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It is impossible to optimize a process for a target drug product with the desired profile
without a proper understanding of the interplay among the material attributes, the pro-
cess parameters, and the attributes of the drug product. There is a particular need to
bridge the micro- and mesoscale events that occur during this process. Here, we propose
a molecular engineering methodology for the continuous cocrystallization process,
based on Raman spectra measured experimentally with a probe and from quantum
mechanical calculations. Using molecular dynamics simulations, the theoretical Raman
spectra were calculated from first principles for local mixture structures under an exter-
nal shear force at various temperatures. A proof of concept is developed to build the
process design space from the computed data. We show that the determined process
design space provides valuable insight for optimizing the cocrystallization process at the
nanoscale, where experimental measurements are difficult and/or inapplicable. The
results suggest that our method may be used to target cocrystallization processes at the
molecular scale for improved pharmaceutical synthesis.

pharmaceuticals j cocrystallization j machine learning j molecular engineering

Many drugs discovered in the past few decades are low in aqueous solubility (1), which
is a very important indicator of bioavailability (2). After oral administration, drugs
enter the stomach with an acidic aqueous environment, in which most active pharma-
ceutical ingredients show very poor solubility (3). Among many techniques developed
to improve the solubility of drugs (4), cocrystal formation has become very common
because it does not negatively impact the drug’s pharmacological properties (5). Besides
better bioavailability, cocrystals have improved physicochemical properties including
tabletability, stability, and permeability (6). The formed cocrystals usually consist of an
active pharmaceutical ingredient and an approved component (known as a coformer)
in stoichiometric ratio (7). There is a strong interest in cocrystals because they reduce
the time and therefore the cost of drug development (8).
Among various developed cocrystallization processes (9, 10), solid-state synthesis is

superior due to its high efficiency, low level of by-products, and no need for solvents
(6). For continuous processing of pharmaceutical formulations using solid-state synthe-
sis, twin-screw granulation is considered an excellent and promising technology
(11, 12) that combines cocrystallization and granulation, with a short residence time
and the possibility of conducting chemical reactions (13–15). Unfortunately, this tech-
nique is yet to be implemented on an industrial scale (16), essentially due to the lack of
micro-/macroscopic insight into the compounds’ behavior and the proper process con-
trol strategies to optimize the formulations (17, 18).
Many researchers have investigated continuous cocrystallization via twin-screw granula-

tors (19), as reviewed elsewhere (20–23). However, information from the experimental
studies tends to be very limited and empirical because those studies often focus on analyzing
the individual operating parameters in a trial-and-error approach (24, 25). Other problems
with the experimental approach include material cost, implementation and reconfiguration
of the twin-screw granulator, training human resources, and time consumption. On the
other hand, the most sophisticated theoretical models currently available are practically top-
to-bottom approaches and hence require the input of experimentally correlated parameters,
such as particle size distribution (26, 27). Therefore, such models fail to bridge the gap
between the micro- and mesoscales of continuous cocrystallization processing (28–30).
Consequently, it is hardly possible to robustly synthesize an optimization procedure for a
drug product to achieve the desired target product profile (31).
Solving the above problem requires reliable insight into the interplay of 1) the criti-

cal raw material attributes, 2) the critical process parameters, and 3) the drug product’s
critical quality attributes. This in turn necessitates models that utilize a bottom-up
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approach (32, 33) [where the material properties are calculated
from scratch using, e.g., density functional theory [DFT] and
molecular dynamics [MD] (34)] to establish a process design
space without prior experimental information. After producing
this design space, a process optimization strategy can be synthe-
sized for any specific operational parameters.
Here, we chose the cocrystallization process of ibuprofen

