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Abstract: The structure safety can be assessed, but only indirectly, by identifying material properties,
geometry of structures, and values of loads. The complete and comprehensive assessment can
be done only after determining internal forces acting inside structures. Ultrasonic extensometry
using an acoustoelastic effect (AE) is among the most common non-destructive techniques (NDT) of
determining true stresses in structures. Theoretical bases of the method were described in the mid 20th
century. They were founded on the correlation between ultrasonic waves and the value and direction
of stresses. This method is commonly used to determine stresses mainly in homogeneous materials
without any inherent internal defects. This method is rarely applied to porous or composite materials,
such as concrete or rock due to a high dispersion of results. Autoclaved aerated concrete (AAC),
characterized by high homogeneity and porosity, is the popular material in the construction sector,
used to produce masonry units. The discussed tests involved the acoustoelastic effect to determine
stresses in the masonry wall made of AAC. This paper presents a widely theoretical background
for the AE method, and then describes the author’s own research on AAC divided into two stages.
At first, the empirical relationships between compressive stress and velocity of longitudinal ultrasonic
wave, including humidity, were determined. In stage II, nine masonry walls were tested in axial
compression. Mean compressive stresses in the masonry wall determined with the proposed method
were found to produce a satisfactory confidence level up to ca. 50% of failure stresses. Results were
significantly understated for stresses of the order of 75% of failure stresses.

Keywords: masonry structures; autoclaved aerated concrete masonry units (AAC); compressive
strength; minor-destructive (MDT) techniques; non-destructive techniques (NDT); ultrasonic testing;
acoustoelastic effect (AE)

1. Introduction

The ultrasonic technique is used for many purposes, but the most common purpose is
diagnostic [1–4]. Ultrasounds are employed by many branches of the industry; they are a crucial tool
for electronic engineering, telecommunications or material engineering. Generally, the application
of ultrasounds is broad and covers active and passive uses. The passive use includes ultrasonic
spectroscopy and defectoscopy, ultrasonic diagnostic for medical purposes, and hydrolocation.
Ultrasonic waves are more and more often used to test kinetics of hardening of different types
of substances. The active use includes ultrasonic coagulation and dispergation, ultrasound therapy,
cavitation, development of sonoluminescence, or chemical reactions. Other active applications are:
crushing and forming hard media, bonding, soldering, washing, extracting, and drying of substances.
They are also used quite commonly to measure stresses in metal constructions. These methods have
been elaborated to measure stresses caused by thermal treatment of rolled profiles or during welding.
Ultrasonic stress measurements are based on the acoustoelastic effect (AE), that is, on the dependence
of acoustic wave velocity on stress. Measurements of stress in bolts are the oldest application of the
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AE method. Stress is determined on the basis of measured change in the times of flight of ultrasonic
waves propagating along the stressed bolt. New tests and applications related to measurements of
stresses in rails, train wheels and unit shafts, have been presented in [4].

Non-destructive techniques are used for other popular materials, such as concrete or ceramics,
to determine time of set, and changes in the modulus of elasticity. Ultrasonic testing using
minor-destructive techniques (MDT) can determine compressive strength [5,6]. Classic methods
of damage detection have been intensively developed [7–10]. No attempts have been so far made to
determine stress state in materials with porous structure, such as concrete or rock. These materials
behave advantageously under compression, and the complex structure of ordinary concrete cause
difficulties in interpreting the results. This aspect is completely different for autoclaved aerated
concrete (AAC), whose compressive strength is relatively low and at the same time this material is
more homogeneous than concrete despite its porous structure.

Autoclaved aerated concrete (AAC) contains cement, calcium, and lime as binding material, sand
used as a filler and tiny quantities of aluminium powder (or paste) which is used as a blowing agent.
Density of this type of concrete ranges from 300 to 1000 kg/m3, and its compressive strength varies from
1.5 to 10 N/mm2. AAC has been commonly used since the middle of the 1950s. This material (>40% of
the construction segment in Europe) is used for masonry structures, precast wall or floor elements,
and intels [11]. The open-pore structure explains why AAC is sensitive to direct exposure to moisture,
which results in worse insulating and strength properties. The available articles, apart from general
relationships specified in standards, do not contain detailed references expressed as empirical relations
to determine strength properties of AAC using NDT and semi-NDT techniques. This work describes
the practical application of selected issues on ultrasonic testing presented in the papers [12,13].

This paper is an attempt to evaluate changes in stress state of masonry units made of autoclaved
aerated concrete built into small fragments of the masonry wall under axial compression. The masonry
wall was also made of autoclaved aerated concrete with considerably more porous structure than
ordinary concrete. The aim of the tests was to define empirical relationships concerning values of
vertical stresses in the AAC masonry wall including the acoustoelastic (AE) effect well-known in
practice [14]. This paper is divided into the theoretical part containing detailed bases of the AE method,
and the research part consisting of stages I and II In stage I of the tests, experiments were performed
on 24 small cube specimens (100 × 100 × 100 mm) of autoclaved aerated concrete with nominal
densities of 400, 500, 600, and 700 kg/m3. The elastooptic constant β111 was determined that showed
the longitudinal wave cp0 depended on stress σ33. In stage II, nine small models made of autoclaved
aerated concrete with nominal density of 500 kg/m3 were prepared and tested in the second phase of
tests. They were used to measure velocity of the ultrasonic wave cp. Relationships determined in the
first phase were used to identify the stress state in the masonry wall and validate σ33—cp relationship.

2. Theoretical Basis

2.1. Propagation of Ultrasonic Waves in Linear-Elastic Material

Generally, an anisotropic body, e.g., crystal of defined symmetry, can be the solid medium.
The propagation of waves in the anisotropic medium, particularly velocity, depends on the direction
relative to the axis of coordinates usually related to the crystallographic arrangement that corresponds
to the given symmetry. Hooke’s law [15] describes elastic properties of the anisotropic arrangement in
the linear relationship between the stress tensor σij and the deformation tensor εkl in the following way:

σi j = ci jklεkl + ci jklmnεklεmn + . . . (1)

where: σi—components of stress state, εkl—components of deformation state.
Both quantities are symmetric tensors of second rank, which means they can have six independent

components. Coefficients cijkl and cijklmn are constants of elasticity of second or third rank, respectively.
They are symmetric tensors of fourth and sixth rank, respectively. The linear theory of elasticity assumes
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materials are elastic, and the relationship between stress and deformation is linear. All constants of
elasticity of third order or higher are neglected. Even for such a simplification, the number of tensor
components cijkl defining elastic properties is 36, but the number of independent components is 21.
In the case of orthotrophic materials with three mutually perpendicular planes of symmetry, elastic
properties are described by nine independent constants of elasticity in the following form:

ci j =



c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66


(2)

Regarding isotropic materials with the infinite number of axes of symmetry planes, elastic
properties can be comprehensively described by two independent constants of elasticity c12 and c44.
Other matrix coefficients (2) can be expressed as linear combinations using the Lamé coefficients:

c11 = c22 = c33 = λ+ 2µ, c12 = c23 = c23 = λ, c44 = c55 = c66 = µ. (3)

The force acting on any volume element in the solid medium, in which the disturbance is observed,
can be expressed as the gradient of stress caused by the disturbance [1]. The Equation of the particle
motion representing the equilibrium state between the restoring force and the inertial force is expressed
by the following Equation:

ρ0
∂2ξi

∂t2 =
∂Ti j

∂x j
→ ρ0

∂2ξi

∂t2 = ci jkl
∂2ξk
∂x j∂xl

(4)

where: ρ0—density of the body in the tensionless state. The expression (4) contains the equations of
three components of the displacement, which describe components of the wave equation of vector
quantity ξ described by three components. Assuming that coordinates of the plane harmonic wave are
expressed by the relationship ξ = ξ0ei(ωt−kr), Equation (4) can be expressed as:

−ω2ρ0ξ0i = −ci jklk jklξ0k →
(
ci jklk jkl − δikω

2ρ0
)
ξok = 0 (5)

where: ω is the wave frequency, kj, kl,—wave vector (towards j, l), ξ0i, ξ0k—coordinates of the plane
harmonic wave (towards i, k).

