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Abstract: As one of the key components for active compliance control and human–robot collaboration,
a six-axis force sensor is often used for a robot to obtain contact forces. However, a significant problem
is the distortion between the contact forces and the data conveyed by the six-axis force sensor because
of its zero drift, system error, and gravity of robot end-effector. To eliminate the above disturbances,
an integrated compensation method is proposed, which uses a deep learning network and the least
squares method to realize the zero-point prediction and tool load identification, respectively. After
that, the proposed method can automatically complete compensation for the six-axis force sensor
in complex manufacturing scenarios. Additionally, the experimental results demonstrate that the
proposed method can provide effective and robust compensation for force disturbance and achieve
high measurement accuracy.

Keywords: robot; six-axis force sensor; deep learning; least squares

1. Introduction

Nowadays, robots have become indispensable equipment in industrial manufacturing
systems [1]. With the urgent demand for flexible manufacturing and fast development
of sensor technology, higher requirements are put forward for the intelligence and self-
adaptability of robots [2]. Two prominent issues are robot-environment interaction [3] and
human–robot collaboration [4,5]. The development of a multi-axis force sensor, especially
a six-axis force sensor, makes it possible to obtain force information in robot operation
environments. Additionally, six-axis force sensors have been applied to robotic systems
that perform contact tasks, such as grinding robots, surgical robots, etc. [6,7].

In order to detect six-axis forces and moments in space, a cylindrical six-axis force
sensor [8,9] is often used, which can measure three-axis orthogonal forces and moments
relative to the sensor frame, i.e., the force components Fx, Fy, Fz along the X, Y, Z axes
of the sensor and the moments Mx, My, Mz around the X, Y, Z axes of the sensor. When
external forces are applied to the sensor, the internal elastomers are deformed and the
corresponding strain signal according to its electrical characteristics are output [10–12].
Typically, a six-axis force sensor is mounted between the end flange of an industrial robot
and the end-effector to perceive the external forces [13,14]. In this case, the sensor generally
measures a combination of forces including the contact forces, the gravity force acting
on the tool, self-gravity, system error, and other force disturbances. The tool gravity and
self-gravity continuously affect measurement output as the robot pose changes. The self-
gravity refers to the gravitational force acting on the six-axis force sensor. To accurately
obtain the contact forces applied to the six-axis force sensor, it is necessary to compensate
for force disturbance.

For several decades, researchers have been conducting wide studies to compensate for
force disturbances of a six-axis force sensor at the end of a robot. Shetty B R et al. [15–17].
showed that the output of the sensor consisted of load gravity and interaction force, and

Sensors 2021, 21, 4706. https://doi.org/10.3390/s21144706 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9848-4610
https://doi.org/10.3390/s21144706
https://doi.org/10.3390/s21144706
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21144706
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21144706?type=check_update&version=2


Sensors 2021, 21, 4706 2 of 17

derived an algorithm to estimate the effect of load gravity on the sensor output as the robot
pose changed in real time. However, the algorithm was proposed under the assumption
that the load gravity and the load centre of gravity are known, which is not always the case
in practice. Loske et al. [18]. proposed an algorithm that considers the self-gravity of the
sensor to be known and calculated the centre of self-gravity from the data of several poses
in order to accomplish the compensation of the gravity. Lin et al. [19,20]. considered that
the effect of gravity on the moment values can be ignored. Then, the output of the sensor
in the six special attitudes were measured, and some parameters of the force sensor were
initialized accordingly. Eventually, the gravity was decomposed when the sensor attitude
changed, and thus the initial force and moment values were compensated. Li et al. [21].
completed the gravity compensation for the force interaction device using Lagrange’s
equation. Vougioukas [22] assumed that the Z-axis of the robot base frame was in the same
direction as gravity, and the gravity applied to one of the sensor’s axes was cancelled out
by some special poses to calculate the bias of the force sensor. Finally, the load gravity and
load centre of gravity positions were calculated by the force coordinate transformation
and the least squares method. Taking into account the load gravity, the zero-point of the
force sensor and the robot mounting inclination. Zhang et al. [23] proposed a method that
used sensor data from no less than three robot poses to obtain the required parameters at
once. However, the method assumed the zero-point as a constant and did not fully take
into account the systematic error of the force sensor. Zhang et al. [24] used a deep learning
algorithm to obtain the mapping relationship between the robot’s pose and the sensor
output to complete the numerical compensation of a tandem force sensor. However, this
method considers the tool gravity and sensor self-gravity as a whole, which requires data
re-collection to train the model where the end-effector needs to be replaced. In addition,
the method gradually fails when the end-effector wears out. This has been shown to be
time-consuming and inefficient. Dine et al. [25]. presented a recurrent neural network
observer to estimate the force disturbance due to gravity, inertia, centrifugal, and Coriolis
forces. The method can detect external contact force-moment in a variety of highly dynamic
motions. However, the result of the observer is unreliable when the robot is motionless, as
the authors pointed out.

