we examined 30 glomeruli
per animal (n = 6 per group) and scored each aspect as follows: (i) matrix expansion: 0, absent
and 1,>50% of glomeruli affected; (ii) adhesion of the capillary tuft to the Bowman’s capsule:
0, no and 1, yes; (iii) tuft numbers of proliferating mesangial cells (MCs) determined by MC
>3 in 1 tuft: 0, absent; 1, 1 tuft; 2, 2 tufts; and 3,>3 tufts; (iv) capillary collapse: 0, absent; 2,
segmental sclerosis; and 4, global sclerosis. The tubulointerstitial fibrosis score (TI score) was
determined according to percentage fibrosis of the cortical area: 0, 0%–25%; 1, 26%–50%; and
2,>50%. The histological score was expressed as the average glomerular score in addition to
the TI score.

Immunofluorescence analysis of glomerular IgA, IgG, and F4/80
deposition
Kidneys were collected after perfusion with normal saline. Renal specimens were mounted in
optimal cutting temperature (OCT) compound (Sakura Finetek, Tokyo, Japan) and stored at
−80°C. Specimens embedded in OCT compound were cut into 3-μm-thick sections and fixed
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with acetone at −20°C for 5 min. The sections were washed with phosphate-buffered saline
(PBS), blocked with a blocking agent (DS Pharma Biomedical, Osaka, Japan) for 30 min at
room temperature, and then incubated with the primary Ab [phycoerythrin (PE)-conjugated
goat anti-murine IgA (Santa Cruz Biotechnology, Inc), rabbit anti-murine IgG (Invitrogen,
Life Technologies), and rat anti-murine F4/80 (Ab-D Serotec)] overnight at 4°C. After washing
3 times with PBS, the slides were incubated with secondary Ab for 30 min at room temperature,
washed 3 times, and then mounted with a mounting medium (Dako, Tokyo, Japan). Confocal
laser microscopy (Olympus Corporation, Tokyo, Japan) and a KS400 version 3.0 image analy-
sis system (Carl Zeiss Vision GmbH, Germany) were used for semi-quantitative evaluations of
glomerular IgA and IgG deposition.

Real-time polymerase chain reaction (PCR) assays
Total RNA was extracted from kidney, spleen, and bone marrow (BM) with the TRIzol reagent
(Invitrogen AG, Basel, Switzerland) and RNeasy mini kit (Qiagen). PCR was performed using
Fast SYBR Green master mix (Applied Biosystems) and a 7500 real-time PCR system (Applied
Biosystems). We performed quantitative, real-time PCR to determine the levels of GAPDH,
fractalkine (FKN), and CX3CR1 mRNAs with the primers (Invitrogen) as follows: GAPDH:
forward primer 50-CATTGTGGAAGGGCTCATGA-30, reverse primer 50-TCTTCTGGGTGGCA
GTGATG-30; FKN: forward primer 50- GGCTACCAGCACCACAAAGT-30, reverse primer 50-
GGGTGGAGACAAGGATCTCA-30; CX3CR1: forward primer 50-TGAGTGACTGGCACTTCCT
G-30, reverse primer 50-CGAGGACCACCAACAGATTT-30. The results were quantified using a
standard curve generated from analysis of serial dilutions of a reference cDNA prepared from
the kidneys of type BB gddY mice, and the data were normalized to those of GAPDHmRNA.

Flow cytometric analyses of spleen, BM, and peripheral blood cells
Mouse blood and spleen cells were collected in 5% EDTA/PBS and preincubated with anti-
mouse 2.4G2 Ab for 10 min at 4°C. BM cells were collected after flushing the bones of mouse
hind legs. Spleen cells were filtered through a cell strainer (22 μM; BD Falcon), and spleen
RBCs were lysed with Tris–NH4Cl (pH 7.5) for 2 min at 37°C. Peripheral blood mononuclear
cells (PBMCs) were obtained by incubating red blood cells (RBCs) with a lysing solution (BD
Bioscience). Spleen and BM cells (106 each) were analyzed using flow cytometry after the cells
were incubated with antibodies conjugated to 3 different fluorophores, and the results were
analyzed using a FACSCalibur (BD Bioscience, San Jose, CA). The Abs used to analyze spleen
and BM cells were as follows: rat anti-mouse IgA conjugated to FITC (BD Bioscience), rat anti-
mouse CD138 (BD Bioscience), and anti-mouse B220 (BD Bioscience). The Abs used for
PBMCs were as follows: the AFS98 monoclonal anti-mouse CD115 Ab conjugated to Alexa
Fluor 488 (eBioscience) and the rat RB6-8C5 monoclonal anti-mouse Ly6G Ab (anti-Gr1, BD
Bioscience).

