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Abstract: The application of 10 µM methyl jasmonate (MeJA) for the protection of wheat (Triticum
aestivum L.) photosystem II (PS II) against heat stress (HS) was studied. Heat stress was induced
at 42 ◦C to established plants, which were then recovered at 25 ◦C and monitored during their
growth for the study duration. Application of MeJA resulted in increased enzymatic antioxidant
activity that reduced the content of hydrogen peroxide (H2O2) and thiobarbituric acid reactive
substances (TBARS) and enhanced the photosynthetic efficiency. Exogenous MeJA had a beneficial
effect on chlorophyll fluorescence under HS and enhanced the pigment system (PS) II system, as
observed in a JIP-test, a new tool for chlorophyll fluorescence induction curve. Exogenous MeJA
improved the quantum yield of electron transport (ETo/CS) as well as electron transport flux for each
reaction center (ET0/RC). However, the specific energy fluxes per reaction center (RC), i.e., TR0/RC
(trapping) and DI0/RC (dissipation), were reduced by MeJA. These results indicate that MeJA affects
the efficiency of PS II by stabilizing the D1 protein, increasing its abundance, and enhancing the
expression of the psbA and psbB genes under HS, which encode proteins of the PS II core RC complex.
Thus, MeJA is a potential tool to protect PS II and D1 protein in wheat plants under HS and to
accelerate the recovery of the photosynthetic capacity.

Keywords: antioxidant; methyl jasmonate; photosystem

1. Introduction

Wheat is the main cereal crop belonging to the Poaceae family, which contributes 30%
and 50% to the world grain production and grain trade, respectively [1]. Its quality and
yield are directly associated with countrywide food security [2]. However, wheat plants
often suffer heat stress, which affects their quality and utilization worldwide. India and
China alone are expected to show a decrease in wheat yield by 8% and 3%, respectively,
due to the rise in worldwide mean temperature by 1 ◦C. The impact of high temperature
on the growth of plants is due to the excess output of reactive oxygen species (ROS) that
damage the photosynthetic apparatus of plants by decreasing the rate of photosynthetic
electron transport, inactivating the pigment system (PS) II center, degrading pigments and
proteins, and eventually decreasing the yield [3]. ROS produced in chloroplasts as a result
of abiotic stress hinder the synthesis of D1 protein, a component of the PS II complex [4].
D1 is the main subunit of the complex which not only regulates the binding of cofactors,
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but also maintains the structure of the reaction center of PS II, engaged in essential charge
division and electron transport [5,6]. The D1 protein encoded by the chloroplast gene psbA
is the main target of damage under the environmental stress conditions. It was reported
that quick repair of D1 protein is essential for the efficient recovery of PS II [2,7]. Plants
contain established restoration mechanisms to check damage to PS II, but little is known
about the mechanisms of protection of the PS II system under heat stress.

The adaptive reaction of plants to oxidative stress consists in the rise of the activity
of antioxidants enzymes [8–10]. Remarkably, several studies reported the association
between antioxidant activity, heat tolerance, and plant hormones [3,11–13]. Among plant
hormones, jasmonates promotes protection from abiotic stresses. In particular, methyl
jasmonate (MeJA) has shown promising effects in the defense of plants under diverse
abiotic stresses [8,14,15]. Previous studies established that MeJA alleviated oxidative
stress by improving antioxidant enzymes activities [8,16]. Exogenous application of MeJA
protected Arabidopsis thaliana and Citrus reticulata × Citrus sinensis plants against the
inhibitory effect on chlorophyll (Chl) induced by copper and cadmium and promoted
photosynthetic activity [17,18]. Attaran et al. [19] reported that RNA sequencing and
chlorophyll fluorescence imaging were important in studying jasmonic acid effect on
photosynthetic capacity, growth, and gene expression in Arabidopsis. It has been reported
that D1 protein turnover is more rapid than that of any other protein in the thylakoid
membrane under light illumination [2]. This feature exposes PS II to photoinduced damage,
causing photoinhibition and reduction in photosynthetic efficiency. Henceforth, D1 protein
degradation, synthesis, and reinsertion into the PS II core complex represent an important
aspect of PS II dynamics [5,20].