In order to solve the above problem, this paper proposes an integrated compensation
method for the force disturbance of a six-axis force sensor, which combines deep learning
and least squares. This algorithm separates the six-axis force sensor from the end-effector,
and fully considers the self-gravity, drift, and system error of the six-axis force sensor.
Firstly, the zero-point of the sensor is estimated based on deep learning to eliminate the
interference caused by the above factors. Secondly, the load of the end-effector is identified
using the least squares method. Finally, the influence on the output due to factors such as
the gravity force acting on the tool and the robot mounting inclination can be eliminated
based on model derivation, which is convenient for the cases where the end-effector needs
to be replaced under complex manufacturing scenarios.

2. Problem Statement

A six-axis force sensor is often used for a robot to obtain contact force information.
However, the self-gravity of the sensor and the gravity force acting on the end-effector will
have an effect on the output of the sensor, and the influence changes continuously with the
change of the sensor attitude. In addition, due to the inherent characteristics of electronic
components, drift currents are changing, which affects the output of the sensor. Based on
the above factors, the output of the six-axis force sensor differs from the pure contact force
applied to the end-effector, and its output can be described as:

f = fbias + fo_gravity + fsys + ft_gravity + finertia + fcontact, (1)

where fbias is the drift of the sensor, fsys is the system error, fo_gravity is the effect caused
by the self-gravity of the sensor, ft_gravity is the effect caused by the gravity force acting
on the tool, finertia is the force output due to robot vibration and inertia, fcontact is the pure
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contact force applied to the end-effector. In addition to the pure contact force, fbias, fsys, and
fo_gravity are parameters related to the sensor itself, ft_gravity relies on the selected execution
tool. Since the robot is in low speed, the effect of finertia is not considered in this paper.
Let the effects caused by the sensor itself be attributed to fzero. Therefore, Equation (1) is
rewritten as:

f = fzero + ft_gravity + fcontact, (2)

where fzero = fbias + fo_gravity + fsys is the output of the sensor without any external force,
which is defined as the zero-point. The goal of the method is to calculate the zero-point of
the sensor for different poses of the robot and the effect of the tool gravity on the output.
Based on the above calculation results, the effect of force interference factors on the contact
force perception is eliminated.

3. Integrated Compensation Method

In view of the effects of drift and system error, as well as the interference of the force
sensor self-gravity and end-effector gravity, we need to compensate for the actual output
of the force sensor in order to accurately perceive the contact forces. Therefore, we separate
the force sensor and the end-effector, use deep learning to obtain the mapping relationship
between the attitude and the zero-point of the force sensor, and use the least squares
method to estimate the tool load. Then, the compensation of the force sensor is completed,
and the influence of force interference is eliminated.

3.1. Zero-Point Estimation of a Six-Axis Force Sensor Based on Deep Learning

The defined zero-point includes the drift, system error, and the influence of its self-
gravity. Generally, for simplicity, the drift is often regarded as a constant, and a linear
function is established based on the relationship between the self-gravity and the posture.
However, in real-life application scenarios of robots, the established linear relationship
does not fully reflect the relationship between the posture and output as well as the effects
of drift and system error due to the installation and positioning of force sensors, etc. Deep
learning is a machine learning technique that has made significant progress in the past
decade. With sufficient training data and suitable network structures, neural networks
(NNs) can approximate arbitrary nonlinear functions, and this powerful fitting ability has
been widely applied to natural language processing and image recognition [26–29]. Studies
have shown that neural networks have a better effect on error compensation [30,31]. Given
its capability described above, NN is used in this section to estimate the zero-point of the
force sensor.

