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ABSTRACT: In this Letter, we reanalyze published mass spectrometry
data sets of clinical samples with a focus on determining the coinfection
status of individuals infected with SARS-CoV-2 coronavirus. We
demonstrate the use of ComPIL 2.0 software along with a metaproteomics
workflow within the Galaxy platform to detect cohabitating potential
pathogens in COVID-19 patients using mass spectrometry-based analysis.
From a sample collected from gargling solutions, we detected Streptococcus
pneumoniae (opportunistic and multidrug-resistant pathogen) and Lactoba-
cillus rhamnosus (a probiotic component) along with SARS-Cov-2. We
could also detect Pseudomonas sps. Bc-h from COVID-19 positive samples
and Acinetobacter ursingii and Pseudomonas monteilii from COVID-19
negative samples collected from oro- and nasopharyngeal samples. We
believe that the early detection and characterization of coinfections by using
metaproteomics from COVID-19 patients will potentially impact the
diagnosis and treatment of patients affected by SARS-CoV-2 infection.

In the current COVID-19 pandemic, sensitive and high-
throughput diagnostic methods are essential for the

identification of SARS-CoV-2-infected individuals. Rapid and
accurate tests ensure that proactive measures can be taken to
trace the sources and limit the spread of the infection. The
SARS-CoV-2 coronavirus can be detected from nasal swab,
tracheal aspirate or blood, urine and stool specimens of
infected patients by reverse transcriptase polymerase chain
reaction (RT-PCR), which, along with other direct detection
methods is considered the gold standard for an active
infection.1 On the other hand, indirect testing methods, such
as sampling for specific anti-SARS-CoV-2 antibodies, are used
to infer previous exposure to the virus.
For direct detection, researchers have started exploring mass

spectrometry (MS)-based assays to detect viral antigens from
respiratory tract samples.2−4 High-resolution MS-based tar-
geted assays coupled with immunoaffinity purification are
being developed to improve the sensitivity and/or specificity of
detection.5,6 While most of these approaches detect the
infection by targeting SARS-CoV-2 proteins associated with
the host response, we believe that the MS-based proteomic
data sets can also be further utilized to identify an
understudied, but potentially important, coinfection status of
the infected individual. Bacterial coinfections during respira-
tory-related viral outbreaks have been shown to significantly
contribute to fatalities as demonstrated in both the 1918 and
2009 pandemics.7,8 Moreover, recent research reports have
also shown that many fatalities attributed to COVID-19 viral

infections could be due to patients’ predisposition to
coinfections.9

Diagnosing and managing coinfections can be complex, as it
is possible that opportunistic coinfecting organisms are present
in patients prior to viral infection or are acquired during
hospitalization. For example, chronic bacterial infections
associated with chronic obstructive pulmonary disease
(COPD) can be a risk factor for patients with severe
COVID-19 infection.10 Additionally, some COVID-19 patients
with severe presentation are subject to prolonged mechanical
ventilation augmenting their chances of developing nosocomial
infections. Furthermore, the use of antibiotics to treat bacterial
infections is especially high among COVID-19 patients under
intensive care. The global overuse of antibiotics can lengthen
the growing roster of antibiotic resistant pathogens and present
problems in pairing infective organisms with appropriate
antibiotics in an effective and timely fashion when using
culture-based testing for coinfecting microbes. Early diagnosis
of multiorganism coinfection is also necessary to avoid
complications during hospitalization. Therefore, there is a
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need for a discovery-based analytical workflow for rapidly
detecting coinfecting pathogens in COVID-19 patients,
enabling subsequent characterization of antibiotic resistance
and offering a roadmap for appropriate medical intervention.
In this study, we present a metaproteomic bioinformatics

workflow (Figure 1) that uses MS-based data from COVID-19
patients as an input to detect peptides associated with
coinfecting organisms. MS files were searched using ComPIL
2.011 against a comprehensive protein sequence database and
the detected peptides were used to find taxonomic
information12 about microorganisms present in the sample.
Based on the taxonomic information, the mass spectrometry
data was reinterrogated using a metaproteomics workflow
(Figure 1) within the Galaxy platform to (a) match tandem
mass spectra (MS/MS) against a focused custom protein
sequence database of clinically significant taxa; and (b) verify

detected peptides for their peptide-spectrum match (PSM)
quality using the PepQuery software tool13 and the Lorikeet
tandem mass spectrometry (MS/MS) spectral visualization
tool.14