Statistical analysis
Comparisons between groups were performed using the Mann–Whitney test. The relation-
ships between various parameters were analyzed using Spearman rank correlation. A p-value
of<0.05 was considered statistically significant. Statistical analyses were performed using SPSS
software for Windows (version 20.0; SPSS, Chicago, IL). All graphs were generated using
GraphPad Prism, version 5.00 for Windows (GraphPad Software)
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Results

Depleting APRIL ameliorates murine IgAN
We started injections of anti-APRIL Ab in the early phase of murine IgAN (6–7 weeks of age)
to evaluate whether APRIL antagonism prevents disease progression. Clear clinical manifesta-
tions, including proteinuria, were observed after 8 weeks of age in type BB gddY mice [26].
Although the initial ACR values (day 0) were similar between the anti-APRIL Ab and Control
Ab groups, the ACR values of the anti-APRIL Ab group differed significantly after 14 days
(anti-APRIL Ab, 170.32 ± 23.91 vs. Control Ab, 273.87 ± 32.79 mg/g, p< 0.05) (Fig 1A). After
7 and 14 days, the ratios of serum IgA levels to baseline values of the anti-APRIL Ab group
were significantly lower compared with those of the Control Ab group (day 7, p< 0.001; day
14, P< 0.001) (Fig 1B). In contrast, the ratios of serum IgG and IgM levels to baseline values
were not significantly different between the groups (S1 Fig). The differences in serum IgA levels
correlated positively with ACRs (r = 0.630, p< 0.01). Furthermore, the percentage of total PBs
(CD138+/B220+) and plasma cells (PCs, CD138+/B220−) as well as IgA-secreting PBs (IgA+/
B220+) and PCs (IgA+/B220−) in spleen and BM did not change significantly in either group
(Fig 1C and 1D).

Glomerular lesions, including mesangial proliferation and sclerosis with tubulointerstitial
fibrosis, were attenuated in the anti-APRIL Ab group, and the histological grade was signifi-
cantly lower than that of the Control Ab group (Fig 2A and 2B). Glomerular IgA and IgG
depositions were evaluated using immunofluorescence analysis. Glomerular IgA depositions in
the anti-APRIL Ab group were smaller than those in the Control Ab group (Fig 2C), consistent
with the lack of increase of serum IgA levels in the former group. However, the staining inten-
sity of glomerular IgG was unchanged after treatment as similar to age-matched non-treated
gddY mice. Densitometric analysis confirmed that glomerular IgA deposition in the anti-
APRIL Ab group was significantly lower than that in the Control Ab group (Fig 2D).

Antagonism of APRIL function attenuates glomerular monocyte/
macrophage infiltration and circulating Gr1−/CD115+ monocytes through
renal FKN/CX3CR1
We evaluated monocyte/macrophage infiltration as mediators of kidney injury (Fig 3A). The
average number of F4/80-stained cells in glomeruli was determined using 30 glomeruli. The
number of these cells decreased significantly in the anti-APRIL Ab group compared with the
Control Ab group (Anti-APRIL Ab group, 8.86 ± 0.70 vs. Control Ab group, 2.93 ± 0.36,
p< 0.001) (Fig 3B).

We next evaluated the levels of renal expression of the chemokine FKN and its receptor
CX3CR1. After IgA deposition during IgAN, FKN triggers adhesion and transmigration of
mononuclear leukocytes expressing CX3CR1 [29]. Therefore, we conducted real-time PCR
analysis of FKN and CX3CR1 mRNA levels in the kidney to determine whether they were
attenuated in association with the reduction of the number of mononuclear cells in the anti-
APRIL Ab group. Compared with HIGA and Balb/c mice, untreated gddY mice at 6 weeks had
higher renal FKN/CX3CR1 mRNA levels (ddY 0.52/0.59 vs. HIGA 0.37/0.21 vs. Balb 0.35/0.19;
p< 0.05) (Fig 4A). FKN and CX3CR1 mRNA levels in the anti-APRIL Ab group after 2 weeks
of treatment were significantly lower than those in the Control Ab group (p< 0.05 for both)
(Fig 4B).