Thus, it is necessary to establish a mapping between the pose of the force sensor and
the zero-point in the absence of any load on the force sensor, i.e.,

fzero = <(p; θ), (3)

where θ is the model parameter.
The pose of a rigid body can generally be described by rotation vector, rotation

matrix, quaternion or Euler angles, etc. To reduce the computational complexity, the
literature [15,16,22,23] chose a rotation matrix to derive the relationship between the effect
of the self-gravity and the rotation matrix in the ideal case. According to the existing
relationship, this paper designs an NN as shown in Figure 1 to estimate the zero-point.

The input to the NN is the nine elements of the rotation matrix Rij (i = 1, 2, 3; j = 1,2,3),
and the general robot control system can directly obtain the data related to the pose and
thus the rotation matrix can be calculated. Considering the symmetry of the force sensor,
the theoretical output of Mz should be 0 in the non-load condition. Additionally, its output
is small and fluctuates irregularly during the experiment. To reduce its unreliable effect
on model training, the output data of the NN are the five outputs Fx, Fy, Fz, Mx, My of
the force sensor, and the fluctuating output of Mz caused by incidental factors is not
estimated. Theoretically, the accuracy of approximation can be improved by increasing the
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number of neurons by a moderate amount [32]. However, too many neurons require higher
computation power, which inevitably affects the response time of the sensor in practice.
Therefore, with a combination of fitting accuracy and sensor response speed, we chose a
neural network with two hidden layers based on the experiments, the first with 45 nodes
and the second with 90, as the regressor to fit the mapping function <(p; θ). Currently,
ReLU(x) = max(0, x) is often recommended as the activation function of NN, but in the
force sensor application scenario, this activation function may cause some neurons to never
be activated, resulting in the parameters not being updated. Therefore, this paper chooses
the derivative of this function Leaky_ReLU(x) = max(αx, x) as the activation function,
where α = 0.01. The activation function of the output layer uses the constant function. The
parameter θ in the model is learned by minimizing the following loss function:

loss(θ) =
1
N

N

∑
n=1

(f(n)zero −<(n)(p; θ))
2
. (4)
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3.2. Tool Load Identification Based on Least Squares Method

Generally, different end-effectors are attached to the end of the force sensor in order
to achieve various tasks. As the pose of the robot changes, the pose of the tool changes
accordingly, and its influence on the sensor changes as well. In order to achieve a quick
compensation of the gravitational influence of the end-effector after its replacement, this
section uses the least squares method to estimate the tool load.

Let the robot base frame be {B} and the world frame be {W}, and assume that Zw is
reversed with respect to gravity. Since the error in the robot installation will make {B} and
{W} not completely coincide, assuming that {B} can be obtained by rotating {W} around
the Xw by angle α and around the Yw by angle β, then, the rotation matrix of the robot base
frame relative to the world frame can be written as:

W
B R =

 1 0 0
0 cos α − sin α
0 sin α cos α

 cos β 0 sin β
0 1 0

− sin β 0 cos β

. (5)

The frame of the force sensor is {S}, and the relationship between the frames is shown
in Figure 2.
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Assuming that the gravity force acting on the tool is G, then it is expressed in {W} as
WG =

[
0 0 −G

]T . Through force transformation, the tool gravity in the ith attitude
can be converted from the world frame to the force sensor frame:

SGi =
B
S RT

i
W
B RT WG, (6)

which can be equated to:
SGi =

B
S RT

i · BG, (7)

where SGi = [Gxi Gyi Gzi]
T, BG =

[
G cos α sin β −G sin α −G cos α cos β

]T, and B
S R i

is the rotation matrix of the sensor frame at the ith pose with respect to the robot base frame.
The gravity force acting on the tool in the force sensor frame is shown in Figure 3.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 3. The gravity force acting on the tool in the force sensor frame. g indicates the direction of 
gravity; Gx, Gy, Gz are components of gravity; Mx, My, Mz are the component of the gravitational 
moment. 