We demonstrate the use of ComPIL 2.0 and metaproteo-
mics workflow to detect cohabitating, potential pathogens in
COVID-19 patients using MS-based metaproteomics analysis
from three published data sets.2,16,18 We report the detection
of microorganisms only when identified with at least two
peptides per data set (Table 1). Each peptide detection was
supported15 by confident identification by SearchGUI/
PeptideShaker, confirmed by PepQuery analysis, and further
validated by spectral annotation visualization via the Lorikeet
viewer (Supplementary Data S1 and S2). From a sample
collected from gargling solutions of COVID-19 positive
patients,2 we detected Streptococcus pneumoniaean oppor-

Figure 1. Metaproteomics workflows to detect cohabitating microorganisms from COVID-19 patient samples. RAW Files from clinical data sets
were searched against a comprehensive UniRef database using COMPIL 2.0 software. Peptides detected from COMPIL 2.0 search were extracted
using a Galaxy workflow (A) that were subjected to Unipept analysis. Clinically important species (detected with at least two peptides) were used
to generate the UniProt proteins FASTA database. The RAW files were reinterrogated against a combined database of human proteins, UniProt
FASTA database of detected species, SARS-CoV-2 proteins and contaminants using SearchGUI/PeptideShaker within a Metaproteomics Search
and Validation Workflow (B). Confidently identified peptides were subjected to Unipept analysis to detect microbial peptides and further
confirmed by using PepQuery. The confirmed peptides were used to detect species (with at least 2 peptides) after validating the spectral quality of
the microbial peptides by spectral validation (Lorikeet). Species were reported to be present in a sample only when they were detected by at least
two peptides in a sample or replicate.

Table 1

data set organisms detected in COVID-19 patient samples link

gargling solution (PXD019423)2 Streptococcus pneumoniae,16,17 Lactobacillus rhamnosus18 and
SARS-CoV-2

https://covid19.galaxyproject.org/proteomics/
mPXD019423/

oro- and naso-pharyngeal tract
(PXD020394)19

Pseudomonas monteilii,21,22 Pseudomonas sps. Bc-h, Acinetobacter
ursingii23,24 and SARS-CoV-2

https://covid19.galaxyproject.org/proteomics/
mPXD020394/

respiratory tract (PXD021328)20 SARS-CoV-2 https://covid19.galaxyproject.org/proteomics/
mpxd021328/
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tunistic pathogen that colonizes the mucosal surfaces of the
human upper respiratory tract,16 which has been detected in
COVID-19 patient samples,17 and Lactobacillus rhamnosus,
which is used in oral probiotic treatment.18 We detected
Pseudomonas sps. Bc-h peptides from COVID-19 positive
samples, which is an unclassified strain that has not been
previously shown to be associated with infection. We could
detect only SARS-CoV-2 peptides from respiratory tract
samples.19 We could detect Pseudomonas monteilii and
Acinetobacter ursingii from COVID-19 negative samples
collected from oro- and nasopharyngeal samples.20 Multidrug
resistant strains of Pseudomonas monteilii have been isolated in
human bronchial aspirates of hospitalized patients.21,22

Acinetobacter ursingii, a commensal bacterium present in
newborns, can also cause bacteraemic infections in premature
infants.23 A. ursingii has also been isolated from bronchoscopic
samples of intensive-care patients.24

We believe that this untargeted metaproteomics approach
offers an important step toward clinical coinfection diagnostics,
wherein unbiased, direct detection of microbial peptides and
inferred proteins can be performed without the requirement of
accompanying metagenomic data from the patients or the use
of coculturing methods. Untargeted identification of microbial
peptides, followed by rigorous determination of the most
reliably detected sequences, as accomplished by our bio-
informatics workflow, lays the groundwork for accurate
proteotyping of clinical samples25 via targeted MS-based
assays.26 Moreover, the detection of coinfecting agents at the
protein level can complement PCR-based methods while also
offering direct evidence for an active growth of microbial
agents during COVID-19 infection. We are hopeful that the
workflow proposed in this study will potentially impact the
diagnosis and treatment of patients affected by SARS-CoV-2
infection. Data associated with this study along with
bioinformatic workflows employed are accessible via a Zenodo
link,15 supplementary data (S1 and S2) and the COVID-19
Galaxy resource (https://covid19.galaxyproject.org/
proteomics/).
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