(IBF) and nicotinamide (NCTA) for case study. Ibuprofen is a
drug widely used to treat pain and fever (2, 35). Since it has very
poor solubility in the stomach environment (3, 36), nicotin-
amide was used as a coformer for cocrystal formation (37, 38)
via twin-screw granulator. The cocrystal structure is usually stud-
ied through spectroscopic techniques (39–41), mainly Raman
spectroscopy (42). Examples include cocrystallization via twin-
screw granulation (43) and in aqueous media during slurry con-
version (44). Analysis of the Raman spectra can reveal whether
interactions between the compounds are chemical or physical in
nature (45). However, Raman spectroscopy in this context tends
to be used as a tool for a product (end) quality check (46–48).
In contrast, in the current study we used signals from the Raman
spectrometer equipped on the twin-screw granulator to quantify
interactions between compounds throughout the granulator.
Depending on the identified interactions, the intensity of a spe-
cific interaction affecting the target cocrystal in formulation can
be controlled, provided that one knows how to affect the stabil-
ity and kinetics of that interaction through macroscopic process-
ing parameters (such as the temperature and screw rotation
speed) (49). This molecular-level information can bridge the gap
between the micro- and mesoscales of continuous cocrystalliza-
tion processing. Instead of exhaustive empirical experimentation,
we determined the process design space from scratch through
quantum mechanical methods, resulting in a protocol that
requires no experiments, is generic, and can be applied to any sys-
tem of interest. For the three considered processing parameters
(temperature, shear rate as exerted by screw rotation speed, and res-
idency time) in wide practical value ranges, we performed DFT
and MD calculations to determine the possible interactions
between ibuprofen and nicotinamide, as well as changes in their
stability and kinetics. In particular, we calculated the Raman inten-
sities as described by Porezag and Pederson (50). The computed
Raman patterns were correlated with the three processing parame-
ters using the proposed proof of concept, resulting in a process
design space. This design space was compared for the target inter-
action, set as input, with the signals from the Raman spectrometer
to estimate the proper temperature, shear rate, and residency time
and therefore gauge the twin-screw granulator. The following sec-
tions discuss our developed approach and its implementation.

Results and Discussion

Following the theoretical calculation, we performed a literature
review to check the reliability/quality of the generated data. Our
calculated solvation energies (ibuprofen: �60.18 kJ/mol; nicotin-
amide: �66.96 kJ/mol) were valid according to reported compu-
tations as well as experimentally measured solubilities (0.021 mg/mL
and 24 mg/mL, respectively) (51–53). Our calculated melting
temperatures (ibuprofen: 355.15 K; nicotinamide: 397.15 K,
mean values) were also in agreement with the literature (ibupro-
fen: 353.15 K [54, 55] and nicotinamide: 398.5 K [56, 57],
respectively). Other descriptors analyzed were the chemical poten-
tial (which is the negative of electronegativity), the highest occu-
pied molecular orbital and lowest unoccupied molecular orbital,
hardness, and electrophilicity index (58–62). Their values are pro-
vided in SI Appendix. While these descriptors are unique to each

molecule, they do not provide a basis for designing the control
mechanism. On the other hand, our computed Raman data of
fingerprints as candidate descriptors agreed with the relevant
works (63–72). The fingerprints’ structures and their correspond-
ing normalized Raman intensities are summarized in SI Appendix,
Fig. S1. The labels DI, DN, and CO represent the ibuprofen
dimer, nicotinamide dimer (49, 73), and cocrystals, respectively.

Initially, we employed the lattice solution theory of
Flory–Huggins (74, 75) to examine the interactions among the
fingerprints under at-rest (no shear) condition to check their pos-
sible coexistence (Fig. 1). Since most of the values were positive,
these fingerprints were not expected to become mixed but rather
to grow within their own phases. The dark-blue colored areas in
Fig. 1 indicate the possibility of coexistence/mixing of the pair
involved. Following our previous recommendation to mitigate
dimer formation (49), during this initial examination we focused
on the coexistence of cocrystals. There was coexistence compatibil-
ity between CO-6 and CO-7 but they had slow emergence kinet-
ics, and the weak established electrostatic interaction made their
presence rare. CO-2 showed coexistence compatibility with CO-8
and CO-5, but given the unfavorable solvation energy of CO-8,
it was unstable and tended to dissociate. These findings suggest
that CO-2 and CO-5 have a promising chance for growth.