The frame of the six-axis force sensor is a spatial Cartesian rectangular frame. As-
suming the coordinate of the tool’s centre of gravity in the sensor frame as ( , , )x y z , ac-
cording to the relationship between forces and moments, it is obtained that: 

,S
i iA=M r  (8)

where [   ]S T
i xi yi ziM M M=M , [ ]Tx y z=r , and

0
0

0

zi yi

i zi xi

yi xi

G G
A G G

G G

 −
 = − 
 − 

. 

Stacking all forces S
iG  as SG , moments S

iM  as SM , rotation matrix B T
S iR  as R , 

and matrix iA  as A  in n robot poses, we have: 

3 1 3 3 3 1 ,S B
n n× × ×= ⋅G R G  (9)

3 1 3 3 3 1.
S

n n× × ×= ⋅M A r  (10)

Therefore, the gravity force acting on the tool and centre of gravity can be estimated 
as: 

* arg min( ) ( ),
B

B S B T S B= − ⋅ − ⋅
G

G G R G G R G  (11)

* * *arg min( ) ( ),S T S= − ⋅ − ⋅
r

r M A r M A r  (12)

where *A  is the matrix calculated from the optimal value of the tool gravity. Therefore, 
according to the least squares method, the optimal estimate of the load gravity and centre 
of gravity coordinates is: 

* 1( ) ,B S−= T TG R R R G  (13)

* * * 1 *( ) .S−= T Tr A A A M  (14)

3.3. Compensation of Force Disturbance 
According to the proposed method, the zero-point ( ) ( ; )zero p p θ= ℜf  of the force 

sensor is predicted by using the NN model when the robot is in an arbitrary attitude p . 
In addition, the optimal value of the tool gravity in the robot base frame *BG  and the tool 
centre of gravity in the force sensor frame *r  can be quickly estimated in a small number 

Figure 3. The gravity force acting on the tool in the force sensor frame. g indicates the direction of gravity;
Gx, Gy, Gz are components of gravity; Mx, My, Mz are the component of the gravitational moment.



Sensors 2021, 21, 4706 6 of 17

The frame of the six-axis force sensor is a spatial Cartesian rectangular frame. Assum-
ing the coordinate of the tool’s centre of gravity in the sensor frame as (x, y, z), according
to the relationship between forces and moments, it is obtained that:

SMi = Air, (8)

where SMi = [Mxi Myi Mzi]
T , r =

[
x y z

]T , and Ai =

 0 Gzi −Gyi
−Gzi 0 Gxi
Gyi −Gxi 0

.

Stacking all forces SGi as SG, moments SMi as SM, rotation matrix B
S RT

i as R, and
matrix Ai as A in n robot poses, we have:

SG3n×1 = R3n×3 · BG3×1, (9)

SM3n×1 = A3n×3 · r3×1. (10)

Therefore, the gravity force acting on the tool and centre of gravity can be estimated as:

BG∗ = argmin
BG

(SG −R · BG)
T
(SG −R · BG), (11)

r∗ = argmin
r

(SM −A∗ · r)T
(SM −A∗ · r), (12)

where A∗ is the matrix calculated from the optimal value of the tool gravity. Therefore,
according to the least squares method, the optimal estimate of the load gravity and centre
of gravity coordinates is:

BG∗ = (RTR)
−1

RT SG, (13)

r∗ = (A∗TA∗)
−1

A∗T SM. (14)

3.3. Compensation of Force Disturbance

According to the proposed method, the zero-point fzero(p) = <(p; θ) of the force
sensor is predicted by using the NN model when the robot is in an arbitrary attitude p. In
addition, the optimal value of the tool gravity in the robot base frame BG∗ and the tool
centre of gravity in the force sensor frame r∗ can be quickly estimated in a small number of
poses. Further, when the robot is operated to an arbitrary attitude p, the effect of the tool
gravity on the sensor output is calculated as follows:

SG(p) = B
S RT(p)BG∗

SM(p) = A(p)r∗

ft_gravity(p) = [SG(p) SM(p)]
. (15)

According to Equation (2), the pure contact force applied to the end-effector is:

fcontact = f− ft_gravity(p)− fzero(p). (16)

Finally, the compensation of force disturbance can be completed according to Equa-
tion (16). See Appendix A for details of the pseudo-code of the proposed integrated
compensation method.