The regulatory mechanisms by which MeJA protects the PS II system, particularly
through stabilization of D1 protein and regulation of relevant gene expression in wheat
leaves under heat stress have not been investigated. Therefore, the purpose of the present
study was to examine the effect of MeJA on the protection of the PS II complex, chlorophyll
fluorescence, activity of enzymatic antioxidants, D1 protein abundance, and photosynthetic
gene expression in wheat leaves under heat stress. Additionally, this study also investigated
how MeJA affected plant growth and CO2 assimilation in the leaves of heat-stressed wheat
plants. Our findings demonstrated that MeJA application can protect the PS II complex
from heat stress-induced damage by increasing the levels of enzymatic antioxidants and
accelerating the stability of D1 protein in wheat leaves.

2. Materials and Methods

Wheat (Triticum aestivum L.) cultivar HD 2329 (winter wheat) seeds were collected
from the Indian Agricultural Research Institute (IARI), New Delhi, surface-sterilized with
0.01% HgCl2 followed by 3–4 frequent washings with deionized water, and then seeded
in 14 cm diameter pots (14 cm diagonally to the top and 18 cm toward the bottom). The
pots were filled with 4 kg sterilized acid-washed fine sand with a particle size from 125 µm
to 250 µm and pH of about 7.0. The sand was first purified with a mixture of 17% w/v
hydrochloric acid and 1% oxalic acid in a sand digester (electrode boiler) for 6 h. After
that, the sand was washed with deionized water before being transferred to the pots. The
purification of sand was performed by the following the method of Hewitt et al. [21]. A
plant growth chamber (Khera KI-261, Khera Instruments Pvt. Ltd., New Delhi, India)
set with day/night temperatures of 25/17 ± 3 ◦C, 12 h photoperiod (Photosynthetically
Active Radiation; PAR; 350 µmol m−2 s−1), and 65 ± 5% relative humidity was used. Three
plants were kept in each pot and were given 300 mL Hoagland’s solution (full strength) on
alternate days. In the experimentation, the heat stress treatment was applied to 3–4 leaves
at emergence stage by exposing the plants to 42 ◦C every day for 6 h for 10 DAS (days after
sowing). After that, the plants were recovered at 25 ◦C (no stress; optimum temperature)
and were grown for 5 more days. The experimentation continued for 30 days. Plants were
supplied with Hoagland’s nutrient solution alternatively in the morning. The control group
of plants for each pot was kept for 30 days at 25 ◦C throughout the experimental duration.
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The plants were sprayed with 5, 10, and 20 µM MeJA (Sigma Aldrich, St. Louis, MO, USA)
in the absence (25 ◦C) or presence (42 ◦C) of heat stress at 15 DAS with a hand sprayer.
Plants were sampled for the determination of oxidative stress, growth, and photosynthetic
characteristics 30 DAS. A detailed examination on the effects of 10 µM MeJA (selected on
the basis of the concentrations used in the experiment) in the alleviation of heat stress was
performed. The MeJA solution and control distilled water were sprayed along with 0.5%
surfactant Teepol. The randomized complete block design was adopted for the treatments,
and the number of replicates for every treatment was four (n = 4). At the vegetative growth
stage, the leaves were sampled and preserved (−80 ◦C) for physio-biochemical analyses,
to examine antioxidant enzyme activities and photosynthetic pigments, Western blotting,
and quantitative reverse transcription polymerase chain reaction (qRT-PCR) quantification.
Harvesting was done 30 DAS, and it was assured that leaves were taken at a similar stage
for the measurements.