Expression (5) is the system of homogeneous algebraic equations, which due to unknown ξ0k is
described in the following form:(

c1 j1lkikl −ω
2ρ0

)
ξ10 + c1 j2lkiklξ20 + c1 j3lkiklξ30 = 0

c2 j1lkiklξ10 +
(
c2 j2lkikl −ω

2ρ0
)
ξ20 + c2 j3lkiklξ30 = 0

c3 j1lkiklξ10 + c3 j2lkiklξ20 +
(
c3 j21kikl −ω

2ρ0
)
ξ30 = 0

(6)

The system of equations is fulfilled when the determinant of the coefficients is equal to 0.
The equation of third degree relevant to ω2 is the solution for the determinant. The equation contains
three roots that correspond to three different waves with mutually perpendicular displacements.
When the simplest case of the isotropic body and waves travelling along one axis (x3), the determinant
of the Equation (6) takes the following form:∣∣∣∣∣∣∣∣∣

c44k2
−ω2ρ0 0 0
0 c44k2

−ω2ρ0 0
0 0 c11k2

−ω2ρ0

∣∣∣∣∣∣∣∣∣ = 0 (7)
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By solving the determinant, the following equation is obtained:(
c44k2

−ω2ρ0
)2(

c11k2
−ω2ρ0

)
= 0 (8)

It has two roots equal to ω2
1 = ω2

2 = c44k2

ρ0
, and the third one equal to ω2

3 = c11k2

ρ0
. Taking into

account that k = ω/C (where C is wave velocity), the following roots are obtained:

C1 = C2 =

√
c44

ρ0
, C3 =

√
c11

ρ0
(9)

A solution to this issue indicates the propagation of three waves in the body. Two of them are
characterized by mutually perpendicular oscillations and the same velocity C1 = C2 = cT is known
as transverse waves as c44 is the shear. The third wave with the velocity cp is the longitudinal wave
because c11 is constant related to the component of the normal deformation. Taking into account
relationships between material constants, the following expression is obtained:

cT =

√
µ

ρ0
, cp =

√
λ+ 2µ
ρ0

(10)

Constants λ and µ can be introduced into the system of Equations (4) by replacing coefficients cijkl.
Then, the system of equations broken down into components is for the isotropic body as follows:

ρ0
∂2ξ1
∂t2 = (λ+ 2µ) ∂2ξi

∂x1∂xi
+ µ ∂2ξ1

∂x1∂xi

ρ0
∂2ξ2
∂t2 = (λ+ 2µ) ∂2ξi

∂x2∂xi
+ µ ∂2ξ2

∂x2∂xi

ρ0
∂2ξ3
∂t2 = (λ+ 2µ) ∂2ξi

∂x3∂xi
+ µ ∂2ξ2

∂x2∂xi

(11)

When the medium is incompressible (no changes in volume), the above equations give the wave
equation for transverse waves in the following vector form:

∂2ξ

∂t2 =
µ

ρ0
∇

2ξ (12)

where ∇2 is the Laplace operator of the second order in n- dimensional Cartesian coordinate system
expressed as: ∇2 = ∆ = ∂2

∂x2
i
+ ∂2

∂x2
j
+ ∂2

∂x2
k
+ . . .+ ∂2

∂x2
n

.

Assuming the irrotational medium, the wave equation for longitudinal waves is as follows:

∂2ξ

∂t2 =
λ+ 2µ
ρ0

∇
2ξ (13)

2.2. Propagation of Ultrasonic Waves in Porous Material

Biot is regarded as the initiator of works on the theory and studies on ultrasonic waves in porous
materials [16,17]. According to the theory, there are two compressional waves in the wet porous
material—P1-wave (the fast wave) and P2-wave (the slow wave). Further works [18,19] have confirmed
Biot’s hypothesis. Other research works refer to other phenomena, including reflections and refractions,
which are significant for testing and diagnosing materials. Currently, different aspects concerning wave
propagation in the porous medium are examined. The issue of wave propagation and scattering in the
inhomogeneous material is presented in, inter alia, the papers [20,21]. The works [22,23] present the
mathematical model of propagation of low-frequency surface waves–the Stoney waves, in the porous
material. Another paper [24] describes experiments on absorption and propagation of ultrasonic
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waves in materials with dual porosity, whereas the work [25] demonstrates test on the propagation of
Rayleigh waves at liquid–solid interfaces.

Concrete, like rock media, is not ideally elastic. Therefore, the wave equation cannot be directly
applied to this medium (12). The imperfect elasticity of concrete causes internal friction that transforms a
part of energy into heat causing scattering and dispersion of velocity of elastic waves. The mathematical
presentation of imperfection of the elastic medium is described in different ways. For example, the
equation of the perfectly elastic medium can be replaced with the system of equations describing
stresses and deformations. The equation of the plane longitudinal wave moving and scattered in the
imperfectly elastic medium takes the following form:

ρ0
∂2ξ

∂t2 =
1
βad

∂2ξ

∂x2 + η
∂3ξ

∂x2∂t
(14)

where βad—adiabatic compressibility coefficient, η = η′′ + 4
3η
′—viscosity coefficient composed of

coefficients (η”) of bulk and shear viscosity (η′).
Generally, the solution to the wave Equation (14) is expressed as:

ξ(x, t) = Ae−αηxeiω(t− x
c ) + Beαηxeiω(t+ x

c ) (15)

where: A, B—integration constants, αη—integration constant depending on the value of viscosity
coefficient, c—wave velocity, x—coordinate of wavefront, ω—wave frequency.

The velocity of longitudinal waves in viscoelastic medium can be described as:

cp =

√
K
ρ0

√
2(1 +ω2r2)

(√
1 +ω2r2 − 1

)
ω2r2 (16)

where r = ηβad, K = 1/βad.
The velocity of waves in the inhomogenuous granular medium, despite being the material

constant, is related to its physical properties—density, elasticity defined by the Lamé coefficients also
depends on wave scattered by the medium, wave frequencies, the medium structure, etc. Therefore,
velocity not regarded as the constant value in contrast to the propagation of waves in perfectly elastic
media. Granular media, such as rocks, concrete, or mortar, are characterized by:

• different dimensions and properties of components—matrix grains,
• different models (systems) of arrangement and connections of individual grains—they can have a

direct contact or are connected with binder of other properties. In the case of chemically bonded
materials, the binder changes its properties during the transformation from liquid to solid state.

Scattering of the elastic wave in granular media depends on many factors—mechanical and
thermal processes caused by the propagating wave. There are three main reasons for energy loss
during wave scattering:

• internal frictions in the medium—δr,
• thermal effects—δT,
• Rayleigh scattering δR.

The overall wave scattering is the sum of mentioned elements:

δ = δr + δT + δR, (17)

The role of each of the three factors above in ultrasonic wave scattering in the homogeneous
granular medium depends on the frequency and structure of that medium characterized by:

• dimensions of the matrix grains,
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• thermal properties of components,
• elastic properties of components, and their density.

Wave velocity in granular media characterized by a large coefficient of wave scattering can be
calculated from the following dependence:

C = C0

√
1−

(
δ
ω

)2
(18)

where C0—wave velocity in the linear-elastic medium, δ—total scattering coefficient, and
ω—wave frequency.

The velocity of wave propagation in granular materials changes within a wide range and is
subjected to fluctuations depending on the type of components and their distribution. It is caused
by different values of elasticity constants E G ν demonstrated by individual components of granular
materials. Therefore, we obtain a certain mean velocity that results from the percentage contribution of
velocity to individual components. Determining ultrasound velocity for different specimens cannot be
neglected in that case. Greater scattering and more problems related to signal recording are expected
in specimens with longer wave paths. Hence, the use in NDT methods requires the conversion of
wave velocities.

3. Stress Measurements Using an Ultrasonic Technique

Material stress can affect velocity of the acoustic wave due to inhomogeneity and anisotropy of the
material. That effect has been described for the first time by seismologist Biot [26] and experimentally
verified by Hughes and Kelly [27] and Bergman and Shahbender [28]. It is demonstrated that the static
stress can change velocity of the acoustic wave in the medium, and that effect is called the acoustoelastic
(AE) effect [29,30].

