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Alzheimer’s disease (AD) is a life-threatening neurodegenerative disease of the elderly.
In recent observations, exposure to heavy metals environmental may increase the
risk of AD. However, there are few studies on the causal relationship between heavy
metal exposure and AD. In this study, we integrated two large-scale summaries of
AD genome-wide association study (GWAS) datasets and a blood lead level GWAS
dataset and performed the two-sample Mendelian randomization analysis to assess
the causality of blood lead level and AD risk. The results showed that there is a
significantly positive causality between blood lead level and AD risk both in the inverse-
variance weighted (IVW) model and the weighted median estimator (WME) model. An
independent additional verification also reached a consistent conclusion. These findings
further confirm the conclusions of previous studies and improve the understanding of the
relationship between AD pathogenesis and the toxicity of lead in environmental pollution.
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INTRODUCTION

Heavy metals are non-biodegradable, and well-documented evidence supports that chronic
exposure to heavy metals can cause neurodegenerative diseases (Bush, 2003; Mates et al., 2010).
These pollutants arise from rapid urbanization and industrialization, such as municipal waste,
traffic, aquaculture, agricultural chemicals, paint coatings, petrochemical industry, electronic
industry, mining, and smelting (Tchounwou et al., 2012; Wang et al., 2013; Ojuederie and
Babalola, 2017; Fan et al., 2020). Human exposure to heavy metals mainly via ingestion of metal-
contaminated food, water, and employment in metal-contaminated workplaces (Tchounwou et al.,
2012). Several epidemiological studies have shown a significant association between cumulative
metals exposure and neurodegenerative diseases (Bjorklund et al., 2018; Bakulski et al., 2020). There
is robust evidence that heavy metals can disturb neurotransmitter systems by multiple mechanisms,
including the interaction with neurotransmitter receptors, the modification of certain gene and/or
protein expression, and the collateral damage of their functions following Reactive Oxygen Species
(ROS) production (Bertram and Tanzi, 2005; Carmona et al., 2021). A previous study found that
some amyotrophic lateral sclerosis patients have a 2.3- to 3.6-fold increase both in the patellar and
tibial lead, which is a dose-dependent increased risk of this disease (Kamel et al., 2002).
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There are many kinds of neurodegenerative diseases,
including Parkinson’s disease, amyotrophic lateral sclerosis,
Lewy body dementia, Alzheimer’s disease (AD), and so on.
Among them, AD is the most typical neurodegenerative disease
(Bakulski et al., 2020). AD is a neurodegenerative disease that
threatens the life of the elderly, and currently, there is no efficient
treatment for AD (Bakulski et al., 2020). AD is caused by a variety
of environmental, lifestyle, and genetic factors that influence the
degeneration of neuronal cells over some time (Bakulski et al.,
2020; Huang et al., 2022). The neuropathological features of AD
are hyperphosphorylated tau (a microtubule-binding protein),
neurofibrillary tangles (NFTs), and aging plaques consisting of
accumulated amyloid protein (Aβ) and contained metal ions
(Han et al., 2019; Bakulski et al., 2020).

Accumulating evidence suggests that heavy metal pollution
may be an important contributor to AD, but there is
no comprehensive understanding of the effects of heavy
metal pollution on AD. This study attempts to analyze the
correlation between heavy metal pollution and AD by the
Mendelian randomization. Mendelian randomization analysis is
an analytical method for evaluating the observed correlation
between a changeable risk or exposure factor and a clinically
relevant outcome (Sekula et al., 2016). The use of as many
instrumental variables as possible can reduce the concern of weak
instrumental bias (Burgess and Thompson, 2011). This research
uses genetic variants to assess the causal relationship between
heavy metal exposure and AD.

In this study, we first selected the genome-wide association
study (GWAS) summary data of AD and environmental
pollutants from multiple authoritative databases. Then, we
filtered the GWAS summary data and selected independent and
matched exposure risk factor-related SNPs as the instrumental
variables. Next, based on the instrumental variables with their
GWAS summary results, we used two models to assess the
causality of environmental pollutants and AD risk by the two-
samples Mendelian randomization analysis. Finally, we used
three check methods to ensure the reliability of the results of the
Mendelian randomization analysis.