2.1. Measurement of Reactive Oxygen Species Content and Lipid Peroxidation

Superoxide radicals (O2
−) content was estimated with the method of Bu et al. [22]

and Lang et al. [14] with slight changes. Fresh leaf tissues (200 mg) were treated with 1 mL
hydroxylamine hydrochloride for 1 h, after which, 1 mL each of α-naphthylamine and p-
aminobenzene sulfonic acid was added, and the solution was kept at 25 ◦C for 20 min. The
absorbance of the solution was recorded at 530 nm, and the O2

−content was calculated from
a calibration curve using NaNO2 as the standard. Determination of hydrogen peroxide
(H2O2) was performed by the technique of Okuda et al. [23]. Fresh leaf tissues (200 mg)
were ground in ice-cold 200 mM perchloric acid, followed by centrifugation at 1200× g for
10 min. After centrifugation, perchloric acid in the supernatant was neutralized with 4 M
KOH, and the insoluble potassium perchlorate was eliminated by further centrifugation at
500× g for 3 min. The reaction mixture contained 1 mL of the eluate, 400 µL of 12.5 mM
3-(dimethylamino) benzoic acid in 0.375 M phosphate buffer (pH 6.5), 80 µL of 3-methyl-
2-benzothiazoline hydrazone, and 20 µL of peroxidase (0.25 unit) in a final volume of
1.5 mL. The reaction was started by the addition of peroxidase at 25 ◦C, and the increase in
absorbance was recorded at 590 nm.

Lipid peroxidation was estimated by assessing thiobarbituric reactive substances
(TBARS), as per Dhindsa et al. [24]. Fresh leaf tissues were ground in 0.25% 2-thiobarbituric
acid (TBA) in 10% trichloroacetic acid (TCA) using mortar and pestle. After heating at 95 ◦C
for 30 min, the mixture was quickly cooled in an ice bath and centrifuged at 10,000× g
for 10 min. To 1 mL aliquot of the supernatant, 4 mL 20% TCA containing 5% TBA was
added. The absorbance of the supernatant was read at 532 nm and corrected for nonspecific
turbidity by subtracting the absorbance of the same at 600 nm. The content of TBARS was
calculated using the extinction coefficient (155 mM−1 cm−1).

2.2. Assay of Antioxidant Enzymes Activities

The activity of enzymatic antioxidant catalase (CAT) was estimated following the
procedure of Aebi [25] by monitoring the disappearance of H2O2 at 240 nm. The activity
was calculated by using the extinction coefficient of 0.036 mM−1 cm−1. One unit of enzyme
is the amount necessary to decompose 1 µmol of H2O2 per min at 25 ◦C.

The activity of ascorbate peroxidase (APX) was calculated according to Foyer and
Halliwell [26] by the decrease in absorbance of ascorbate at 290 nm. The assay mixture
contained phosphate buffer (50 mM, pH 7.0), 0.1 mM EDTA, 0.5 mM ascorbate, 0.1 mM
H2O2, and the enzyme extract. The activity of APX was calculated by using the extinc-
tion coefficient of 2.8 mM−1 cm−1. One unit of the enzyme is the amount necessary to
decompose 1 µmol of substrate per min at 25 ◦C.

The activity of glutathione reductase (GR) was determined according to Nakano and
Asada [27] by monitoring the glutathione-dependent oxidation of nicotinamide adenine
dinucleotide phosphate (NADPH) at 340 nm. The assay mixture contained phosphate
buffer (25 mM, pH 7.8), 0.5 mM oxidized glutathione (GSSG), 0.2 mM NADPH, and the
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enzyme extract. The activity of GR was calculated by using the extinction coefficient of
6.2 mM−1 cm−1. One unit of enzyme is the amount necessary to decompose 1 µmol of
NADPH per min at 25 ◦C. The details of the method were described before by Fatma
et al. [28–30].

Superoxide dismutase (SOD) activity was assayed by the method of Giannopolitis
and Ries [31] also used by Beyer and Fridovich [32], with slight alterations, by monitoring
the inhibition of photochemical reduction of nitro blue tetrazolium (NBT). Five mL of the
reaction mixture containing 5.0 mM (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid;
HEPES) having pH 7.6, 0.1 mM ethylene diaminetetraacetic acid (EDTA), 50 mM Na2CO3
(pH 10.0), 13 mM methionine, 0.025% (v/v) triton X-100, 63 µmol NBT, 1.3 µmol riboflavin,
and the enzyme extract was illuminated for 15 min (360 µmol m−2 s−1). A control set of
experiments was also illuminated for correcting the background absorbance. A unit of
SOD was defined as the amount of enzyme that inhibited NBT reduction by 50% at 560 nm.