4. Experimental Results

In order to verify the feasibility of the method, this paper designs the force interference
compensation experiment of the six-axis force sensor at the end of the robot. The flow
chart of the experiment is shown in Figure 4. The robot used in the experiment is the
UR10 collaborative robot. The pose of the six-axis force sensor can be provided from the
robot control system by positioning the installation of the six-axis force sensor and setting
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the position of the robot’s TCP (Tool Centre Point). The force sensor is a contact force
sensor in a tandem force sensor [33] independently developed by our laboratory, using
self-developed acquisition box and software for data collection. The technical parameters
of the force sensor are shown in Table 1. A total of 200 sets of data are collected in each
posture to ensure the stability and accuracy of the data, and eliminate the deviation caused
by the robot vibration and inertia. Finally, the median value is taken as the response value
in that posture.
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Table 1. The technical parameters of the force sensor.

Type Fx (N) Fy (N) Fz (N) Mx (Ncm) My
(Ncm) Mz (Ncm)

Range ±100 ±100 ±200 ±500 ±500 ±500
Type I error ≤1%F.S.
Type II error ≤2%F.S.

Overload 120%F.S.
Resolution 16-bit AD

Temperature −10~40 ◦C
Humidity 20~70% RH

4.1. Zero-Point Estimation of a Six-Axis Force Sensor Based on Deep Learning

It is necessary to collect sufficient output of the force sensor in different poses to learn
the parameter θ, however, there is no smooth continuous trajectory that allows the robot
to traverse all possible poses in the workspace. Xiong [34] et al. pointed out that the first
three joints of the robot mainly determine the location of the wrist, and the latter three
joints mainly determine the posture of the wrist. Considering the time required to collect
the data so that the robot can traverse as many poses as possible while moving at a small
angle each time, the following experimental scheme is designed. Keeping the first three
joints of the robot fixed and considering the interference problem of the force sensor during
the motion and the common working range, the data acquisition range of the fourth, fifth
and sixth joints of the robot is restricted to [−135◦,+15◦], [−145◦,+145◦], [−180◦,+180◦]
respectively, as shown in Figure 5. The step size of the three joints during data collection
is 10◦, 10◦, 15◦, so a total of 15 ∗ 29 ∗ 24 = 10, 440 sets of data are collected. Each set of
collected data includes the robot’s pose and the output of the force sensor in the current
pose. After the original data collection, the order of the data is disordered randomly, and
9966 sets of data are selected as the training set, while the remaining 474 sets are used as
the test set.
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The experimental environment is as follows: CPU is Intel(R) Core (TM) i7-9750H
CPU@2.60 GHz, graphics card is GTX1660Ti, operating system is Windows 10, and Pytorch
deep learning framework is used. The complete training data set of 9966 is used in each
iteration, and the optimizer uses Adam with 100,000 iterations. The learning rate settings
for the iterations are shown in Table 2. To prevent overfitting, L2 regularization is added to
the loss function. Figure 6 shows the change of loss function for the 50,000th–100,000th
iteration during the training.

Table 2. Learning Rate.

Number of Iterations Learning Rate

0th–10,000th 0.005
10,000th–30,000th 0.001
30,000th–50,000th 0.0005

50,000th–100,000th 0.0001
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After training, the model is tested using the test set data, and the results are shown in
Figure 7, where the unit of forces is Newton (N) and the unit of moments is Newton-cm (Ncm).
To illustrate the distribution of the zero-point estimation errors, a kernel density distribu-
tion of the errors was made, as shown in Figure 8. For comparison, a zero-point estimation
method of the force sensor based on a dynamical model (DM) is conducted, and the results
are shown in Figure 9. The mean (µerror), standard deviation (σerror), and maximum value
of the absolute value of the error (maxerror) obtained from the data are shown in Table 3.
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Table 3. Force sensor zero-point estimation error data.