The acoustoelastic effect is based on the relationship between the velocity of transverse wave
propagation and stress in solid bodies found by Benson and Raelson in the 1970s [14]. Since then,
this aspect has been widely developed [31–33]. The impact of stress on the velocity of transverse wave
propagation is determined by the direction of wave propagation with reference to the stress direction
and wave polarization. A change in the polarization plane depends on stress, similarly to a light
wave in the elastooptic effect. Its mechanism was theoretically described on the basis of the non-linear
theory of solid deformation [27]. According to that theory, constant elasticity of higher orders (than
those observed in the theory of linear elasticity) was responsible for nonlinear effects. The propagation
velocity in the stressed body can be expressed as the sum of velocities in the tensionless stress (σ = 0)
and its change (increment) caused by stress. That change can be defined as dependent on stress
including constant characteristics of elasticity of second or third order.

In accordance with the infinite deformation of elastic materials by Murnaghan [34], the stress-
deformation relationship should be described by the function of free energy Ws defined as [27,35]:

Ws =
1
2
(λ+ 2µ)I2

1 − 2µI2 +
1
3
(l + 2m)I3

1 − 2mI1I2 + nI3 (19)

where: λ, µ—Lamé constants, l m n—elasticity constants of second and third order by Murnaghan, I1,
I2, I3—deformation invariants.

Taking into account the principle of energy conservation, Hooke’s law can be expressed as:

ρδWs = σi j
∂δui
∂u j

, (20)
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where δW and δui mean finite increments in the function of free energy and displacement area, ρ is
density after deformation. The combination of Equations (19) and (20) produces the acoustoelastic
equation, which binds the static load with velocity of the elastic wave under hydrostatic pressure P:

ρ0c2
p = λ+ 2µ− P

3λ+2µ (6l + 4m + 7λ+ 10µ) ,
ρ0c2

T = µ− P
3λ+2µ (3m + 0, 5n + 3λ+ 6µ) ,

(21)

where: cp and cT are velocity of longitudinal and transverse waves respectively, a ρ0—body density in
the tensionless state.

Thus, the hydrostatic level of stress can be defined from Equation (20) [36] by measuring velocity
of the longitudinal and transverse waves—Figure 1a. In the case of uniaxial stress, wave velocity
depends on the direction of the stress and the square of velocity on Figure 1b-1f is as follows:

V2
111 =

λ+ 2µ
ρ0

−
σ1

3K0ρ0

[
λ+ µ

µ
(4λ+ 10µ+ 4m) + λ+ 2l

]
, (22)

V2
113 =

λ+ 2µ
ρ0

+
σ3

3K0ρ0

[
2λ
µ
(λ+ 20µ+ m) − 2l

]
, (23)

V2
131 = µ−

σ1

3K0ρ0

[
4λ+ 4µ+ m +

λn
4µ

]
, (24)

V2
133 = µ−

σ3

3K0ρ0

[
λ+ 2µ+ m +

λn
4µ

]
, (25)

V2
132 = µ+

σ2

3K0ρ0

[
2λ−m +

n
2
λ
2

n
µ

]
, (26)

where: K0 = E
3(1−2ν) =

2µ+3λ
3 .

Knowing velocity of the ultrasonic wave in the loaded material and elasticity constants of the
first (λ µ), second and third order (m n l) normal stresses can be determined. Measurements of wave
velocity do not cause any problems except for small specimens (due to high sensitivity of the recording
equipment). However, determining material constants m, n, and l is difficult.

Using the equation [27], the precise method of determining material constants was presented
in the papers [37,38]. Velocities of longitudinal and transverse waves under the uniaxial stress are
presented in the following form:

ρ0V2
11 = λ+ 2µ+

σ1

E
[5λ+ 10µ+ 2l + 4m− 2ν(λ+ 2l)]→ V2

11 = V2
0

(
1 + 2α11

σ1

E

)
(27)

ρ0V2
12 = µ+

σ1

E

[
λ+ 4µ+ m− ν

(
2λ+ 2µ+ 2m−

n
2

)]
→ V2

11 =

(
µ

ρ0

)2(
1 + 2α12

σ1

E

)
(28)

ρ0V2
21 = µ+

σ1

E

[
λ+ µ+ m− ν

(
2λ+ 4µ+ 2m−

n
2

)]
→ V2

21 =

(
µ

ρ0

)2(
1 + 2α21

σ1

E

)
(29)

ρ0V2
22 = λ+ 2µ+

σ1

E
[λ+ 2l− ν(6λ+ 10µ+ 4l + 4m)]→ V2

22 = V2
0

(
1 + 2α22

σ1

E

)
(30)

ρ0V2
23 = µ+

σ1

E

[
λ+ m−

n
2
− ν(2λ+ 6µ+ 2m)

]
→ V2

21 =

(
µ

ρ0

)2(
1 + 2α23

σ1

E

)
(31)
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Figure 1. Identification of velocity of ultrasonic waves in isotropic material: (a) hydrostatic compression
by pressure P, (b) longitudinal wave under stress σ1, (c) transverse wave under stress σ3, polarized in
planes 1–3 (d) transverse plane under stress σ1, polarized in planes 1–3, (e) transverse plane under
stress σ3, polarized in planes 1–3, (f) longitudinal wave under stress σ2, polarized in planes 1–3.

Tests on the specimens of two lengths were the base to formulate relationships for determining
constants α11, α22, α12, α21, and α23 from the following equations:

α11 = 1−
E
σ1

[
L1

L2 − L1

(
∆t1

t01

)
−

L1

L2 − L1

(
∆t2

t02

)]
(32)

where: L1—length of specimens ”1” and “2” used for calibration, ∆t1 = t1 − t01—difference in
passing time of wave in specimen “1” after deformation (t01) and before deformation (t01), ∆t2 =

t2 − t02—difference in passing time of wave in specimen “2” after deformation (t02) and before
deformation (t02).

The equation for determining other material constants is as follows:

α1 j = −ν−
E
σ1

(
∆t
t0

)
(33)

where ∆t = t1 − t01 is the difference in passing time of the wave in the specimen after and before
its deformation.
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My own research indicated the linear nature of changes in the ratio of passing time of the wave
∆t/t0 in relation to stress increase. Determining other constants consisted in solving the following
system of equations:

l = (2α11−5)(λ+2µ)
2(1−2ν) −

2m−νλ
1−2ν , m =

[
α11−α22
2(1+ν) − 1

]
(λ+ 2µ) − µ

2

n12 = 2
ν [−(a + 4ν) + 2ν(a + µ) + 2µα12], n21 = 2

ν [−(a + 2ν) + 2ν(a + 2µ) + 2µα21]

n23 = 2[a− 2ν(a + 3µ) − 2µα23]

(34)

where: a = λ + m.
Figure 2 shows changes in increment of propagation time of longitudinal and transverse waves

described in the paper by Takahashi [38], who based this on his experience of developing and patenting
the measuring apparatus to determine directly constants l, m, and n [39].
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where: a = λ + m. 
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As expected, the greatest increments in wave velocity were observed for longitudinal waves in
the direction of stress. In addition, surface waves could be used to detect changes in stress states.
The smallest gradients of velocity were obtained for transverse waves. As expected, the greatest
increments in wave velocity were observed for longitudinal waves perpendicular to the stress direction.
An increase in compressive stress caused an increase in wave velocity. Similar relationships were
observed for waves propagating perpendicularly to the stress direction. Theoretical principles of the
acoustoelastic effect are relatively well documented in the literature. There is also an apparatus to
determine elasticity constants l, m, and n of the third order for metals and plastic in accordance with
procedures described in, among others, papers [37,38,41]. Diagnosing stress states in structures using
the NDT method requires the information on load direction and defined gradient of changes in velocity
of longitudinal or transverse wave Knowing Muraghan coefficients is not essential.

4. Test Program and Results

The test program was divided into two stages. Stage I included the material tests on specimens
made of autoclaved aerated concrete (AAC) to determine density ρ0, elasticity modulus E and Poisson’s
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ratio υ. Each cube specimen was subjected to axial compression until the failure and velocity of the
longitudinal wave were determined at different normal stresses. The obtained results were used to
determine linear correlations describing a σ–Cp relationship. In stage II, nine models of masonry walls
were tested in axial compression. The velocity of the longitudinal wave was measured at different
values of vertical loads. Then, vertical loads were determined on the basis of a correlation curve
obtained during stage I. To interpret the results, they were compared with numerical calculations for
3D models of the masonry wall.