We examined specific populations of monocytes, which are associated with the activation of
FKN/CX3CR1 [30]. We first analyzed these monocytes in untreated mice. The number of
Gr1−/CD115+ monocytes in peripheral blood (PB) was increased significantly in gddY mice
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compared with HIGA and Balb/c mice (gddY = 6.52%, HIGA = 4.28%, Balb/c = 1.46%,
p< 0.05) (Fig 5A). Although the percentage of Gr1+/CD115+ monocytes in PB was higher in
gddY mice than in HIGA mice, it was similar to that in Balb/c mice (ddY = 2.34%,
HIGA = 0.29%, Balb/c = 2.77%, p> 0.05 for ddY vs. Balb/c) (Fig 5A). We next evaluated the

Fig 1. Effects of APRIL blockade on albuminuria, serum IgA levels, and B cell populations in spleen and BM. (A) The urine ACR of the anti-ARPIL Ab
group differed significantly from that of the Control Ab group after 2 weeks (D14) of treatment (*p < 0.05 vs. Control Ab group). (B) The change in serum IgA
levels was different from that for controls on days 7 and 14 (D7 and D14) (*p < 0.01 for D7 and p < 0.001 for D14 vs. Control Ab group). (C, D) The
populations of (C) PB (CD138+/B220+) and PC (CD138+/B220−) and (D) IgA-secreting PBs (IgA+/B220+) and IgA-secreting PCs (IgA+/B220−) did not differ
between the spleen and BM of each group.

doi:10.1371/journal.pone.0137044.g001
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changes in the numbers of Gr1−/CD115+ and Gr1+/CD115+ monocytes after treatment. APRIL
antagonism prevented the increase in the total monocyte population from baseline (day 14 vs.
day 0, p = 0.093). Moreover, the change in the number of Gr1−/CD115+ monocytes in the anti-
APRIL Ab group was significantly lower than that in the Control Ab group (day 14 vs. day 0,
p< 0.05). In contrast, the size of the population of Gr1+/CD115+ monocytes was unchanged
after treatment (day 14 vs. day 0, p = 0.093) (Fig 5B).

To further implicate the contribution of Gr1−/CD115+ monocytes to the pathogenesis of
IgAN, we evaluated the correlation between the number of Gr1−/CD115+ monocytes and the
inflammatory process. The percentage of Gr1−/CD115+ monocytes correlated positively with
renal FKN mRNA levels (r = 0.669, p< 0.05) and with ACR (r = 0.736, p < 0.001) (Fig 6A
and 6B).

Fig 2. Anti-APRIL Ab ameliorates histopathological alterations and glomerular IgA deposition. (A) The pathological images of the Control Ab group
(left) and anti-APRIL Ab group (right) were obtained after PAS staining (original magnification, ×200). (B) Histological analysis revealed significant
attenuation of glomerular and tubulointerstitial changes in the anti-APRIL Ab group compared with the Control Ab group. (C) Representative
immunofluorescence images show glomerular IgA and IgG deposition in the Control Ab group (left) and the anti-APRIL Ab group (right) (original
magnification, ×400). (D) Densitometric analyses show significantly less deposition of IgA, but not IgG, in the anti-APRIL Ab group compared with the Control
Ab group *p < 0.05.

doi:10.1371/journal.pone.0137044.g002
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Discussion
We demonstrate here that the APRIL signaling pathway is involved in the pathogenesis of
IgAN. The anti-APRIL Ab used in the present study inhibits APRIL specifically but not BAFF
[25]. Moreover, establishing an APRIL blockade using the same Ab reduces proteinuria, renal
damage, and serum autoantibody levels and improves the overall survival of mice with lupus
[25]. We treated early-stage IgAN gddY mice with this Ab and found that it ameliorated the
disease as judged by measurements of albuminuria as well as circulating and glomerular IgA
levels. Selective APRIL antagonism affected only IgA levels in serum and kidney and did not
induce considerable changes in the population of IgA-secreting PB or PC in BM and spleen.
These findings are consistent with the results reported by a previous study, where APRIL-defi-
cient mice had normal B cell development without a reduction in PB and PC of spleen and

Fig 3. APRIL blockade reduces glomerular monocyte/macrophage infiltration. (A) Immunofluorescence analysis of F4/80 expression in the glomeruli of
the Control Ab group (left) and the anti-APRIL Ab group (right) (original magnification, ×400). (B) The average number of infiltrated monocytes/macrophages
per glomerulus was calculated frommore than 30 glomeruli. The number of infiltrated glomerular monocytes/macrophages was decreased in the anti-APRIL
Ab group. *p < 0.05.