Type
NN DM

µerror σerror maxerror µerror σerror maxerror

Fx −0.009 0.193 0.607 −0.030 0.418 1.041
Fy 0.002 0.221 0.987 0.023 0.619 1.152
Fz −0.009 0.165 0.549 0.003 0.368 0.958
Mx 0.037 0.405 1.040 −0.043 0.537 1.493
My 0.022 0.473 1.458 −0.054 0.984 1.823

Compared to Figure 9, the mean value of the error data on the test set in Figure 7 is
close to 0. As shown in Table 3, maxerror of the test dataset of the NN method is much
less than that of the DM method, except for Mx, but the errors are extremely similar. In
particular, the σerror of the NN method is much smaller than that of the DM method. The
data shows that the error data distribution of the NN method is more concentrated and
uniformly disordered on both sides of 0, as can also be illustrated by Figure 8.

To verify that the NN method outperforms the DM method, we reduce the size of
the training set for experiments. The experimental results are presented in Appendix B.
The bar graphs of µerror + 3 σerror are shown in Figure 10 for training data of 1000, 3000,
5000, and 7000 sets, respectively. Figure 10 shows that the DM method still performs much
worse than the NN method even with the same training samples. Furthermore, the result
shows that the NN model generalizes well and the errors obtained after fitting are caused
by noise, so the deep learning-based sensor zero-point estimation method is feasible.
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4.2. Tool Load Identification by Least Squares Method

In order to verify the feasibility of the least squares-based tool load identification
algorithm, a vacuum chuck is installed at the end of the six-axis force sensor to perform the
experiment. The experimental site is shown in Figure 11. The robot is controlled by the
host computer to adjust to 15 attitudes (rotation vectors) to collect data, respectively. The
attitude data are shown in Appendix C.
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The collected data are pre-processed and then calculated using the proposed method in
Section 3.2 settlement results show BG∗ = [0.18 0.11 − 5.11]T(N), r∗ = [0.037 0.057 − 4.83]T(cm),
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calculated as expected. In reality, the mass of the vacuum chuck is 571 g, the gravity
is 5.592 N. The gravity obtained from the identification is |BG∗| = 5.117 N, the error
of the identification result is less than 8.5%. However, because the true value of the
position of the centre of gravity cannot be measured accurately, and it is only used as
the intermediate value in the compensation process, the error of the obtained result is
not analysed. Therefore, we used Equations (15) and (16) in Section 3.3 to calculate the
compensation results to analyse the feasibility of the method.

4.3. Compensation Results

When the tool at the end of the six-axis force sensor is not in contact with any object, the
sensor does not receive any external force except for gravity, that is fcontact = 0. According
to Formula (16), the error after the compensation is:

error = f− fzero − ft_gravity. (17)

According to the proposed method, the robot is adjusted to a series of random postures
in the work area and collect force sensor data to verify the feasibility of the algorithm.
The robot is controlled to move to 215 different random poses in the work area, and
the corresponding robot pose data and force sensor output data are collected. The error
between the response values f of the force sensor and the predicted values of the algorithm
fzero + ft_gravity, i.e., the compensation error of the disturbance force, is calculated and the
box plot of the error is shown in Figure 12. The figure shows that the error distribution of
the test data is relatively concentrated, and the percentage of abnormal data is less than
0.9%. However, the error values of Mx and My are large relative to the forces, which is
due to the fact that they are influenced by both the forces and the load centre of gravity,
resulting in an unavoidable accumulation of errors.
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Table 4 shows the maximum absolute error (MAX) and the mean absolute error
(MAE) of the compensation, where Bias+LSM is the compensation algorithm proposed
in the literature [22], Double-LSM is the method proposed in the literature [23], which
considers the sensor and the tool load as a whole, and NN + LSM is the proposed method.
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Table 4 shows that, compared with Bias + LSM and Double-LSM, the proposed method
in this paper can effectively reduce the MAX and the MAE of Fx, Fy, Fz, Mx, My after the
compensation. The compensation error level of Mz is comparable to that of the Double-
LSM, which is due to the fact that the zero-point estimation in this algorithm does not
compensate for Mz and only compensates for it in the load gravity identification stage.
However, in general, the present algorithm can accomplish the compensation of robot end
force disturbance with higher accuracy.