MATERIALS AND METHODS

Data Sources
The common water quality pollutants were considered as the
exposure risk factors in this study. The related genetic variations
of these exposure risk factors were selected by searching the
NHGRI-EBI GWAS Catalog1 using the keywords: “Cadmium,”
“Chromium,” “Mercury,” “Manganese,” “Lead,” “Molybdenum,”
and “Nickel.” The NHGRI-EBI GWAS Catalog is a curated
collection for delivering the high-quality published (GWAS)
summary results of various human traits (Buniello et al., 2019).
Finally, we only identified 14 blood lead level-related SNPs
from a 5,433-sample size European ancestry GWAS study. This
study used the blood samples from the Queensland Institute of
Medical Research in Australia and the Avon Longitudinal Study

1https://www.ebi.ac.uk/gwas

of Parents and Children in the United Kingdom to measure
blood lead levels and genotype of the SNPs (Warrington et al.,
2015). The details were shown in Supplementary Table 1. The
summary of GWAS data on AD is derived from a consortium
consisting of the Alzheimer’s Disease Genetics Consortium
(ADGC), European Alzheimer’s Disease Initiative (EADI),
Cohorts for Heart and Aging Research in Genomic Epidemiology
Consortium (CHARGE), and Genetic and Environmental Risk
in AD/Defining Genetic, Polygenic and Environmental Risk for
Alzheimer’s Disease Consortium (GERAD/PERADES). A total of
10,528,610 variants are genotyped and measured using 21,982
AD individuals and 41,944 controls (Kunkle et al., 2019). In
addition, to ensure the reliability of the results, we further used an
independent GWAS dataset EFO_0000249, which includes 5,918
AD individuals and 212,874 controls, to conduct a verification
using the Mendelian randomization analysis.2

Selection and Filtration of Instrumental
Variables
According to the threshold of significant association P < 10−5,
we first selected the 14 blood lead level-related SNPs as the
instrumental variables and further discarded the non-biallelic
SNPs. Then, we matched the remaining SNPs to the AD GWAS
results and attempted to align strands of the palindromic SNPs
for allele harmonization. Next, to ensure mutual independence
between the instrumental variables, we performed a linkage
disequilibrium (LD) analysis and filtered the non-independent
SNPs according to the significance threshold, i.e., r2 < 0.001
within the 10,000 kb window. The samples used to estimate the
LD effect were derived from the 1,000 Genome Project European
ancestry individuals (Consortium, 2012). Finally, if blood lead
level-related SNP is not present in the AD GWAS results, we tried
to use the proxy SNPs through LD tagging (r2 = 1) instead of it
and integrated the filtered SNPs with the GWAS results of blood
lead level and AD as the instrumental variables.

Mendelian Randomization Analysis
We used the R package “TwoSampleMR” and its web
server “MRBASE” to perform the two-sample Mendelian
randomization analysis (Hemani et al., 2018). Particularly,
we conducted the inverse-variance weighted (IVW) model
and the weighted median estimator (WME) model to assess
the causal effect of blood lead level on AD risk. The IVW
model ignores the intercept in the regression analysis and uses
the inverse of the variance as a weight for the fit. The WME
model is a consistency estimator under the assumption that
more than half of the instrumental variables are valid. For the
IVW model, each inverse-variance was estimated by dividing
SNP-AD associations by SNP-blood lead level associations (i.e.,
Wald ratios). Then, the mean effect of blood lead level on AD
risk was estimated by a random effect meta-analysis of the
Wald ratios. When the inverse-variance satisfies the primary
assumptions of Mendelian randomization analysis [i.e., the
inverse-variance: (1) is associated with the exposure, (2) is not
associated with the confounders, and (3) does not influence the

2https://r5.risteys.finngen.fi/phenocode/G6_AD_WIDE
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TABLE 1 | The causality of blood lead level and Alzheimer’s disease (AD) risk by two-sample Mendelian randomization (MR) analysis using the data of AD consortium
(Kunkle et al., 2019).

SNP Position Effect
allele

GWAS of blood lead level GWAS of AD Model MR analysis Heterogeneity test Horizontal pleiotropy

Beta P-value Beta P-value Beta P-value Cochran’s
Q

P-value Intercept P-value

rs76153987 chr3:9214817 T −0.195 4 × 10−6
−0.073 0.0266

IVW 0.245 0.0103 2.161 0.34
rs116864947 chr7:11705786 T −0.431 3 × 10−7

−0.123 0.0376 −0.029 0.44
WME 0.262 0.0367 0.684 0.41

rs6462018 chr7:27519118 G −0.084 4 × 10−6
−0.002 0.8994

TABLE 2 | The causality of blood lead level and AD risk by two-sample MR analysis using the data of EFO_0000249.