2.3. Protein and Pigment Analysis

Fresh leaves (100 mg) were placed in 90% ammoniacal acetone for the determination
of pigments and analyzed as described by Porra et al. [33]. The carotenoid content was
calculated according to the method by Wellburn and Lichtenthaler [34], and Bradford [35]
method was used for the estimation of total protein content, using bovine serum albumin
as a standard.

2.4. Chlorophyll a Fluorescence Measurement

A Junior-PAM chlorophyll fluorometer (Heinz Walz GmbH, Eichenring, Effeltrich,
Germany) was employed for the determination of chlorophyll fluorescence at room tem-
perature. Leaves (mostly from the top of the plants) were adapted to the dark for 20 min
before the fluorescence measurements [36]. Maximum (Fm) and minimal fluorescence
(Fo) were studied in dark-adapted leaves with a light intensity of 131 µmol m−2 s −1 (low
beam intensity). In the light-adapted state, maximum fluorescence (Fm’) and minimal
fluorescence (Fo’) were computed in similar leaves using a saturating light intensity at
830 µmol m−2 s−1, well balanced with steady-state fluorescence (Fs). The fluorescence val-
ues Fm-Fo and Fm’-Fo’ were used for the calculation of variable fluorescence (Fv and Fv’).
The intrinsic efficiency of the PS II system indicated by Fv’/Fm’ and the actual PS II effi-
ciency indicated by Fm’-Fs/Fm’ were calculated. Moreover, nonphotochemical (NPQ) and
photochemical quenching (qP) were evaluated by using fluorescence parameters estimated
in both light- and dark-adapted conditions [37].

2.5. Analysis of OJIP Chlorophyll a Fluroscense Transient

Chlorophyll fluorescence transient was calculated in leaves dark-adapted for 20 min
at room temperature by a Handy PEA (Plant Efficiency Analyzer, Hansatech Instruments,
King’s Lynn, Norfolk, UK). Chlorophyll fluorescence transients were computed using
light excitation (at 650 nm) at high intensity (3500 µmol photons m−2 s −1) up to 2 s, with
the help of an array of 3 LEDs. The OJIP transient data were first described by Strasser
et al. [38]. O (beginning) was the initial minimum fluorescence (measured), which was
accompanied by an increase toward the J level (2 ms), an inflection I (30 ms), and finally
the peak p (300 ms). The OJIP transient data were calculated by the JIP test as defined by
Govindjee [39], Stirbet, et al. [40] and Chen et al. [41]. The parameters labelled as Fv/Fo
(variable to minimal fluorescence) which reflect the water-splitting complex activity taking
place on the donor side of PS II, Fv/Fm (variable to maximal fluorescence), RC/ABS (ratio
of reaction centers (RCs) to PS II antenna absorption), performance index (PI), and Area, i.e.,
the area above the chlorophyll fluorescence curve among Fo and Fm, which estimates the
plastoquinone pool size, were analyzed by Biolyzer 4 HP (Version 4.0.30.03.02, Bioenergetics
Laboratory, University of Geneva, Geneva, Switzerland) and PEA plus software (Version
1.02, Hansatech Instruments, King’s Lynn, Norfolk, UK). PI indicates a grouping of three
self-regulating efficient phases of photosynthesis, i.e., RCs, indicating chlorophyll density,
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trapping of excitation energy, change of excitation energy toward the electron transport
according to a particular many-parametric expression [42], and was determined as PIABS:
RC/ABS * PHIo/(1 − PHIo) * PSIo/(1 − PSIo), where RC/ABS is the RCs density for each
PS II antenna chlorophyll, PHI is the quantity of excitons trapped per photon absorbed,
and PSIo is the possibility of an electron transfer for the entire the way to PS I [38]. The
fluorescence transients were normalized to Fo (at O level) for the calculation the OJIP data
from different treatments. Additionally, the JIP test was performed for the parameters of
the OJIP transient to quantify PS II behavior, which was established on the energy fluxes
and yields. Therefore, for (A), the specific energy fluxes (per RC) as (i) Trapping (TR0/RC);
(ii) Dissipation (DI0/RC), and (iii) Electron transport (ET0/RC) and for (B), the yields as
quantum yield of electron transport (ETo/CS) were analyzed.