Table 4. Comparison of compensation error results.

Types Fx (N) Fy (N) Fz (N) Mx (Ncm) My (Ncm) Mz (Ncm)

MAX
Bias + LSM [22] 1.368 1.826 1.735 3.340 5.721 1.036

Double-LSM [23] 1.273 1.764 1.629 3.191 5.591 0.899
NN + LSM 0.834 1.390 1.418 2.235 4.215 0.932

MAE
Bias + LSM [22] 0.502 0.583 0.724 1.211 2.356 0.430

Double-LSM [23] 0.473 0.571 0.656 1.092 2.141 0.246
NN + LSM 0.301 0.465 0.502 0.652 1.104 0.247

MAX, the maximum absolute error; MAE, the mean absolute error; LSM, least squares method; DNN + LSM, integrated method proposed
in this paper.

According to the technical parameters of the force sensor provided in Table 1, the errors
after the compensation is completed by this method are 0.83%F.S., 1.39%F.S., 0.71%F.S.,
0.45%F.S., 0.84%F.S., and 0.19%F.S., respectively.

To quantify the degree of error more accurately, the disturbance force compensation
degree factor φi is defined as:

φi =

max
j

(|ni|)−MAXi

max
j

(|ni|)
× 100%, i = 1, 2, . . . , 6, j ∈ [1, length(test dataset)] (18)

where ni is the output of the ith axis in the test. Therefore, this method reduces the
effects of force sensor self-gravity, drift, system error, and tool gravity on the sensor
output by 89.33%, 83.83%, 83.83%, 92.91%, 82.89%, and 76.48% in each dimension of the
output, respectively. Through analysis, we conclude that the factors leading to incomplete
compensation are: robot control error, the influence of the collection cable during the
collection process, the calibration error of the six-axis force sensor, and the random error
during collection. However, the compensated force error is still controlled within 1.50 N
(1.5%F.S.) and the moment error is controlled within 4.3 Ncm (0.86%F.S.) by this algorithm.
Compared to the literature [24], the present algorithm is able to perform the compensation
task efficiently while meeting the accuracy requirements. Although the test was conducted
for the particular robot and end-effector, the method is general.

In conclusion, compared to existing methods, the proposed method can significantly
reduce the influence of the end of the robot interference force, and can meet the demand of
active compliance control.

5. Conclusions

In this paper, we proposed an integrated method to compensate for the external forces
applied to the six-axis force sensor. Considering the interference of drift, system error, and
gravity, the proposed method used a deep learning model to predict the zero-point of the
sensor and identified the tool load by using the least squares method. In the experiment,
we designed and trained an NN model to predict the zero-point of the sensor, based on a
9966-item dataset obtained in the non-load condition. Moreover, we collected 15 groups of
data when the robot arm was in different poses, including robot poses and sensor output.
Such data were used to identify the tool load based on the least squares method. Finally,
the force compensation values for the sensor were calculated by integrating the zero-point
prediction and tool load identification obtained above. The experiment results show that the
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proposed method can perform more accurate and effective force compensation in different
conditions compared with existing methods. This method can automatically complete
force compensation of the six-axis force sensor in complex manufacturing scenarios, which
can significantly improve the intelligence of the robot.

Author Contributions: Conceptualization, L.Y. and D.Z.; methodology, L.Y., Q.G. and W.Z.; software,
L.Y. and Q.G.; validation, Y.C. and D.Z.; formal analysis, W.Z.; investigation, L.Y.; resources, Y.C. and
D.Z.; data curation, L.Y., Y.C. and D.Z.; writing—original draft preparation, L.Y.; writing—review
and editing, W.Z. and D.Z.; visualization, L.Y.; supervision, Y.C. and D.Z.; project administration,
Y.C. and D.Z.; funding acquisition, Y.C. and D.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by the Science and Technology Support Project of the National
Science Foundation of China, grant number 51775215.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The pseudo-code of the proposed method in this paper is shown in Algorithm A1.

Algorithm A1: Integrated compensation method.