4.1. Stage I—Determination of Acoustoelastic Constant

The tests included four series of masonry units with thickness within the range of 180–240 mm
and different classes of density: 400 kg/m3, 500 kg/m3, 600 kg/m3, and 700 kg/m3, each 20 masonry
units were randomly selected. Six cores with a diameter of 59 mm and the height of 120 mm were taken
from each type of the masonry unit using a drill. They were used to determine fundamental properties
of tested autoclaved aerated concrete (AAC). All drilled cores were dried until constant weight at
temperature of 105 ± 5 ◦C. Then, two vertical and horizontal electro-resistant tensometers were fixed
to side surfaces of cylindrical specimens to measure deformations and determine modulus of elasticity
E within the range of 0.1–0.33 σmax and Poisson’s ratio υ at the level of 0.33 σmax. Tests were conducted
using the testing machine, in which an increment in load was controlled manually, and the reading
range of the dynamometer was 100 kN. Mean mechanical parameters obtained for all tested types of
masonry units are shown in Table 1. The presented results from testing density were taken from the
paper [12].

Table 1. Fundamental characteristics of masonry units.

No.
Nominal Class

of Density
kg/m3

Density Range
of AAC,
kg/m3

No. of Specimens
(Cores ϕ59 ×

120 mm)

Mean Density ρ0,
kg/m3 (C.O.V)

acc. to [12]

Mean Modulus
of Elasticity, E,

N/mm2 (C.O.V)

Mean Poisson’s
Ratio ν, (C.O.V)

1 400 375–446 6 397 (6%) 1516 (9.6%) 0.19 (7.9%)
2 500 462–532 6 492 (3%) 2039 (8.9%) 0.21 (8.7%)
3 600 562–619 6 599 (2%) 2886 (10.5%) 0.20 (8.5%)
4 700 655–725 6 674 (3%) 4778 (10.1%) 0.19 (9.2%)

Besides the cores used to determine properties of AAC, four series of six cuboid specimens
each (24 specimens in total) were drilled using a diamond saw 4. The specimens had dimensions of
100 × 100 × 100 mm, and were used as basic specimens for determining the strength f B in accordance
with Appendix B to the standard EN 771-4 [42]) harmonized with the European standard PN-EN
1996-1-1:2010 [43].

All specimens drilled from blocks to determine the correlation between vertical stresses and
ultrasound velocity, were air-dried until constant weight at a temperature of 105 ± 5 ◦C (for at least
36 h). That way, the impact of moisture content on AAC was eliminated [13,44]. Generally, it tends to
reduce significantly compressive strength and change velocity of the ultrasonic wave propagation [12].

The ultrasonic technique, commonly applied to test strength of concrete and masonry, was
used to determine velocity of ultrasonic waves in AAC [45,46]. Ultrasonic testing was conducted
on the block specimens 100 × 100 × 100 mm drilled from masonry units—Figure 3. The specimens
in air-dry conditions and relative humidity w/wmax = 0% were used for testing. Each series of
elements included at least six specimens, and 24 specimens in total were tested. PUNDIT LAB
(Proceq SA, Schwerzenbach, Switzerland) instrument was used for tests. Exponential transducers with
the waveguide length L = 50 mm, diameters ø1 = 4.2 mm and ø2 = 50 mm, and frequency 54 kHz
were employed. The measurement accuracy of passing time of the ultrasonic wave was equal to
±0.1 µs. The used methodology of testing and equipment were typical for ultrasonic tomography
for concrete and masonry [47,48]. Each specimen was placed on transducers of the testing machine
(type FORM+TEST Prüffsysteme MEGA 3 with the range of 100 kN, class 1, reading accuracy ±1%)
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through the vibration isolation washer and steel sheet of 3 mm thickness. The steel plate and the
vibration isolation washer were placed on the top surface of the specimen. Vibration isolation was
necessary for eliminating possible vibrations that could affect the results from measurements of
ultrasonic waves. Then, the transducers were applied to opposite walls and the passing time of wave
was measured using the transmission method. The transducers were in contact with the specimens at
an angle of 90◦ within distance between the transducers measured every time with accuracy up to
1 mm. The tests were conducted for various loading of the specimens and the force was scaled every
2.5 kN.Materials 2020, 13, 2852 12 of 26 
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Figure 3. A test stand for measuring ultrasonic wave velocity in compressed specimens: (a) specimen
geometry and elements of the stand, (b) geometry of exponential transducer, (c) a test stand; 1—tested
AAC specimen 100 × 100 × 100 mm, 2—exponential transducers, 3—cables connecting transducers
with recording equipment, 4—recording equipment, 5—steel sheet, 15 mm thick, 6—vibration isolation,
7—heads of testing machine.

The selected results from measurements and maximum values of stress σ3max are presented in
Table 2. There are also empirical values of the longitudinal wave obscp0 without the participation of
compressive stress and ratios of normal stress σ3/σ3max, for which the measurements are presented
in a tabular form. Figure 4a illustrates results from measured velocities of ultrasounds as the ratio
(cp–obscp0)/obscp0 expressing the relative increment in ultrasound velocity as a function of stress σ3.
Relative increments in velocity of ultrasonic waves are presented in Figure 4b as a function of relative
compressive stress σ3/σ3max.

As in previous tests [12], the specimens dried until constant weight demonstrated an increase
in ultrasound velocity with increased density of AAC under stress σ3 = 0. Velocity obscp0 increased
to 1875 m/s in concrete of a nominal class of 400 kg/m3, and to 2225 m/s in concrete with density of
700 kg/m3. Increased compressive stress in all specimens caused nearly proportional drop in ultrasound
velocity. Under relatively low stress when 0 ≤ σ3 ≤ 0.25σ3max, values of ultrasound velocity decreased
by 2–4% when compared to obscp0. When normal stress increased to the level of 0.25σ3max ≤ σ3 ≤

0.50σ3max, the velocity of ultrasounds decreased by 5–7% when compared to the reference value of
0.25σ3max. Under greater values of relative stress 0.50σ3max ≤ σ3 ≤ 0.75σ3max, the greatest percentage
drop in propagation of ultrasonic waves by 9–11% was found in concrete with nominal densities
of 400 and 500 kg/m3. The reduction in velocity of ultrasonic waves by 7–9% was observed in the
specimens made of concrete with density of 600 and 700 kg/m3. No clear reduction in wave velocity in
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concrete with densities of 600 and 700 kg/m3 was observed for the stress level, at which slight noise
was heard in the specimens and local crushing was apparent within the stress range of 0.75σ3max ≤ σ3 ≤

0.95σ3max. The relative velocity of ultrasounds decreased by 11–12% in other specimens. In conclusion,
a nearly linear drop in relative velocity of longitudinal ultrasonic wave was observed regardless of
AAC density. The maximum reduction in relative velocity of ultrasounds was directly proportional to
AAC density and changed within the range of 7–12%. As in tests conducted on metals [38,40], linear
relationships were obtained, which defined the reduction in velocity of ultrasonic wave propagation as
a function of applied normal stress. Considering the relationship (23), accurate physical relationships
can be determined:

V2
113 = V2

0 +
1

3K0ρ0

[
2λ
µ (λ+ 20µ+ m) − 2l

]
σ3 → c2

p = c2
p0 +

1
3K0ρ0

[
2λ
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]
σ3

c2
p −
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(
cp − cp0

)(
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)
≈

(
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)
2cp0,

(cp−cp0)2cp0
cp0

= 1
6K0ρ0cp0

[
2λ
µ (λ+ 20µ+ m) − 2l

]
σ3 →

(cp−cp0)
cp0

=
λ
µ (λ+20µ+m)−2l

(λ+2µ)(3λ+2µ) σ3.

(35)

Table 2. Test results for ultrasound velocity in AAC at various compressive stresses.

No.