The computed design space fT , τ, t , a0ig is reported in Figs.
2–4 together with the associated computed normalized Raman
intensities shown in Fig. 5 over the parameter M, which is the
point of reference to start optimizing the operating specifica-
tions for a fingerprint of the interested fraction (as seen in Figs.
2–4). The computed design space in terms of M is shown in
Fig. 6 for a nominal design specification of the twin-screw
granulator. The value of M connects the two representations of
design space. For example, by selecting M from Figs. 2–4 at the
optimal temperature for the target fingerprint and determining
the type of screw available (as represented by f ), one can iden-
tify the optimal screw rotation from Fig. 6.

The distinct continuous growth and emergence of CO-5 can
be seen from the peak within 2,000 to 2,500 cm�1 (see SI
Appendix, Fig. S1 for each fingerprint's peak profile) in the
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Fig. 1. Interaction tendency of fingerprints based on the Flory–Huggins
interaction parameter.
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computed Raman intensities as shown in Fig. 5 and fraction
shown in Fig. 2 and Fig. 5. This fingerprint also appeared in
the ibuprofen–nicotinamide cocrystal structure reported previ-
ously (76, 77). However, those analyses were restricted to the
spectral range of 700 to 1,200 cm�1 to monitor the structure

corresponding to the CO-2 fingerprint, and due to clipping the
spectral range, those works missed to notice the associated
peaks of CO-5. Applying the method of Emeis (78) to spectra
within the 700 to 1,200 cm�1 range only, we can calculate that
CO-2 has a maximum presence (i.e., > 80%), which is in

Fig. 2. Computed design space fT, τ, t, �aig and parameter M for cocrystals (a blank image means a nearly zero value [<10�5] is calculated for particular
fingerprint fraction).
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agreement with the observation of the authors’ (76). Note that
according to the design space (Figs. 2–4), almost no amount of
CO-4, CO-6, CO-9, DI-1, DI-2, DI-3, DN-2, DN-3, DN-4,
DN-7, or DN-8 could be expected at any values of M and tem-
perature. The fraction of CO-1 appeared to reach a maximum of
20% for M < 0.08 but decreased to ∼7.5% as M approached 1.
This finding was associated with the kinetics of CO-1 formation
and its lower competitiveness against other fingerprints (73). Given
the kinetic rates we previously reported (73), the favorable forma-
tion energy barrier associated with CO-1 formation allowed this
step to start quickly. However, after more exchange of energy and
mass during the process, the reverse process (CO-1 decomposition
into ibuprofen and nicotinamide) became more favorable than its
formation (73). The fraction of CO-2 increased systematically with
M and temperature, reaching a maximum of 7% at the extreme
boundary. The emergence of CO-3 could be safely ignored since
its fraction was found to be very negligible. Meanwhile, CO-3
showed strong responses to M and temperature, jumping from
10�3% at the lower boundary to 6 × 10�3% at the upper bound-
ary. The fraction of CO-7 systematically increased with M and
temperature, reaching a maximum of 1.8% at the upper bound-
aries. That of CO-8 showed a strong sensitivity to temperature,
jumping from 8 × 10�2% at the lowest temperature to 24 ×
10�2% at the highest. At all temperatures, CO-8 initially increased

with M and then decreased. This finding was associated with the
formation and decomposition processes of CO-8, despite their rela-
tive rank in competitiveness against other molecular interactions.
While the formation of CO-8 is favorable, its decomposition pro-
cess requires energy built up within the system (73). A systematic
increase was seen in the fraction of DN-1 according to M and the
temperature (Fig. 3), jumping from 6 × 10�3% at the lowest tem-
perature to 12 × 10�3% at the highest. Nevertheless, the presence
of DN-1 could be safely ignored because of its very negligible frac-
tions. Given the kinetics of DN-5 (73), the initial increase of its
fraction with M and a subsequent decrease could be realized in a
straightforward manner. The associated formation and decomposi-
tion processes have very similar kinetic rates, but the latter
requires an energy input. Therefore, as the process progresses, the
role of decomposition becomes more important, especially at ele-
vated temperatures as seen in the fraction map. DN-6 seemed to
be present in the ibuprofen–nicotinamide cocrystal structure
reported previously (76, 77). The small fraction of DN-6 (maxi-
mum: ∼6 × 10�3% at 360 K) suggested the relative strength of
CO-5 sharing the same nicotinamide molecule with DN-6.
Unless the temperature exceeded 380 K, the fraction of DN-9
remained near zero, with the possibility of reaching at most 6 ×
10�3% at some M values and disappearing as M approached 1.
The DN-9 fraction remained near zero because it is formed at a
similar rate as its decomposition to nicotinamide. Its emergence at
0.16 < M < 0.95 and disappearance as M approached 1 can be
linked to the availability of additional nicotinamide due to the
response of CO-8 to M and temperature.