doi:10.1371/journal.pone.0137044.g003

Fig 4. APRIL blockade is associated with attenuated renal FKN and CX3CR1 expression. (A) Real-time
PCR analysis shows that renal FKN/CX3CR1 mRNA levels in 6-week-old untreated type BB gddYmice were
higher than those in age-matched HIGA and Balb/c mice. (*vs. HIGA, †vs. Balb/c; p < 0.01 for kidney FKN
and p < 0.05 for kidney CX3CR1). In contrast, spleen CX3CR1mRNA expression was similar in gddY, HIGA,
and Balb/c mice (mRNAs levels were normalized to those of GAPDH). (B) Real-time PCR analysis of kidney
samples shows that after 2 weeks of treatment, FKN and CX3CR1mRNAs levels in the anti-APRIL Ab group
were lower than those in the controls (*p < 0.05 vs. Control Ab group).

doi:10.1371/journal.pone.0137044.g004

APRIL in Murine IgAN

PLOSONE | DOI:10.1371/journal.pone.0137044 September 8, 2015 8 / 13



Fig 5. APRIL blockade affects the abundance of Gr1−/CD115+ cells among PBMCs. (A) The numbers of total monocytes, Gr1+/CD115+ monocytes, and
Gr1−/CD115+ monocytes in peripheral blood were measured using flow cytometry. The percentages of Gr1+ and Gr1− cells among PBMCs from 3 different
age-matched strains of untreated mice are compared. The percentage of Gr1−/CD115+ monocytes was increased in type BB gddYmice compared with
HIGA and Balb/c mice (*p < 0.001 vs. HIGA; †p < 0.001 vs. Balb/c). HIGAmice had a higher percentage of Gr1−/CD115+ monocytes than Balb/c mice
(‡p < 0.01 vs. Balb/c). The size of the population of Gr1+/CD115+ monocytes was similar between type BB gddY and Balb/c mice but was significantly lower
in HIGA mice (*p < 0.001 vs. gddY, ‡p < 0.01 vs. Balb/c). (B) After 2 weeks (D14) of APRIL Ab treatment, the difference (D14/D0) in monocyte numbers was
decreased significantly only in the Gr1−/CD115+ monocyte population (*p < 0.05 vs. Control Ab group).

doi:10.1371/journal.pone.0137044.g005

Fig 6. Percentage of Gr1−/CD115+ monocytes correlates with renal FKN levels and degree of albuminuria. The percentage of Gr1−/CD115+

monocytes in all mice (anti-APRIL Ab group + Control Ab group) correlated positively with (A) renal FKNmRNA expression and (B) degree of albuminuria
according to Spearman rank correlation.

doi:10.1371/journal.pone.0137044.g006
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BM, although they showed a decrease in serum IgA levels and impaired T cell-dependent
mucosal response [9]. Therefore, the present findings suggest that the APRIL blockade using
the APRIL-neutralizing Ab may influence a specific B cell population producing IgA, including
nephritogenic IgA, in this mouse model of IgAN.

We found previously that type BB gddY mice with IgAN have poor prognosis and that mod-
ified carbohydrate structures of IgA present in type BB gddY mice may be nephritogenic or
may accelerate the formation of nephritogenic IgA-containing immune complexes [26]. Thus,
increasing serum IgA levels during the course of IgAN in gddY mice in this study was expected
to produce nephritogenic properties, at least in part. Moreover, we expected that the polymeric
forms of serum IgA would enhance glomerular deposition via size-dependent trapping and
that this trapping may be enhanced in association with pathogenic O-glycosylation modifica-
tion of the hinge region of IgA that commonly occurs in IgAN [31]. A previous in vitro study
has shown that interaction between mesangial IgA receptors and IgA leads to profibrotic and
proinflammatory changes in mesangial cells [32–34]. Similarly, our finding that serum IgA lev-
els correlated with ACR suggest that the increase in circulating IgA levels in the early phase of
IgANmay accelerate glomerular IgA deposition and lead to subsequent renal injury. Therefore,
the blockade of APRIL may reduce the production of nephritogenic IgA.

Glomerular monocyte/macrophage infiltration contributes to the pathogenesis of most
types of glomerulonephritis [35]. The extent of macrophage infiltration correlates with the
severity of renal injury in humans with IgAN [36]. In our present murine model of IgAN, pro-
gression of glomerular damages was associated with glomerular macrophage infiltration
[28,37,38]. Moreover, we observed that attenuation of glomerular mononuclear cell infiltration
in association with amelioration of proteinuria and renal lesions was induced by anti-APRIL
Ab. These findings suggest pathogenic roles of glomerular monocytes/macrophages in IgAN.