Mean Density ρ
(Nominal Class

of Density)
kg/m3

Mean
Compressive

Stress
σ3, N/mm2

Mean Relative
Compressive

Stress
σ3/σ3max

Mean
Path

Length
L, mm

Mean Passing
Time of Wave

T, µs

Mean
Ultrasound

Velocity
cp = L/t, m/s

Standard
Deviation,

s, m/s

COV,
%

1 2 3 4 5 6 7 8 9

1

397
(400)

0 0

100.2

53.5 obscp0 = 1875 1.02 1.9%
2 0.75 0.27 55.7 1801 1.78 3.2%
3 1.33 0.48 57.3 1750 0.56 1.0%
4 2.08 0.75 60.4 1660 0.13 0.2%
5 2.58 0.93 60.9 1647 1.19 2.0%

6

492
(500)

0 0

100.3

53.0 obscp0 = 1893 0.62 1.2%
7 0.83 0.24 54.3 1849 1.04 1.9%
8 1.66 0.48 57.1 1756 0.54 1.0%
9 2.59 0.75 58.2 1724 1.55 2.7%

10 3.33 0.96 59.3 1691 1.23 2.1%

11

599
(600)

0 0

100.4

49.5 obscp0 = 2031 1.32 2.7%
12 1.25 0.24 51.7 1942 1.79 3.5%
13 2.58 0.50 52.9 1898 1.32 2.5%
14 3.92 0.75 54.6 1841 1.75 3.2%
15 5.00 0.96 53.9 1866 2.40 4.5%

16

674
(700)

0 0

100.2

45.1 obscp0 = 2225 1.56 3.5%
17 2.00 0.24 46.5 2159 2.34 5.0%
18 4.17 0.50 47.5 2114 2.08 4.4%
19 6.17 0.74 48.3 2075 1.72 3.6%
20 8.17 0.98 48.6 2064 1.71 3.5%

The relationship after transformation can be expressed as:(
cp − cp0

)
cp0

=

(
tp0 − tp

)
tp

=

λ
µ (λ+ 20µ+ m) − 2l

(λ+ 2µ)(3λ+ 2µ)
σ3 = β113σ3, (36)

where β113 is the acoustoelastic effect [40] related to the longitudinal wave perpendicular to the direction
of the applied load.

If cp0 in the relationship (36) is replaced with the value determined in the tests, then the relationship
illustrated in Figure 4a is obtained. By dividing both sides of the Equation (36) by the value of maximum
stress σ3max, the following relationship is developed:(

cp − cp0
)

cp0
=

(
tp0 − tp

)
tp

= γ113
σ3

σ3max
. (37)
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where γ113 = β113 σ3max can be called the relative acoustoelastic coefficient.
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Figure 4. Results from measuring velocity of the longitudinal ultrasonic wave: (a) relative change in
velocity of longitudinal wave as a function of compressive stress, (b) relative change in velocity of
longitudinal wave as a function of relative compressive stresses.

The introduction of coefficient β113 considerably simplifies practical applications. By using relative
values of passing time of the wave, the effect of wave scattering and other related effects described under
point 2.2 could be neglected. If cp0 in the relationship (37) was replaced with the value determined
in the tests, then the relationship illustrated in Figure 4b was obtained. It was adequate to know the
coefficient γ113 to determine the maximum value of compressive stresses corresponding to normalized
compressive strength of the masonry unit f Bw in air-dry conditions. The obtained values of coefficients
β113 and γ113 for straight lines determined from Equations (36) and (37) as a function of density are
presented in Figure 5.
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Empirical relationships developed from obtained results were proposed to express values of
coefficients β113 and γ113 as a function of AAC density at (w = 0)

β113 = 1.39× 10−4ρ− 0.104, R2 = 0.995,
γ113 = 1.72× 10−4ρ− 0.206, R2 = 0.923

when 397 kg
m3 ≤ ρ ≤ 674 kg

m3

(38)
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The practical applications required taking into account moisture content of AAC. The paper [12]
demonstrated that the maximum moisture content in concrete depended on nominal density. At the
density increase in the range from ρ = 397 kg/m3 to 674 kg/m3, the maximum moisture content was
varying within wmax = 53.3–89.9%, which made it possible to determine a straight line of the least
square in the following form:

wmax = −1.23×
ρ

1000
+ 1.34, when 397

kg
m3 ≤ ρ ≤ 674

kg
m3 (39)

Moreover, relative changes in velocity of longitudinal ultrasonic waves were shown by the
relationships illustrated in Figure 6.
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After taking into account the obtained results, values of empirical coefficient defined the 
following linear relationships: 

49.187 10 0.932a ρ−= × + , when 33 m
kg 674

m
kg 397 ≤≤ ρ . 

31.416 10 1.373b ρ−= × − , when 33 m
kg 674

m
kg 397 ≤≤ ρ . 

(41) 

4.2. Stage II—Test Results for Small Masonry Models 

Stage II consisted of verifying empirical relationships developed in stage I. Small masonry 
walls made of AAC of nominal type of 600 kg/m3, with thin joints laid in the ready-mixed mortar 
and with the strength fm equal to 6.10 N/mm2 [49] were used for that purpose. Nine test elements in 
total were prepared and divided into three series marked as I, II, and III. All elements had the same 
external dimensions: the length of 500 mm, the height of 724 mm, and the thickness of 180 mm. The 
presence of the head joint or its lack differentiated the models. This was required to highlight 
potential effects in changes of ultrasound wave velocity in the real wall near head joints. All models 
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Figure 6. Relationship between velocity of ultrasonic wave propagation, moisture content and density:
(a) relative changes in velocity of longitudinal wave as a function of relative moisture content w/wmax,
(b) values of coefficients as a function of AAC density.

The tests were used to develop the following relationships including velocity cpw in wet AAC
with reference to AAC in air-dry conditions cp:

cpw
cp

= 0.569 w
wmax

− 0.818 + 1, when 397 kg
m3 ≤ ρ ≤ 446 kg

m3 ,
cpw
cp

= 0.483 w
wmax

− 0.671 + 1, when 462 kg
m3 ≤ ρ ≤ 532 kg

m3 ,
cpw
cp

= 0.366 w
wmax

− 0.504 + 1, when 562 kg
m3 ≤ ρ ≤ 619 kg

m3 ,
cpw
cp

= 0.323 w
wmax

− 0.434 + 1, when 655 kg
m3 ≤ ρ ≤ 725 kg

m3 .

(40)

After taking into account the obtained results, values of empirical coefficient defined the following
linear relationships:

a = 9.187× 10−4ρ+ 0.932, when 397 kg
m3 ≤ ρ ≤ 674 kg

m3 .

b = 1.416× 10−3ρ− 1.373, when 397 kg
m3 ≤ ρ ≤ 674 kg

m3 .
(41)

4.2. Stage II—Test Results for Small Masonry Models

Stage II consisted of verifying empirical relationships developed in stage I. Small masonry walls
made of AAC of nominal type of 600 kg/m3, with thin joints laid in the ready-mixed mortar and with
the strength f m equal to 6.10 N/mm2 [49] were used for that purpose. Nine test elements in total were
prepared and divided into three series marked as I, II, and III. All elements had the same external
dimensions: the length of 500 mm, the height of 724 mm, and the thickness of 180 mm. The presence
of the head joint or its lack differentiated the models. This was required to highlight potential effects
in changes of ultrasound wave velocity in the real wall near head joints. All models of series I were
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made from three masonry units without the head joint. The models of series II had the head joint in
the central layer at the mid-length of the masonry units, and those of series III had the head joint at 1/4
of the masonry length. The view, shape, and dimensions of tests elements of series I, II, and III are
shown in Figure 7.
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(DIC) using the ARAMIS 6M system by GOM GmbH Braunschweig, Germany (the class of reading 
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other was necessary. For that purpose, two plastic templates were used with holes having a 
diameter of 5 mm, made at the regular spacing adjusted to the model geometry—Figure 8a,b. Holes 
in the template (Figure 8b) were placed in horizontal and vertical configuration within a distance of 
~30 mm. Before testing, apparent density ρ0 in air-dry conditions, relative moisture content in the 
material used for preparing the models were calculated, and additionally the maximum moisture 
content wmax was calculated from the following relationship (39). Basic results for properties of the 
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illustrated in Figure 9. All models were characterized by minor differences in obtained parameters. 
Density of models varied from 587 to 597 kg/m3, and relative moisture content was within the range 
of 4.5–6.0%. At determined values of loading, the procedure of loading was stopped to measure 
passing time tp of the ultrasonic wave, and then the propagation velocity was calculated from the 
relationship cp = L/tp (L = 180 mm). The tests were performed only on one model of each series 
(highlighted rows in Table 3). No measurements were made when the measuring points 
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increasing loading. Clear breaking of graphs illustrating stress–deformation relationships was only 
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range of 2.96–3.01 N/mm2. Cracks on external surfaces of masonry units were not observed until 
maximum stress that was reached in the weakening phase under mean stress within the range of 
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Figure 7. Geometry of models made of AAC tested in stage II (dimensions in mm): (a) models of series
I without head joint, (b) models of series II with head joint at the mid-length of the element, (c) models
of series III with head joint at 1/4 length; 1—masonry units, 2—bed joints, 3—head joints.