The optimal condition for maximum cocrystal formation
(primarily CO-5 and CO-2, with the other fingerprints in only
trace amounts) is 340 K < T < 350 K and 0.4 < M < 0.55.
Considering the design specification of the twin-screw granula-
tor used here, the value of either the screw rotation or the lead
should be determined based on the M value. This design space
can be used as a controller to manipulate the operating parame-
ters in real time, mainly the temperature and screw rotation
speed. In such a scenario, we would solve Eq. 3 for the probe-
measured Raman intensities as vector R, resulting in the real-
time calculation of the fraction of fingerprints. The calculated
fractions would be compared against the design space of Figs.
2–4, which would act as a decision tree for the controller to
alter the screw rotation speed or temperature.

In practical applications, the twin-screw granulator is
exposed to the ambient air without good thermal insulation,
leading to heat exchange and thermal loss. In addition, the con-
trol and manipulation of temperature depend on the thermal
response of the material used in manufacturing the twin-screw
granulator. Thus, we believe more focus should be placed on
the screw rotation speed as the control parameter, after setting
the temperature within the optimal range. There may also be
concerns about the reliability of screw rotation speed because of
the flowability of the mixture along the twin-screw granulator.
Indeed, we have noticed that the flowability of mixture varies
along the twin-screw granulator (37). Over the temperature
range of 298 to 400 K, we calculated the dynamic viscosity (in
cP). The results were averaged over all data points and are
reported in Fig. 7. At any temperature, the viscosity decreased
with an increasing shear rate, reflecting a pseudoplastic behavior
(non-Newtonian behavior at lower shear rates and Newtonian
behavior at higher shear rates). At a higher shear rate, the mole-
cules started to untangle from each other and align along the
applied shear. Such molecular reordering resulted in a higher
degree of order and consequently a lower overall stress. The
general theory of Carreau (79) is handy for correlating the shear

Fig. 3. Computed design space fT, τ, t, �aig and parameter M for ibuprofen
dimers (a blank image means a nearly zero value [<10�5] is calculated for
particular fingerprint fraction).
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(_γ) with the viscosity (μ) as μ�μ∞
μ0�μ∞

¼ ½1þ ðλ _γÞα�n�1
α , where μ0

and μ∞ are the limiting viscosities at the low and high shear
limits, respectively. α is usually chosen to be 2. λ and n are empir-
ical constants and calculated to be 104 and �0.35, respectively,
by correlating all data points at all temperatures with R2 > 0.98.

At intermediate and high shear rates, the Carreau equation is
reduced to a power law in the form of μ¼ μ0ðλ _γÞn�1, whereas in
the low shear rate regime it is reduced to μ¼ μ0. At the intersec-
tion of these two regimes located at _γ ¼ 1

λ, the viscosity and shear
rate are the same. It can be seen from Fig. 7 that increasing the

Fig. 4. Computed design space fT, τ, t, �aig and parameter M for nicotinamide dimers (a blank image means a nearly zero value [<10�5] is calculated for par-
ticular fingerprint fraction).
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temperature decreased the viscosity due to reduced friction between
the molecules. It is possible to correlate the viscosity variations
with the temperature (T) at low shear rates by employing an
Arrhenius-type equation of μ¼ A × exp E

RT

� �
, where R is the uni-

versal gas constant and A and E are empirical constants (80) calcu-
lated to be A = 610.75 and E

R = �736.64. In a regime where the
viscosity is more sensitive to temperature, i.e., T > 35°C, the fol-
lowing refined form of the aforementioned equation should be

used: μ
μ0
¼ exp E 1

T � 1
T0

h ih i
. Therefore, we conclude that there is

no need to worry about the reliability of the screw rotation speed.