SNP Position Effect
allele

GWAS of blood lead level GWAS of AD Model MR analysis Heterogeneity test Horizontal pleiotropy

Beta P-value Beta P-value Beta P-value Cochran’s
Q

P-value Intercept P-value

rs76153987 chr3:9214817 T −0.195 4 × 10−6
−0.036 0.4025

IVW 0.242 0.0046 3.297 0.51
rs116864947 chr7:11705786 T −0.431 3 × 10−7 0.128 0.0333

rs6462018 chr7:27519118 G −0.084 4 × 10−6
−0.005 0.8136 –0.026 0.385

rs798338 chr7:78287721 A −0.111 4 × 10−6
−0.015 0.4901

WME 0.220 0.0059 2.269 0.52
rs10121150 chr9:113369415 C −0.143 3 × 10−8 0.069 0.0183

outcome through some pathways other than the exposure], IVW
model can provide accurate estimates (Burgess et al., 2013; Staley
and Burgess, 2017). For the WME model, the intercept of the
fitted curve was calculated to estimate the average pleiotropy
effect across the genetic variants. The WME can also provide a
consistent estimate when more than half of the inverse variance
satisfies the primary assumptions of Mendelian randomization
analysis (Verbanck et al., 2018). The threshold of significant
causal effect was set as P < 0.05. Moreover, the causal effect was
considered positive and negative when the beta value was greater
and less than zero, respectively.

Reliability Check
To ensure the reliability of the results of Mendelian
randomization analysis, we performed the horizontal pleiotropy
test, heterogeneity test, and sensitivity analysis. Particularly, we
used the Egger regression intercept to estimate the magnitude of
horizontal pleiotropy. If the SNPs influence the AD risk through a
pathway other than the blood lead level, the significant horizontal
pleiotropic (P < 0.05) can bias the Mendelian randomization
estimates (Burgess and Thompson, 2017). Then, we assessed the
heterogeneity by a funnel plot. The asymmetry and large spread
of the funnel plot indicate a high heterogeneity. The significant
threshold was set as P < 0.05 (Van Kippersluis and Rietveld,
2018). Finally, we conducted the sensitivity analysis by removing
each SNP from the original Mendelian randomization analysis.
The leave-one-out sensitivity analysis was used to ascertain if
an association is being disproportionately influenced by a single
SNP, and the forest plot was used to show the results.

RESULTS AND DISCUSSION

The Selected Instrumental Variables for
Mendelian Randomization Analysis
We collected the summary GWAS data of blood lead levels
from the NHGRI-EBI GWAS Catalog, and AD from the
EFO_0000249 and a consortium consisting of the ADGC,
EADI, CHARGE, and GERAD/PERADES, respectively. All of
the samples are derived from European ancestry individuals.
The blood lead level GWAS dataset was intersected with two
AD GWAS datasets, respectively. After the allele harmonization,
LD filtering, and SNP proxy, we selected a total of three
SNPs as the instrumental variables for Mendelian randomization
analysis which are significantly associated with the blood lead
level and independent of each other for the consortium’s AD
GWAS dataset. Particularly, SNP rs76153987 (chr3:9173133),
rs116864947 (chr7:11666159), and rs6462018 (chr7:27479499)
are located in genes SRGAP3, THSD7A, and EVX1, respectively,
and all of them are negatively associated with the blood lead
level (beta = −0.195, −0.431, and −0.084; P = 4 × 10−6,
3 × 10−7 and 4 × 10−6, respectively) (Warrington et al.,
2015). The AD GWAS results of them are beta = −0.073,
−0.123, and −0.002 and P = 0.033, and 0.059 and 0.015,
respectively (Table 1). For the EFO_0000249 dataset, we
identified two additional SNPs, rs798338 (chr7:78287721 in
MAGI2), and rs10121150 (chr9:113369415 in BSPRY), after
the screening process. The AD GWAS results of them are
beta = −0.015 and 0.069 and P = 0.490 and 0.018, respectively
(Table 2). The human reference genome hg38 was used in
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FIGURE 1 | The Mendelian randomization (MR) analysis for the causality of blood lead level and Alzheimer’s disease (AD) risk. (A) The forest plot represents the
causal effect of blood lead level on AD using the Wald ratio. The Mendelian randomization using singly each SNP and all SNPs by the WME and IVW models are
shown in it. (B) The method comparison plot shows the SNP effects on AD against SNP effects on blood lead levels in the WME and IVW models. Each method has
a different line, and the slope of the line represents the causal association. Panels (C,D) show the forest plot of causal effect and the method comparison plot of
WME and IVW models for the EFO_0000249 dataset, respectively.

this study. The more detailed information was shown in
Supplementary Table 1.