2.6. Photosynthetic and Growth Parameters

Photosynthetic efficiency determined as net photosynthesis (Pn), intercellular CO2 con-
centration (Ci) and stomatal conductance (gs), was determined in the entirely developed
uppermost plants leaves for each treatment by an Infrared Gas Analyzer (model CID-340; Bio-
Science, Camas, WA, USA). The measurements were completed at 350 µmol photons m−2 s−1

with a CO2 concentration of 370 ± 5 µmol mol−1 and relative humidity of 65 ± 5% at tem-
perature 25 ◦C.

Estimation of leaf area was done by a leaf area meter (model LA-211; Systronics,
New Delhi, India), while plant fresh weight was measured by using a digital scale (Sartorius,
Göttingen, Germany). For measuring dry weight, the plants were dried in an oven at 80 ◦C
till constant weight.

2.7. Western Blot Analysis

Fresh leaves (1 g) were crushed in liquid nitrogen to obtain a fine powder for the
extraction of the thylakoid protein, as described by Zhao et al. [2] with slight modifica-
tions. For Western blot assay, Chl was measured in the thylakoid membrane extracts,
and thylakoid proteins (20 µg) having equal Chl were separated by 15% sodium dodecyl
sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) using 6 M urea and afterward
blotted on nitrocellulose membranes [43]. D1 protein immunodetection was conducted
using a polyclonal antibody raised against it according to a previous report [2,44]. The mem-
branes were incubated for 2 h with primary anti-psbA antibodies (PhytoAB, San Francisco,
CA, USA) and then incubated again with horseradish peroxidase-conjugated anti-rabbit
IgG antibodies (PhytoAB, San Francisco, CA, USA) for 2 h. The housekeeping α-tubulin
protein was used as an internal loading control for normalization. Pierce ECL plus substrate
(Thermo Fisher Scientific, New Delhi, India) was used for the detection of the target protein.
Blots were captured on X-ray films and quantified using Image J software (Version 1.52,
Wayne Rasband, National Institutes of Health, Bethesda, MD, USA).

2.8. Quantitative RT-PCR Analysis

Fresh crushed leaves (approximately 100 mg) were used for gene expression analysis.
According to the instruction given in the kit, total RNA was purified by Trizol reagent
(Invitrogen, Carlsbad, CA, USA) after the extraction. Nearly 0.2 µg RNA was utilized for
combining the first-strand cDNA with M-MLV reverse transcriptase (Promega, Madison,
WI, USA) using an oligo (dT) primer. At that time, through gel electrophoresis, the quality
of cDNA was examined, and the samples were kept at −80 ◦C for qRT PCR. For the study
of gene expression, specific primers were designed (Table 1), and the fluorescent dye SYBR
Green (Toyobo, Osaka, Japan) was used. After that, according to the manual, real-time
PCR was performed using the real-time PCR Master Mix (Toyobo, Osaka, Japan). The
housekeeping tubulin (TUB) gene worked as an internal control. The relative amount of
the target gene expression was determined by the procedure of Chen et al. [45].



Antioxidants 2021, 10, 1216 6 of 19

Table 1. Primer sequences and data used for RT-PCR analyses.

Gene Encoded
Polypeptide Gene ID Forward(F)

/Reverse (R)
Primer Sequences

(5′–3′)
Size
(bp)

psbA D1 protein 7095419 F
R

GTATTTATTATCGCCTTCATCG
AGGACGCATACCCAAACG 284

psbB CP47 7095420 F
R

TAGGCGTAACGGTGGA
AACATCTCGGAACAAGG 254

psbC CP43 7095484 F
R

TAATACGGCTTATCCGAGTGAGTTT
TCTTGCCAAGGTTGTATGTCTTT 288

Zhang et al. [6]; Chen et al. [45].