Concluding Remarks

We present a computational approach to build the process design
space for cocrystallization in twin-screw granulators for process
optimization and engineering. Based on our DFT data, we
devised a proof of concept to extract the representative fractions
of various fingerprints (molecular interactions) from the computed
Raman intensities. When we employed the Raman data measured
through a probe installed on the twin-screw granulator, the gener-
ated design created a control mechanism to manipulate the pro-
cess parameters and improve the production of target cocrystal(s).
The constructed design space allowed us to easily identify:

(1) The optimal parameters to run the twin-screw granulator
for maximizing the production of ibuprofen–nicotinamide
cocrystals without requiring trial-and-error experimentation.
According to Figs. 2–4, the optimal condition is 340 K < T
< 350 K and 0.4 < M < 0.55 for maximizing CO-5 and

CO-2 with trace amounts of other fingerprints. To be more
specific, knowing M allows the straightforward determina-
tion of either the screw rotation or f for the design specifi-
cation of the twin-screw granulator, using Fig. 6.

(2) The gauging/adaptation procedure for real-time correction
of the temperature and screw rotation speed. By solving
Eq. 3 for the Raman intensities measured using a probe as
the vector R in real time, the fraction of fingerprints was cal-
culated. These calculated fractions were compared against
the design space of Figs. 2–4, which acted as the decision
tree of a controller to alter the screw speed or temperature.

Computational Details

Overview. The developed computational framework consists of
two main layers: the molecular modeling (MM) layer and the
proof of concept for machine learning (ML) layer. The MM
layer uses DFT and MD calculations to generate molecular-
level information about interactions among ibuprofen and nic-
otinamide as well as their variation under various operating
conditions of the twin-screw granulator (i.e., in wide ranges of
temperature, external shear force, and residency time). The ML
layer is designed to create a computational design space by rec-
ognizing patterns among the operating conditions of the twin-
screw granulator and the features of molecular interactions, to
synthesize the relevant information for developing operational
control strategies. We considered the Raman spectra as the fea-
ture of molecular interactions (descriptors). Analytical studies
frequently use Raman spectroscopy as a tool (81) because it can

Fig. 5. Computed Raman intensities design space and parameter M.
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show whether the interactions between compounds are chemi-
cal or physical in nature (45). The experimental Raman spectra
are usually measured offline on samples collected at the end of
the twin-screw granulator (44). However, it is also possible to
collect these spectra inline, when the formation is passing
through the twin-screw granulator, by using probes installed on
top at different locations (43). By comparing the computed
Raman data to the experimental measurements, we determined
the types of possible molecular interactions and groups, which
are detailed in the next paragraphs and shown in Fig. 8.

Molecular Modeling Layer. In this layer, first we used DFT cal-
culations to identify the donor–acceptor sites on each molecule
because molecules interact through these sites to form new phases/
structures (82). In addition, DFT calculations generated the quan-
tum data required for calculating the proper physicochemical
descriptors of each molecule (83). The molecular structures of ibu-
profen and nicotinamide were retrieved from the 69th reference
database made available by the National Institute of Standards
and Technology (USA). The molecular structures were optimized
by employing the generalized gradient approximations with Per-
dew-Burke-Ernzerhof functional (84) including implicit solvent
(85) as described by the conductor-like screening model (86). To
control the convergence behavior for enhanced self-consistent field
calculation (87, 88), thermal smearing (89) was also applied with
a double numerical basis including the d-polarization function
(90) level of theory. The double numerical basis with
d-polarization incorporates diffuse functions (90) for the proper
treatment of long-range effects, which were not negligible here.
The convergence tolerances were 2.0 × 10�5 kcal/mol in energy,
10�3 kcal/mol/Å in force, maximum iterations of 104, and dis-
placement of 10�5 Å. The reasons for choosing this functional
and these criteria were discussed in our previous work (49). We
calculated surface electrostatic charges (91) using the Hirshfeld
partitioning scheme (92). The sigma surface charge densities were
calculated as introduced by Klamt and Sch€u€urmann (93) and