Input: p: Current pose of the force sensor.
{P}: Set of robot poses to be moved.
<(p; θ): Weight’s file generated by deep learning in Section 3.1.
Output: f p

contact: In the pose p, the pure contact force applied to the end-effector.
repeat
if end-effector is replaced then
for i to length ({P}) do
Control the robot move to the pose pi in {P};
Save current pose information B

S R i in R;
Save current output of the force sensor f i

out in fout;
Save current zero-point f i

zero = <(pi; θ) in fzero;
end for
[SG SM] = fout − fzero;
BG∗ = (RTR)

−1RT SG;
Calculate A∗ from BG∗;
r∗ = (A∗TA∗)−1A∗T SM;
end if
while p is changed do
Current output of the force sensor f p

out

Get the rotation matrix at this pose B
S R p;

Zero-point of the force sensor at this pose f p
zero = <(p; θ);

Effect of the end-effector:
SGp = (B

S R p)
T BG∗

Calculate Ap from BGp

SMp = Apr∗

fp
t_gravity = [SGp SMp]

f p
contact = fp

out − fp
t_gravity − fp

zero

end while
until end of manufacturing task.
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Appendix B

Results for training data of different sizes. NN stands for Neural Network method
and DM stands for Dynamic Model method.

Table A1. Error results obtained from training sets of different sizes.

Data
Size

Type NN DM

µerror σerror maxerror lerror µerror σerror maxerror lerror

1000

Fx 0.006 0.224 0.841 0.678 −0.010 0.418 1.027 1.244
Fy −0.001 0.255 0.808 0.764 0.051 0.618 1.158 1.905
Fz −0.019 0.205 0.531 0.596 −0.006 0.368 0.951 1.098
Mx 0.038 0.144 1.493 0.470 −0.040 0.540 1.509 1.580
My 0.028 0.571 1.783 1.741 0.001 0.983 1.841 2.950

3000

Fx −0.008 0.208 0.682 0.616 −0.024 0.418 1.043 1.230
Fy −0.018 0.273 0.925 0.801 0.038 0.619 1.146 1.895
Fz −0.006 0.211 0.585 0.627 0.316 0.367 0.953 1.417
Mx 0.062 0.449 1.526 1.409 0.452 0.536 1.488 2.060
My −0.003 0.541 1.493 1.620 0.837 0.985 1.812 3.792

5000

Fx −0.006 0.197 0.602 0.585 −0.027 0.418 1.041 1.227
Fy −0.019 0.256 0.892 0.749 0.031 0.619 1.139 1.888
Fz −0.139 0.198 0.592 0.455 0.004 0.367 0.960 1.105
Mx 0.048 0.435 1.331 1.353 −0.045 0.535 1.483 1.560
My −0.005 0.537 1.363 1.606 −0.041 0.984 1.810 2.911

7000

Fx 0.019 0.182 0.616 0.565 −0.031 0.418 1.045 1.223
Fy 0.004 0.245 0.858 0.739 0.028 0.619 1.147 1.885
Fz −0.019 0.191 0.550 0.554 0.002 0.367 0.956 1.103
Mx 0.020 0.413 1.159 1.259 −0.044 0.535 1.487 1.561
My 0.045 0.487 1.675 1.506 −0.051 0.984 1.819 2.901

where lerror = µerror + 3 σerror .

Appendix C

The robot postures data required in the experiment of tool load identification based
on least squares method.

Table A2. The robot postures data required in Section 4.2.

Number RX RY RZ

1 2.0592 0.6381 −0.0558
2 0.6526 −2.7875 0.2766
3 1.8874 −2.0127 −0.2661
4 0.4880 2.1373 0.2597
5 0.4232 −1.8506 −0.6033
6 −1.9615 1.9499 0.2685
7 1.5291 −1.1463 −1.6160
8 −2.6872 −0.6012 −0.4095
9 −1.2868 1.6152 0.1995
10 −0.7769 2.4489 1.6684
11 −1.9852 0.5888 0.2570
12 −0.5084 −2.1222 −1.6644
13 −0.4566 −1.9525 −1.8284
14 −0.7513 −0.2524 0.6352
15 −0.8525 −2.4366 0.7001

RX, RY, and RZ are the three elements of the rotation vector.
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