2.9. Statistical Analysis

Data were evaluated statistically using analysis of variance (ANOVA) and Tukey’s
(post-hoc multiple comparison) test at p < 0.05 or p < 0.01 by SPSS 17.0 software (SPSS Inc.,
Chicago, IL, USA) for Windows. Data are presented as mean ± SE (n = 4).

3. Results
3.1. Screening of MeJA Concentration for Protection of Plants against Heat-Induced
Oxidative Stress

The effect of different concentrations of MeJA on photosynthesis and growth was
studied to assess the MeJA requirement of the crop under heat stress. Previous studies
showed that MeJA plays a significant role in determining photosynthesis and growth of
plants under stress [8,11]. We tested different concentrations of MeJA (5, 10, and 20 µM) to
select the best concentration for maximum alleviation of heat stress. Application of 5 µM
MeJA in comparison with heat stress, reduced H2O2 content and enhanced total protein
content, Pn, plant fresh weight, but the results were statistically similar to those recorded
for the control. In contrast, the application of 20 µM MeJA notably increased H2O2 content,
declined net photosynthesis, total protein content, and plant fresh weight compared to
control under no stress and with heat stress (Table 2). Moreover, the results were different
with the spraying of 10 µM MeJA. Application of 10 µM MeJA more effectively minimized
H2O2 content by 76.6% and 48.6% under no stress compared to heat stress and control,
respectively. The maximum reduction in H2O2 content by 81.4% and 59.2% was obtained
with 10 µM MeJA under heat stress compared to heat stress and control, respectively
(Table 2). Application of 10 µM MeJA also increased total protein, Pn, and plant fresh
weight by 24.1%, 23.8%, and 25.4% under no stress compared to control. Application of
10 µM MeJA to heat-stressed plants increased total protein content, Pn, and plant fresh
weight maximally by 35.6%, 37.5%, and 32.7%, respectively, in comparison with the control;
differences were significantly greater with both concentrations of 5 and 20 µM MeJA under
no stress and heat stress (Table 2). This showed that the requirements of plants were met
with 10 µM MeJA under heat stress.

3.2. MeJA Enhanced Antioxidant Enzymes Activity and Reduced Oxidative Damage under
Heat Stress

Earlier studies have shown that MeJA decreases the accumulation of oxidative stress
by increasing the activity of antioxidant enzymes under stress [14]. However, reports on
the effects of MeJA on antioxidant enzymes and the content of O2

−, H2O2, and TBARS
under heat stress in wheat are less studied. Therefore, we tested the effect of MeJA on O2

−,
H2O2, and TBARS content to determine the potential of MeJA in reducing oxidative stress.
We found that plants under heat stress showed a rise in the content of H2O2 by more than
two-fold and of TBARS by about three-fold compared to control plants. Treatment with
MeJA decreased oxidative stress by reducing O2

−, H2O2, and TBARS by 23.2%, 12.6%, and
12.1% under no stress and by 43.6%, 42.4%, and 50% in heat-stressed plants, respectively,
compared to control (Table 3). The results showed that in comparison with heat stress, the
application of MeJA to heat stress-treated plants had more significantly different effects
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than its application under no stress, decreasing O2
−, H2O2, and TBARS by 59.6%, 76.3%,

and 83.7%, respectively.

Table 2. Content of H2O2 and total protein, net photosynthesis, and plant fresh weight of wheat leaves 30 DAS. Plants
were treated with MeJA (5, 10, and 20 µM) at 42 ◦C (heat stress) or 25 ◦C (no stress). Data are presented as mean ± SE
(n = 4). Significantly different values between control and treatments are marked with an asterisk (* p < 0.05, ** p < 0.01,
*** p < 0.001), determined by Tukey’s test. DAS, days after sowing; FW, fresh weight; HS, heat stress; H2O2, hydrogen
peroxide; MeJA, methyl jasmonate.