revisited elsewhere (94). We used electrostatic potential charges
and sigma surface charge densities to identify the surface donor-
acceptor sites on both ibuprofen and nicotinamide molecules
(82, 95). The Raman spectra were calculated as described by Por-
ezag and Pederson (50). We ignored the spectra below 400 cm�1

as those high frequencies are associated with phonons (69), and
we strived to include frequencies as low as 3,750 cm�1 to account
for solvent effects (49). In the current calculation of Raman data,
the incident light had an intensity of 532 nm and the spectra
were extracted at 20 cm�1 intervals, which corresponded to a laser
power of 150 mW. These parameters matched the specifications
of the Raman spectrometer available in our laboratory. Such spec-
tral extraction resulted in 1,000 data points in each Raman inten-
sity dataset. After we identified the surface donor/acceptor sites on
ibuprofen and nicotinamide, all possible pairs for the two mole-
cules were created by placing the donor site on one molecule in
close contact with the acceptor site on an identical or different
molecule following a molecular docking framework (49). This is
because in a mixture, each molecule can undergo donor–acceptor
exchange with another molecule of the same or different species.
Therefore, in the binary mixture we had three macromolecular
groups (pairs) formed through such molecular interactions: 1)
ibuprofen dimers, 2) nicotinamide dimers, and 3) cocrystals of
ibuprofen and nicotinamide. The dimers are formed due to
donor–acceptor interactions between identical molecules. How-
ever, the more interesting (target) donor–acceptor exchanges occur
when an ibuprofen molecule interacts with a nicotinamide mole-
cule, representing plausible cocrystals of ibuprofen and nicotin-
amide. Here, a close contact is defined as a distance shorter than
the van der Waals distance between the two molecules (49). For
all these macromolecular groups (pairs), we performed the same
DFT calculations as applied to isolated single molecules and cal-
culated their Raman spectra as described by Porezag and Pederson
(50). We referred to the Raman spectra of the macromolecular
groups (pairs) as fingerprints while those of isolated single
molecules were used for noise reduction in the data.

Fig. 6. Computed design space in terms of parameter M (L is the length of the twin-screw granulator, f is the forward carrying of material per rotation [screw lead]).
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Next, to mimic the mixture conditions, we created molecular
models of ibuprofen and nicotinamide in a 1:1 ratio. This ratio
was based on the industrial practice for this specific system and
the availability of literature data for further validation (37, 44,
55, 67, 68, 95, 96). The models contained 10 or 25 of each mol-
ecule under periodic boundary conditions so that we could
account for possible effects of model size on the simulation results
and enhance the reliability of our computation. For each mixture
model, we performed structure relaxation using a reliable force
field because of the high cost of DFT relaxation for such a large
system of atoms. We used a refined version (97) of the consistent
valence force field developed from ab initio energy surfaces (98).
The convergence tolerances were 2.0 × 10�5 kcal/mol in energy,
10�3 kcal/mol/Å in force, maximum iterations of 104, and dis-
placement of 10�5 Å. To obtain the lowest energy structures, we
tried to avoid local energy minima by performing 5 consecutive
annealing (99, 100) cycles at up to 500 K for 75 ps for each
molecular model of the mixture. The resulting structure was used
for MD simulation under the constant number of molecules,
pressure, and temperature (NPT) ensemble for a period of
1,000 ps, followed by another 1,000 ps dynamic run in the cons-
tant number of molecules, volume, and energy (NVE) ensemble
(99, 100). This was done to apply the temperature effects at each
desired operating temperature of the twin-screw granulator: 298,
325, 350, 375, and 400 K. This temperature range spans from
room temperature to the melting point of the coformer (nicotin-
amide), i.e., the allowable operating temperatures for this system
(49). We should emphasize that under the NPT and NVE ensem-
bles, we were practically minimizing the Gibbs free energy and

entropy, respectively (101). In these dynamic calculations, we
used the velocity Verlet algorithm to integrate Newton’s equation
of motion employing the Berendsen thermostat (102). These
dynamic runs were repeated 10 times for each molecular model of
the mixture to cancel out the random effects.