Test models were placed in the strength testing machine with an operating range of 1000 kN
(class 1). The applied load was perpendicular to the plane of bed joints and the machine piston
displacement was monotonically increasing at a rate of 1 mm/min. The value of the applied load
F was read from the dynamometer of the testing machine. Stress applied to top and bottom parts
of the bed surface of the model was calculated from the equation σ3 = F/A (where A—area of bed
surface of the element A = 180 × 500 = 90,000 mm2). During the tests, displacements and deformations
were measured for two models of each series with the Digital Image Correlation (DIC) using the
ARAMIS 6M system by GOM GmbH Braunschweig, Germany (the class of reading accuracy for
displacements was 1%) [50–52]. To determine values of forces and stresses causing cracks (σ3cr)
and failure (σ3max), some models of each series (I-3, II-3, III-3) were tested without measuring the
velocity of ultrasonic wave propagation. Wave velocity cp was measured in two other models at the
following values: 0, 0.25σ3max, 0.50σ3max, 0.75σ3max. The transmission method was used to measure
waves. Hence, the precise arrangement of ultrasonic transducers vis-à-vis each other was necessary.
For that purpose, two plastic templates were used with holes having a diameter of 5 mm, made at
the regular spacing adjusted to the model geometry—Figure 8a,b. Holes in the template (Figure 8b)
were placed in horizontal and vertical configuration within a distance of ~30 mm. Before testing,
apparent density ρ0 in air-dry conditions, relative moisture content in the material used for preparing
the models were calculated, and additionally the maximum moisture content wmax was calculated
from the following relationship (39). Basic results for properties of the models and test results in the
form of stresses causing cracks σ3cr, and maximum stresses σ3max are presented in Table 3, whereas
relationships between compressive stress and deformation σ-ε are illustrated in Figure 9. All models
were characterized by minor differences in obtained parameters. Density of models varied from 587 to
597 kg/m3, and relative moisture content was within the range of 4.5–6.0%. At determined values of
loading, the procedure of loading was stopped to measure passing time tp of the ultrasonic wave, and
then the propagation velocity was calculated from the relationship cp = L/tp (L = 180 mm). The tests
were performed only on one model of each series (highlighted rows in Table 3). No measurements
were made when the measuring points overlapped with bed or head joints.



Materials 2020, 13, 2852 16 of 25

Materials 2020, 13, 2852 17 of 26 

 

 

Figure 8. Testing methodology for models made of AAC used in stage II: (a) measurement of 
velocity of ultrasonic wave propagation at different stress values σ3, (b) template geometry used for 
symmetric arrangement of ultrasonic transducers, (c) models during tests, (d) failure of selected 
models 1—masonry units, 2—ultrasonic transducers, 3—cables connecting transducers with 
recording equipment, 4—templates for symmetric location of ultrasonic transducers. 

Table 3. Test results for all models. 

No. Series Model 

Mean 
Density 
ρ0, 

kg/m3 

Moisture 
Content 

w, % 

Maximum 
Moisture 

Content (39) 
w, % 

Compressive 
Stress Inducing 

Cracks 
σ3cr, N/mm2 

Maximum 
Compressive 

Stress 
σ3max, N/mm2 

of 
Model 

Mean 
(COV) 

of 
Model 

Mean 
(COV) 

1 2 3 4 5 6 7 8 9 10 
1 

I 
I-1 * 594 6.0% 60.9% 2.93 

2.89 
(1.1%) 

2.97 
3.01 

(1.3%) 2 I-2 589 4.5% 61.6% 2.87 3.04 
3 I-3 592 5.1% 61.2% 2.88 3.01 
4 

II 
II-1 * 588 6.0% 61.7% 3.00 2.95 

(2.8%) 

3.00 2.96 
(2.6%) 5 II-2 597 4.9% 60.6% 2.85 2.87 

6 II-3 593 6.0% 61.1% 2.99 3.01 
7 

III 
III-1 * 594 5.1% 60.9% 2.97 

2.90 
(3.3%) 

2.99 
2.97 

(1.9%) 
8 III-2 587 5.5% 61.8% 2.79 2.90 
9 III-3 590 5.4% 61.4% 2.95 3.01 

*—models, for which the propagation of ultrasonic waves cp was measured. 

Figure 8. Testing methodology for models made of AAC used in stage II: (a) measurement of
velocity of ultrasonic wave propagation at different stress values σ3, (b) template geometry used
for symmetric arrangement of ultrasonic transducers, (c) models during tests, (d) failure of selected
models 1—masonry units, 2—ultrasonic transducers, 3—cables connecting transducers with recording
equipment, 4—templates for symmetric location of ultrasonic transducers.

Table 3. Test results for all models.

No. Series Model
Mean

Density ρ0,
kg/m3

Moisture
Content

w, %

Maximum
Moisture

Content (39)
w, %

Compressive Stress
Inducing Cracks
σ3cr, N/mm2

Maximum
Compressive Stress
σ3max, N/mm2

of Model Mean
(COV) of Model Mean

(COV)

1 2 3 4 5 6 7 8 9 10

1
I

I-1 * 594 6.0% 60.9% 2.93
2.89

(1.1%)

2.97
3.01

(1.3%)2 I-2 589 4.5% 61.6% 2.87 3.04
3 I-3 592 5.1% 61.2% 2.88 3.01

4
II

II-1 * 588 6.0% 61.7% 3.00
2.95

(2.8%)

3.00
2.96

(2.6%)5 II-2 597 4.9% 60.6% 2.85 2.87
6 II-3 593 6.0% 61.1% 2.99 3.01

7
III

III-1 * 594 5.1% 60.9% 2.97
2.90

(3.3%)

2.99
2.97

(1.9%)8 III-2 587 5.5% 61.8% 2.79 2.90
9 III-3 590 5.4% 61.4% 2.95 3.01

*—models, for which the propagation of ultrasonic waves cp was measured.

Nearly proportional increase in deformations was observed in all models exposed to increasing
loading. Clear breaking of graphs illustrating stress–deformation relationships was only observed
at the time preceding maximum stress that was reached under mean stress within the range of
2.96–3.01 N/mm2. Cracks on external surfaces of masonry units were not observed until maximum
stress that was reached in the weakening phase under mean stress within the range of 2.89–2.95 N/mm2.
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The transmission method was used to measure passing time of ultrasonic wave at stress levels (0,
0.25σ3max, 0.50σ3max, 0.75σ3max) shown in Figure 9. Results in the form of maps showing passing time
of the wave tp are illustrated in Figures 10–13.Materials 2020, 13, 2852 18 of 26 
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Figure 10. Results from measuring passing time of the ultrasonic wave under the load σ3 = 0: (a) 
model I-1, (b) model II-1, (c) model III-1. 
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Figure 11. Results from measuring passing time of the ultrasonic wave under the load σ3 = 0.25σ3max: 
(a) model I-1, (b) model II-1, (c) model III-1. 

Figure 9. Relationships between stress and strain σ-ε for all tested models.
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Figure 10. Results from measuring passing time of the ultrasonic wave under the load σ3 = 0: (a) 
model I-1, (b) model II-1, (c) model III-1. 
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Figure 11. Results from measuring passing time of the ultrasonic wave under the load σ3 = 0.25σ3max: 
(a) model I-1, (b) model II-1, (c) model III-1. 