Treatments H2O2 Content
(nmol g−1 Leaf FW)

Total Protein
(mg g−1 Leaf FW)

Net Photosynthesis
(µmol CO2 m−2 s−1)

Plant Fresh Weight
(g Plant−1)

Control 15.2 ± 0.89 8.70 ± 0.86 16.8 ± 0.82 3.85 ± 0.12
HS 33.4 ± 0.98 ** 3.60 ± 0.42 ** 10.9 ± 0.56 ** 1.55 ± 0.06 **

5 µM MeJA 10.6 ± 0.76 * 9.60 ± 0.88 18.1 ± 0.93 4.07 ± 0.11
10 µM MeJA 07.8 ± 0.56 ** 10.8 ± 1.21 * 20.8 ± 0.96 ** 4.83 ± 0.19 *
20 µM MeJA 19.3 ± 0.84 * 5.84 ± 0.65 ** 11.2 ± 0.64 ** 2.83 ± 0.08 *

5 µM MeJA + HS 17.2 ± 0.73 6.65 ± 0.73 * 13.1 ± 0.71 * 3.79 ± 0.09
10 µM MeJA + HS 06.2 ± 0.66 ** 11.8 ± 1.42 ** 23.1 ± 0.97 *** 5.11 ± 0.22 **
20 µM MeJA+ HS 40.1 ± 1.02 ** 2.73 ± 0.13 ** 09.2 ± 0.54 *** 1.29 ± 0.05 **

Table 3. Production rate of superoxide radicals (O2
−), content of H2O2, TBARS, activity of CAT, SOD, APX, and GR in

wheat leaves at 30 DAS. Plants were treated with MeJA (10 µM) at 42 ◦C (heat stress) or 25 ◦C (no stress). Data are presented
as mean ± SE (n = 4). Significantly different values between control and treatments are marked with an asterisk (* p < 0.05,
** p < 0.01, *** p < 0.001), as determined by Tukey’s test. APX, ascorbate peroxidase; CAT, catalase; DAS, days after sowing;
FW, fresh weight; GR, glutathione reductase; HS, heat stress; H2O2, hydrogen peroxide; MeJA, methyl jasmonate; SOD,
superoxide dismutase; TBARS, thiobarbituric acid reactive substances.

Treatments

Parameters Control HS MeJA MeJA + HS

Production rate of O2
−

(µmol g FW−1 min−1) 0.801 ± 0.05 1.118 ± 0.080 ** 0.611 ± 0.060 * 0.451 ± 0.02 **

H2O2 content
(nmol g−1 leaf FW) 35.60 ± 1.60 86.80 ± 02.40 *** 31.10 ± 01.1 * 20.50 ± 0.09 **

TBARS content
(nmol g−1 leaf FW) 08.2 ± 0.12 25.3 ± 0.19 ** 07.2 ± 0.09 * 04.1 ± 0.07 **

CAT activity
(U mg−1 protein min−1) 119 ± 3.70 144 ± 4.00 * 210 ± 4.30 ** 222 ± 5.10 **

SOD activity
(U mg−1 protein min−1) 05.34 ± 0.08 07.66 ± 0.11 * 10.62 ± 0.18 ** 11.5 ± 0.21 **

APX activity
(U mg−1 protein min−1) 1.12 ± 0.04 1.57 ± 0.09 * 2.58 ± 0.11 ** 2.72 ± 0.11 ***

GR activity
(U mg−1 protein min−1) 0.197 ± 0.005 0.231 ± 0.008 * 0.288 ± 0.009 ** 0.318 ± 0.01 ***

Heat stress augmented the activity of enzymatic antioxidants including CAT, SOD,
APX, and GR by 21.0%, 43.4%, 40.1%, and 17.2%, respectively compared to control. Exoge-
nous MeJA under no stress increased the activity of enzymatic antioxidants (CAT, SOD,
APX, and GR) by 45.8% and 76.4%, 38.6% and 98.8%, 64.3% and 130.3%, and 24.6% and
46.1% as compared to heat stress and control, respectively. However, when heat-stressed
plants were treated with MeJA, a maximum increase in the activity of CAT, SOD, APX,
and GR was observed, corresponding to 54.1% and 86.5%, 50.1% and 115.3%, 73.2% and
142.8%, and 37.6% and 61.4% in comparison to heat-stress plants and control, respectively
(Table 3). These results indicated that MeJA alleviation of oxidative stress was associated
with increased activity of enzymatic antioxidants in wheat subjected to heat stress.
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3.3. Pigments and Protein Content