The final optimized and equilibrated structures at each tem-
perature were used for MD simulation under external shear
forces to investigate molecular reorientation and shear-induced
molecular interactions (103–105). Shear rates of 1, 0.1, 0.01,
0.001, 0.0001, and 0.00001 ps�1 were applied to each mixture
model at the upper facet under the NPT ensemble for a period
of 1,000 ps (106–108). Trajectories were extracted every
0.5 ps. For each local mixture structure, the Raman spectra
were calculated as described by Porezag and Pederson (50).

Proof of Concept for ML Layer. In the ML layer, we first nor-
malized all Raman intensities as �x ¼ ½x � min�=½max � min�,
where x is the Raman intensity and min and max are the mini-
mum and maximum intensities in each dataset, respectively.
0 ≤ �x ≤ 1 is the normalized Raman intensity. Note that each
dataset contained 1,000 intensity data points. We correlated
the normalized Raman spectra of the local mixture structure
with those of the fingerprints at each environmental condition:
the temperature, the shear rate, and the corresponding time
stamp in trajectory. We employed the polynomial theory of
complex systems (109) to generate the main kernel function in the
development of correlations. This theory states that if the dependent
variable y is determined by N independent variables x1, x2,…, xN
according to an unknown functional y ¼ f ðx1, x2,…, xN Þ, then it

Fig. 7. Variation in viscosity (cP) due to shear (s–1) over the temperature range of 298 to 400 K in logarithm (Ln) scale.
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is possible to find an approximate functional form (�f ) that repre-
sents the dependency and reproduces the dependent variable with
an error of E ¼ y ��y , where �y is the reproduced (approximated)
dependent variable. �f can be expressed in the form of a Volterra
functional series (109) as given in Eq. 1, where a0, ai , aij , aijk , aijkl ,
and aijklm are constant coefficients.

�y ¼ a0 þ ∑
N

i¼1
aixi þ ∑

N

i¼1
∑
N

j¼1
aij xixj þ ∑

N

i¼1
∑
N

j¼1
∑
N

k¼1
aijkxixj xk

þ∑
N

i¼1
∑
N

j¼1
∑
N

k¼1
∑
N

l¼1
aijkl xixj xkxl

þ ∑
N

i¼1
∑
N

j¼1
∑
N

k¼1
∑
N

l¼1
∑
N

m¼1
aijklmxixjxkxl xmþ⋯

[1]

In this study, the dependent variable y is the normalized
Raman intensity of the local mixture structure (indicated by R),
and the independent variables x1, x2,…, xN correspond to the
normalized Raman intensity of molecule A (shown by rA) and
molecule B (shown by rB) and all fingerprints (shown by ri ,

considering a total of N fingerprints) at every unique wave-
length. We included the normalized Raman intensities of iso-
lated molecules because in a practical scenario we would expect
all the Raman intensity data of the mixtures to be contami-
nated by Raman intensities of isolated molecules.*,†

The unknown nonlinear correlation f between R and ri is
given as R ¼ f ðrA, rB , r1, r2,…, rN Þ. Eq. 2 gives the approxi-
mate function �f that reproduces the normalized Raman spectra
of the local mixture structure using fingerprint data, i.e., �R ¼
�f ðrA, rB , r1, r2,…, rN Þ (109), where a, ai , aij , aijk , and aijkl are
all unknown constant coefficients.

�R ¼ aþ ∑
N

i¼A,B, 1
ai ri þ ∑

N

i¼A,B, 1
∑
N

j¼A,B, 1
aij ri rj

Fig. 8. Schematic overview of the developed computational framework (API: active pharmaceutical ingredients, ML: machine learning, DFT: density func-
tional theory, and MD: molecular dynamics).

*M. A. Khansary, G. M. Walker, S. Shirazian, “Correlating Raman spectra of ibuprofen, nic-
otinamide and their dimers” in Material Science and Engineering Congress (Deutsche
Gesellschaft f€ur Materialkunde e.V., Darmstadt, Germany, 2020).