Figure 10. Results from measuring passing time of the ultrasonic wave under the load σ3 = 0: (a) model
I-1, (b) model II-1, (c) model III-1.

Basic results in the form of mean time of wave propagation for all points are compared in Table 4.

Table 4. Results from measuring propagation of ultrasonic waves.

Model

Number of
Measuring

Points in Each
Step of Loading

n

Passing Time of Ultrasonic Wave
Under Various Levels of Loading

tp, µs
(COV)

0 0.25σ3max 0.50σ3max 0.75σ3max

tpmin tpmax tpmv tpmin tpmax tpmv tpmin tpmax tpmv tpmin tpmax tpmv

1 2 3 4 5 6 7 8 9 10 11 12 13 14

I-1 315 86 94.2 90.8
(1.4%) 86.7 98.8 92.2

(1.3%) 90.5 99.2 93.9
(1.4%) 87.7 99.9 94.4

(1.4%)

II-1 308 82.2 92.9 89.2
(1.6%) 86.3 94.4 90.6

(1.2%) 89.0 97.4 92.2
(1.1%) 90.2 96.4 92.5

(1.1%)

III-1 308 85 92.9 88.8
(1.4%) 87.1 93.5 90.2

(1.2%) 88.8 95.1 91.6
(0.9%) 90.1 95.4 92.1

(0.9%)
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Figure 10. Results from measuring passing time of the ultrasonic wave under the load σ3 = 0: (a) 
model I-1, (b) model II-1, (c) model III-1. 
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Figure 11. Results from measuring passing time of the ultrasonic wave under the load σ3 = 0.25σ3max: 
(a) model I-1, (b) model II-1, (c) model III-1. 
Figure 11. Results from measuring passing time of the ultrasonic wave under the load σ3 = 0.25σ3max:
(a) model I-1, (b) model II-1, (c) model III-1.
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Figure 12. Results from measuring passing time of the ultrasonic wave under the load σ3 = 0.50σ3max: 
(a) model I-1, (b) model II-1, (c) model III-1. 
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Figure 13. Results from measuring passing time of the ultrasonic wave under the load σ3 = 0.75σ3max: 
(a) model I-1, (b) model II-1, (c) model III-1. 
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Figure 12. Results from measuring passing time of the ultrasonic wave under the load σ3 = 0.50σ3max: 
(a) model I-1, (b) model II-1, (c) model III-1. 
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Figure 13. Results from measuring passing time of the ultrasonic wave under the load σ3 = 0.75σ3max: 
(a) model I-1, (b) model II-1, (c) model III-1. 
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The conducted tests indicated passing times of the ultrasonic wave in walls under zero loads
were not constant, some fluctuations were observed—Figure 10. Usually, waves in central parts of the
elements had the longest passing time. Clear disturbances at vertical edges and near bed joints were
observed. However, the calculated coefficient of variation for all measurements, and from disturbed
areas, was relatively low in the order of 1.4–1.6% due to a great number of performed measurements.
An increase in loads to 0.25σ3max—Figure 11 caused an evident increase in passing time of the ultrasonic
wave for all models. The effect of previous original disturbances was found on nearly whole surfaces
of the units. The greatest difference in results was observed near edges of masonry units. As in the
primary phase, the coefficient of variation was minor and ranged from 1.0–1.3%. An increase in loads to
0.50σ3max and 0.25σ3max—Figures 12 and 13 produced a gradual increase in mean time of propagation,
but did not cause apparent qualitative changes in maps presenting passing times. Similarly, coefficients
of passing time of waves did not dramatically changes as the maximum value they reached was 1.4%.

5. Analysis of Test Results

On the basis of empirical relationships and those developed in the testing stage, an attempt was
made to determine normal stresses in the tested models. The comprehensive approach based on all test
results or the approach using a limited number of points was implemented for each model. In the first
case, there were 315 (the model of series I) or 308 (the models of series II or III) measurement results
for each step of loading. The calculations also included results for edges of the masonry units that
demonstrated clear disturbances. The approach based on a limited number of points for determining
stress involved only points located in the central area of the masonry units. That significantly limited
the number of analyzed measuring points to 45 for model I, and 44 for models of series II and III.
For successive levels of loading, the difference in passing time of the ultrasonic wave was calculated,
and then acoustoelastic coefficient β113 was calculated from Equation (38). Finally, stress σ3 from the
transformed relationship (36) was calculated. The obtained values of stress are presented in Table 5.

Table 5. Results from calculating normal stress in the wall using all measuring points.

Model

Number of
Measuring

Points
n

0.25σ3max 0.50σ3max 0.75σ3max

(tp−tp0)
tp0

β113
mm2/N

(38)

σ3=
(tp−tp0)
β113·tp0

N/mm2

(36)

(tp−tp0)
tp0

β113
mm2/N

(38)

σ3=
(tp−tp0)
β113·tp0

N/mm2

(36)

(tp−tp0)
tp0

β113
mm2/N

(38)

σ3=
(tp−tp0)
β113·tp0

N/mm2

(36)

1 2 3 4 5 6 7 8 9 10 11

I-1 315 −0.0154 −0.0215 0.715 −0.0310 −0.0224 1.437 −0.0388 −0.0215 1.800

II-1 308 −0.0149 −0.0215 0.664 −0.0322 −0.0224 1.441 −0.0359 −0.0215 1.603

III-1 308 −0.0150 −0.0215 0.696 −0.0306 −0.0224 1.419 −0.0360 −0.0215 1.672

The obtained coefficients depended on apparent density of AAC of the order
−0.0215–−0.0224 mm2/N. The values obtained for autoclaved aerated concrete aerated were many
times greater than similarly determined acoustoelastic effect for metals [40] (β113 = −0.99 × 10−5–−2.06
× 10−5 mm2/N—steel, β113 = −7.75 × 10−5 mm2/N—aluminium, β113 = −1.88 × 10−5 mm2/N—copper).
The determined stress values were similar only at relatively low stress values equal to 0.25σ3max and
0.50σ3max. Maximum differences in stress determined using the EA method did not exceed 11% (model
II-1). For stress values of the order of 0.75σ3max, the estimated values of non -destructive stress were
considerably lower than those determined from destructive testing. Stress values were underrated by
no more than 28%.

In the second approach based on the limited number of results for central areas of all masonry
units, the procedure was similar to the first one. The location of measuring points in the central part of
the masonry units was determined by analysing the maps of passing times illustrated in Figures 10–13.
Firstly, differentiation in passing time of ultrasonic waves was smaller in the central areas. Secondly,
stress states in that area of masonry units was the most similar to stress states in the specimens
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100 × 100 × 100 mm used to validate the AE method in stage I. In addition, the final aspect was purely
practical because it was the easiest to determine centers of masonry units, apart from edge areas.
For successive levels of loading, the difference in passing time of the ultrasonic wave was calculated.
Then, acoustoelastic coefficient β113 was calculated from Equation (38), and finally stress values σ3

were calculated from the relationship (36). The obtained values of stress are presented in Table 6.

Table 6. Results from calculating normal stress in the wall using a limited number of measuring points.