The Causality of Blood Lead Level and
Alzheimer’s Disease Risk
Using the three SNPs with their GWAS results about blood
lead level and AD, we performed the two-sample Mendelian
randomization analysis to assess the causal effect of blood lead

level on AD risk. The results of the IVW model showed that there
is a significant positive causality between blood lead level and
AD risk (beta = 0.2445 and P = 0.0103). The whole confidence
interval of Mendelian randomization effect size for blood lead
level on AD is greater than zero (Figure 1A). The WME
model showed similar results (beta = 0.2621 and P = 0.0382)
(Figure 1A). As Figure 1B shows, the influence of the three
SNPs on blood lead level and AD in the two models exhibits
good consistency. To ensure the reliability of the results, we
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FIGURE 2 | The heterogeneity test and sensitivity analysis of the Mendelian randomization analysis. (A) Funnel plot to assess heterogeneity. Asymmetry and large
spread suggest a high heterogeneity. (B) The forest plot of leave-one-out sensitivity analysis shows if an association is being disproportionately influenced by a single
SNP. Each black point represents the Mendelian randomization analysis excluding that particular SNP. Panels (C,D) show the results of the heterogeneity test and
leave-one-out sensitivity analysis for the EFO_0000249 dataset, respectively.

further performed a Mendelian randomization analysis using
the five SNPs from the EFO_0000249 dataset. We found a
similar result, i.e., beta = 0.2421 and 0.2203 and P = 0.0046 and
0.0059 in IVW and WME model, respectively (Figure 1C). The
influence of the five SNPs on blood lead level and AD in the
two models also exhibits a good consistency (Figure 1D). These
results suggest that the elevated blood lead level increases the
risk of AD. The previous studies reported that the toxicity of
lead gives rise to severe environmental pollution with the use

of petrol and its exposure results in cognitive decline in elderly
men and women. Moreover, the blood lead level was found
significantly higher in the patients with AD and is associated
with an increase in AD mortality after adjusting for identified
confounders (Laidlaw et al., 2017; Fathabadi et al., 2018; Horton
et al., 2019). Our findings are consistent with these studies
and further confirm previous conclusions, which suggest that
the exposure of lead may damage the nervous system and
increase risk of AD.
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Reliability Check
We further performed the horizontal pleiotropy test,
heterogeneity test, and sensitivity analysis to check reliability of
the Mendelian randomization analysis. For the consortium’s AD
GWAS dataset, the results showed that there is no directional
horizontal pleiotropy affecting the IVW and WME estimate
(intercept = −0.029 and P = 0.438) (Table 1). Then, Cochran’s Q
test showed that there is also no significant heterogeneity in IVW
(Cochran’s Q-statistic = 2.161 and P = 0.340) and WME estimate
(Cochran’s Q-statistic = 0.684 and P = 0.408) (Figure 2A).
Moreover, the leave-one-out sensitivity analysis showed that the
results of the Mendelian randomization analysis do not extremely
change when we removed each of the SNP orderly (Figure 2B).
For the EFO_0000249 dataset, the similar results also showed a
non-directional horizontal pleiotropy (intercept = −0.026 and
P = 0.385) (Table 2), non-significant heterogeneity in IVW
(Cochran’s Q-statistic = 3.297 and P = 0.510), WME estimate
(Cochran’s Q-statistic = 2.269 and P = 0.520) (Figure 2C), and
insignificant changes in sensitivity analysis (Figure 2D). These
results demonstrate that the causality of blood lead level and AD
is reliable, and further suggest that the elevated blood lead level
increases the risk of AD.

CONCLUSION

The lead pollution is a serious environmental problem and
damages to the human central nervous system. In this study,
we integrated two large-scale summary AD GWAS datasets
and a blood lead level GWAS dataset to assess the causality
of blood lead level and AD risk by the two-sample Mendelian
randomization analysis. After the reliability check, we found a
significant positive causality between blood lead level and AD

risk. Our findings suggest that the exposure of lead may increase
risk of AD, which is further confirm the results of previous studies
and benefit to understanding of AD pathogenesis and the toxicity
of lead in environmental pollution.
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