†M. A. Khansary, G. M. Walker, S. Shirazian, “Analysis of Raman spectra signals based on
molecular fingerprints from DFT data” in European Congress and Exhibition on Advanced
Materials and Processes: EUROMAT 2021 (The Austrian Society for Metallurgy and Materi-
als, Graz, Austria, 2021).
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þ ∑
N

i¼A,B, 1
∑
N

j¼A,B, 1
∑
N

k¼A,B, 1
aijkri rj rkþ⋯

∑
N

i¼A,B, 1
∑
N

j¼A,B, 1
∑
N

k¼A,B, 1
∑
N

l¼A,B, 1
aijkl ri rj rkrlþ⋯ [2]

The second term in Eq. 2 captures the direct contribution of
each fingerprint to �R , the third term captures the pairwise con-
tribution of overlapping/contamination for each pair of two
fingerprints, the fourth term captures the pairwise contribution
of overlapping/contamination of every three fingerprints, and
so on.
Our previous work showed that truncating the fifth term

and above in Eq. 2 had no significant effect on the accuracy of
this kernel function in reproducing the Raman spectra. In fact,
the coefficients aij and aijk were included mostly to get a better
fit, while ai directly reflected the relative strength of each fin-
gerprint. Models using up to the fourth term in Eq. 2 produced
desirable fits in the range of 0.5%. Therefore, the final form of
our kernel function is given by Eq. 3.

�R ¼ aþ ∑
N

i¼A,B, 1
airi þ ∑

N

i¼A,B, 1
∑
N

j¼A,B, 1
aij ri rj

þ ∑
N

i¼A,B, 1
∑
N

j¼A,B, 1
∑
N

k¼A,B, 1
aijkri rj rk : [3]

Application of Proposed Method to Generate the Computational
Design Space. The task of Eq. 3 is to extract the (intuitive)
weights in a Raman signal. We defined the intuitive linear
weights of each fingerprint (a0i) based on the coefficients ai as
a0i ¼ ai=½½∑N

i¼A,B,1ai � � aA � aB �, where i indicates the other
N fingerprints. In this definition, the contributions to the spec-
tra from A and B are removed and treated as noise.
Eq. 3 should be solved numerically to calculate the coeffi-

cients a, ai , aij , and aijk and then the intuitive linear weights of
each fingerprint a0i . For this purpose, we rewrote Eq. 3 in
matrix form as R ¼ ρA, where R is the vector of the normalized
Raman intensity of the local mixture structure, A is a vector of
all coefficients in Eq. 3, and ρ is the matrix containing the nor-
malized Raman intensities of all the fingerprints ri . The Python

code producing these matrixes and vectors is available in SI
Appendix.

This system of equations, R ¼ ρA, can be solved numerically
as A ¼ ðρT ρÞ�1ρT R (110), where the superscripts T and �1

refer to matrix transposition and matrix inversion, respectively.
The matrix ρ may become singular at certain numerical values
of the computational normalized Raman intensities. Therefore,
we computed its Moore–Penrose pseudoinverse using a least-
squares solver (linalg.pinv in the NumPy package) (111).

Design Space. After applying the proposed method to all com-
puted Raman intensities of the model mixtures, we used the
results to construct the process design space fT , τ, t , a0ig. This
design space was used to engineer the optimal operating condi-
tion for a target fingerprint represented by a0i . Note that τ and
t can be correlated to each other through the design specifica-
tion of the twin-screw granulator. This correlation is incorpo-
rated in the parameter M as M ¼ ψ tf τ

L , where L is the length of
the twin-screw granulator, f is the forward carrying of material
per rotation (screw lead), and ψ is a correction factor set
as ψ ¼ 1.

Implementation Proposal. In real time, this design space
accommodates a process controller that can manipulate any of
the three operating parameters fT , τ, tg to target a0i based on
the actual Raman intensity signal from the spectrometer probe.
In such a scenario, we would solve Eq. 3 for the Raman intensi-
ties measured by the probe as the vector R. This would result
in a real-time calculation of the fraction of fingerprints. These
calculated fractions would then be compared against the design
space in Figs. 2–4, which acts as a decision tree for the control-
ler to alter the screw rotation speed or temperature.

Data Availability. Authors deposited all associated data in the Zenodo data
repository, a publicly accessible database (112–116).
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