Evidence acquired through studies of mouse models of lupus and diabetes indicates that
FKN mediates mononuclear cell trafficking in renal disease [39,40]. Recently, the FKN/
CX3CR1 axis was suggested to stimulate inflammation in humans with IgAN [29]. Gross
hematuria in patients with IgAN correlates significantly with renal expression of FKN and ele-
vation of the number of circulating CX3CR1+ leukocytes [29]. These findings indicate that an
acute increase in glomerular IgA deposition may influence glomerular FKN expression that
triggers subsequent acute inflammatory cascades, leading to the rupture of the glomerular base-
ment membrane and subsequent leakage of proteins, red blood cells, or both.

In support of such a mechanism, we found here that FKN/CX3CR1 mRNA levels decreased
significantly in the kidneys of anti-APRIL Ab-treated mice, along with a decrease in proteinuria.
Moreover, renal FKN/CX3CR1 mRNA expression was significantly higher in untreated type BB
gddY mice than in HIGA or Balb/c mice of the same age. HIGAmice slowly progress to IgAN,
despite high serum IgA levels and large glomerular IgA deposits, suggesting a lower inflamma-
tory capacity of glomerular IgA in HIGAmice [41]. In contrast, type BB gddY mice spontane-
ously develop IgAN with proteinuria and glomerular immune complex deposition by 8 weeks
of age [26]. Therefore, we suggest that additional inflammatory factors, such as the oligosaccha-
ride content of glomerular IgA or formation of immune complexes [6,26], are required for full
activation of renal FKN. In the present study, in gddY mice, CX3CR1 expression was believed
to be locally upregulated in the kidney, because splenic CX3CR1 expression was similar to that
in other mice (HIGA and Balb/c). Therefore, the difference in FKN/CX3CR1 expression in the
kidney between gddY mice and other mice was suggested to be related to the activation of renal
inflammation and progression of IgAN; however, it remains unclear whether upregulated
expression of renal FKN/CX3CR1 was the cause or result of the disease.

Increased FKN expression in the glomerulus and expression of CX3CR1 by glomerular
CD16+ monocytes in murine proliferative lupus nephritis indicates that FKN induces homing

APRIL in Murine IgAN

PLOSONE | DOI:10.1371/journal.pone.0137044 September 8, 2015 10 / 13



of CX3CR1-positive mononuclear cells [40]. Circulating monocytes in mice comprise 2 pheno-
typically different subsets. The “inflammatory”monocytes express Gr1 (Gr1+) [32], and the
“resting” or “patrolling”monocytes express CX3CR1 but not Gr1 (Gr1−) [42,43]. The patrol-
ling monocytes rapidly invade infected and damaged tissues, including tissues with Ab/
immune complex deposits [30]. Thereafter, these patrolling monocytes initiate the innate
immune response, differentiate into macrophages, and acutely phagocytose immune com-
plexes [30].

We show here that only the number of Gr1− monocytes was significantly elevated in gddY
mice compared with HIGA and Balb/c mice, supporting the idea that disease progression in
gddY mice may involve activation of the renal FKN/CX3CR1 axis and the recruitment of Gr1−

monocytes. We observed that the APRIL blockade significantly reduced the population of
CD115+ monocytes, particularly Gr1−/CD115+ monocytes. Furthermore, the number of circu-
latory patrolling monocytes (Gr1−/CD115+) correlated positively with renal FKN expression
and the degree of albuminuria. These findings indicate that APRIL antagonism reduced
nephritogenic IgA production, which reduced glomerular IgA deposition and led to the down-
regulation of FKN/CX3CR1 expression. Therefore, reduced levels of glomerular IgA and lack
of peripheral increases in Gr1− patrolling monocytes in gddY mice with an APRIL blockade, in
part, led to amelioration of renal inflammation and subsequent proteinuria.

In conclusion, to the best of our knowledge, the present study is the first to show that
APRIL antagonism ameliorated IgAN in a mouse model. Thus, serum and kidney IgA levels,
including nephritogenic IgA and proteinuria, were reduced, along with reductions in renal
FKN/CX3CR1 expression and circulating Gr1− monocyte levels. The present data suggest that
APRIL-dependent IgA production contributes to the pathogenesis of IgAN, and thus, APRIL
antagonism may represent a new therapeutic approach for treating IgAN.

Supporting Information
S1 Fig. Selective APRIL blocking effects on serum IgG and IgM. The change in serum IgG
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