Model

Number of
Measuring

Points
n

0.25σ3max 0.50σ3max 0.75σ3max

(tp−tp0)
tp0

β113
mm2/N

(38)

σ3=
(tp−tp0)
β113·tp0

N/mm2

(36)

(tp−tp0)
tp0

β113
mm2/N

(38)

σ3=
(tp−tp0)
β113·tp0

N/mm2

(36)

(tp−tp0)
tp0

β113
mm2/N

(38)

σ3=
(tp−tp0)
β113·tp0

N/mm2

(36)

1 2 3 4 5 6 7 8 9 10 11

I-1 45 −0.0113 −0.0215 0.526 −0.0255 −0.0215 1.183 −0.0326 −0.0215 1.512

II-1 44 −0.0103 −0.0224 0.460 −0.0285 −0.0224 1.273 −0.0307 −0.0224 1.371

III-1 44 −0.0117 −0.0215 0.545 −0.0263 −0.0215 1.223 −0.0314 −0.0215 1.459

Using the approach of considerably decreased number of measuring points limited to central
areas of the masonry units, much lower stress values were obtained. For the lowest level of stress of
the order of 0.25 σ3max, stress calculated for the model II-1 with the AE method was lower by 60%
than in destructive tests. Stress underestimation for other models I-1 and III-1 was at the level of
36–43%. At the stress level of 0.50σ3max, the underestimation of stress was at the lowest level of 16–21%.
As in the case of a greater number of points, stress values determined by the EA method at the stress
level of 0.75σ3max were the least accurate. Calculated compressive stress differed by 49–62% from
experimentally obtained values. Compared results from destructive testing and calculated results are
shown in Figures 14–16.
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In conclusion, the most favorable results from measuring stress with the calibrated acoustoelastic
method were obtained when all measuring points were used at stress levels within the range of
0–0.5σ3max. The determined stress values were lower than those from destructive testing small
wall models. Considering the approach based on the limited number of points, underestimation of
compressive stress was considerably greater. The greatest differences in both methods were found at
the stress level of 0.75 σ3max, which resulted from an increase in effects of ultrasonic wave scattering,
developing microcracks in AAC structure (invisible on the external surface of the models).

Statistical Estimation of Stress in Walls

The practical application of that method requires further tests mainly on location of measuring
points and their minimal number. However, assuming only measuring points for central area of each
masonry unit are used to determine stress in the masonry, then boundary values of strength could
be determined with the probability that the obtained results were not lower than experimentally
obtained results. Only values from the range of 0–0.5σ3max were used for the calculations. The selected
range seems to be the most reasonable because at the operational stage force values in real walls can
correspond to maximum stress of the order of 50% of the calculated compressive strength of the wall
fd. Thus, load-carrying capacity of the real wall [43] depends not on absolute values of compressive
force generating stress σ3, but on the stability expressed by the reduction factor for load-carrying
capacity (Φ1,2 and Φ2m). Boundary values in confidence intervals of the mean value [53] (at n > 30
and unknown variance σ) were determined form the general relationship at the statistical significance
α = 0.1:

P
(
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S
√
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< tpcal < tp + u1−α/2

S
√

n

)
= 1− α (42)

where: tp—mean time of wave propagation, S—standard deviation of propagation velocity for the
specimen. u1−α/2—statistics with the random variable at the normal distribution N(0.1). When n < 30,
the statistics t1−α/2 with the Student’s t-distribution and n-1 degrees of freedom should be applied.

Only the upper value of confidence interval is suitable for practical applications, which in this
case can be associated with the quantile of the order of 95%. In other words, the upper limit of the
confidence interval for the mean value was assumed because it is commonly used in the construction
sector. Stress values were determined with the AE method using calculated values of passing time
of the wave. The obtained results were compared with true mean stress values of the masonry wall.
Values for upper confidence intervals for passing time tpcal and calculated stress values σ3cal using the
AE method are presented in Table 7 and compared with stress results obtained from testing the models
σ3obs. In that way, we obtain some estimation of the deviation between test and calculated results at
the specified confidence level.
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Table 7. Compared results from tests and upper values of confidence intervals.

Model

Number of
Measuring

Points
n

u1−α/2

0.25σ3max 0.50σ3max

tpcal
σ3cal=

(tpcal−tp0)
β113·tp0

N/mm2

σ3obs
N/mm2

σ3obs
σ3cal

tpcal
σ3cal=

(tpcal−tp0)
β113·tp0

N/mm2

σ3obs
N/mm2

σ3obs
σ3cal

1 2 3 4 5 6 7 8 9 10 11

I-1 45
1.645

92.6 0.656 0.752 1.15 93.9 1.329 1.503 1.13
II-1 44 90.8 0.595 0.741 1.24 92.4 1.37 1.481 1.08
III-1 44 90.3 0.640 0.742 1.16 91.7 1.302 1.485 1.14

on average: 1.18 on average: 1.12

Taking into account the statistical estimation of stress, it was underestimated but values were
significantly reduced. It can suggest with the probability of not greater than 5% that determination
of stress in the walls from central areas of the masonry units with the slightest disturbances
will cause underestimation of the mean stress at 0.25σ3max by 18%, and at 0.50σ3max by ca. 12%.
That underestimation can be acceptable for masonry structures.

6. Conclusions

This paper describes theoretical bases of the acoustoelastic method (AE) which is one of the
methods of detecting stress in structures using NDT techniques. That method consists of the correlation
between stress in the material and velocity of the wave propagation. It is commonly used in ultrasonic
tensometry to determine own stresses usually in machine parts. Using that method for other materials
has not been widely discussed in the literature so far. No results from tests and analyses in concrete,
not mentioning masonry, are available. This lack of interest in using this method can only be explained
by measuring difficulties (significant dispersion of measurement results) caused by inhomogeneity
of that material. This work presents an attempt to use the AE method for autoclaved aerated
concrete. It is a porous material with high homogeneity and repeatability of parameters due to the
production of this material on an industrial scale. This work supplements comprehensive material
tests for autoclaved aerated concrete [11]. The tests were divided into two stages: Stage I involved
the suggestion of the procedure and the determination of acoustoelastic coefficient β113 linking the
propagation of the longitudinal ultrasonic wave cp with normal stress σ3 acting towards the wave
propagation. The standard cuboid specimens with the dimensions of 100 × 100 × 100 mm were
used for calibration. The effect of density ρ and relative humidity w was included on the basis of
testing AAC of different density using correlations presented in [11]. Those considerations resulted
in formulating the relationship β113 (ρ). The proposed procedure was verified in stage II, where
destructive tests were conducted on small masonry walls made of autoclaved aerated concrete (AAC)
with a nominal density of 600 kg/m3. The models were divided into three series differing in the
location of head joints in the masonry. Velocity of the ultrasonic wave propagation was measured
for one model of each series at different values of compressive stress. The following stress levels
were analyzed: 0.25σ3max, 0.50σ3max and 0.70σ3max because the range of the applied method was
only limited to the elastic range. The performed measurements were used to determine values of
acoustoelastic coefficients β113 = −0.0215–−0.0224, which were far lower than similarly determined
acoustoelastic coefficients for metals. Mean stress values calculated with the proposed method using
all measuring point for a given level (n = 308–315) were within the range of 93–96% of empirical values
0.25σ3max, 0.50σ3max. The highest underestimation of stress was found for the stress level of 0.75σ3max,
for which the underestimation of mean stress values was equal to 24%. However, such a great number
of measurements seem to be impractical for the applicable uses. Therefore, further analyses suggest
determining stress values only on the basis of measurement results for central areas of each masonry
unit. Then, the number of measuring points was significantly reduced to n = 45 and 44. As for all
measuring points, the comparison indicated greater underestimation of the mean value of the order of
22–55%. It is not advantageous taking into account safety of the structure. Hence, it was decided to
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estimate the confidence interval of the mean value associated with the quantile of the order of 95%.
Such a procedure caused the stress values were underestimated at the level of 12–18% within the stress
range of 0–0.50σ3max. In summary:

(a) the acoustoelastic method (AE) can be used to determine stress in autoclaved aerated concrete,
(b) correlations were obtained that bind the value of acoustoelastic coefficient β113 as a function of

density and moisture content in AAC,
(c) the effect of scattering of the ultrasonic wave in medium can be neglected when the coefficient

β113 is applied,
(d) rather precise values of mean stress in the wall were determined on the basis of measured velocity

of ultrasonic wave propagation at a high number of measuring points,
(e) reduced number of measuring points resulted in a significant underestimation of mean stress,
(f) determination of the quantile equal to 95% for passing time of the ultrasonic wave was used

to estimate stress in the wall with the underestimation of the order of 12–18%, which can be
considered as satisfactory.

The formulation of explicit recommendations to diagnose in-situ structures requires additional
tests on slender walls to evaluate the impact of stability and works on improving the selection of
measuring points. The proposed procedure for selecting measuring points limited to central parts of
masonry units can be inaccurate for slender walls. Tests are going to be performed on the acoustoelastic
coefficient in the wall with a one-side access using transverse waves to determine the acoustoelastic
coefficient β133.
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