Methyl jasmonate has been recognized as an important signal molecule that increases
pigment and protein content in response to the different stresses [8,11]. Therefore, we
studied the effects of MeJA on the pigment and protein content of plants under heat
stress (Table 4). The results showed that heat stress treatment decreased Chl a, Chl b, Chl
a-to-Chl b ratio, and total Chl content by 26.6%, 17.4%, 10.8%, and 25.1%, respectively,
compared to control. The carotenoid content also decreased by 12.4% in heat-stressed
plants. Application of MeJA under no stress enhanced the protein and pigment content
significantly as compared to heat stress, but statistically the increase in Chl content was
almost similar to what observed for the control under no stress. However, the application
of MeJA in the presence of heat stress maximally enhanced Chl a, Chl b, Chl a-to-Chl b ratio,
total Chl, and carotenoid content by 52.7% and 12.4%, 27.5% and 5.3%, 19.7% and 6.8%,
48.2% and 10.9%, and 63.3% and 43.0% compared to heat stress and control, respectively,
and showed significantly more different results with respect to control, heat stress, and
application of MeJA under no stress. Similarly, the protein content also increased upon
MeJA application by 38.3% and 213.1% under heat stress in comparison to heat stress and
control, respectively (Table 4).

Table 4. Content of Chl a, Chl b, Chl (a/b) ratio, total Chl, and carotenoids in wheat leaves at 30 DAS. Plants were treated
with MeJA (10 µM) at 42 ◦C (heat stress) or 25 ◦C (no stress). Data are presented as mean ± SE (n = 4). Significantly different
values between control and treatments are marked with an asterisk (* p < 0.05, ** p < 0.01, *** p < 0.001), as determined by
Tukey’s test. Chl, chlorophyll; DAS, days after sowing; FW, fresh weight; HS, heat stress; MeJA, methyl jasmonate.

Treatments

Parameters Control HS MeJA MeJA + HS

Chl a (mg g−1 Leaf FW) 1.71 ± 0.06 1.26 ± 0.04 ** 1.75 ± 0.06 * 1.92 ± 0.08 **
Chl b (mg g−1 Leaf FW) 0.45 ± 0.01 0.37 ± 0.01 ** 0.46 ± 0.02 0.47 ± 0.04 *

Chl (a/b) 3.79 ± 1.70 3.38 ± 1.56 ** 3.80 ± 1.73 4.05 ± 1.77 **
Total chl (mg g−1 Leaf FW) 2.15 ± 0.07 1.62 ± 0.04 ** 2.21 ± 0.07 * 2.39 ± 0.08 **

Carotenoids (mg g−1 Leaf FW) 0.44 ± 0.01 0.38 ± 0.01 ** 0.49 ± 0.02 * 0.63 ± 0.05 ***
Total protein (mg g−1 Leaf FW) 08.60 ± 1.18 03.80 ± 1.09 ** 10.90 ± 1.39 ** 11.90 ± 1.42 **

3.4. Influence of MeJA on Chlorophyll a Fluorescence

Since previous studies have reported that MeJA repaired PS II in mustard and en-
hanced the photosynthetic efficiency of the system [15], we investigated the effect of MeJA
on chlorophyll a fluorescence. Till date, there is no report available on the effect of MeJA
on chlorophyll fluorescence under heat stress in wheat. Plants grown under heat stress
exhibited reduced intrinsic PS II efficiency, actual PS II efficiency, and qP by 15.3%, 59.6%,
and 33.3%, respectively, compared to control, and NPQ increased by 74.0%. Exogenous
MeJA enhanced the above parameters significantly in comparison with heat-stressed plants,
under no stress. However, a maximum increase in intrinsic PS II efficiency, actual PS II
efficiency, and qP by 26.3% and 6.9%, 166.2% and 7.3%, and 109.4% and 39.6%, and a decline
in NPQ by 70.7% and 49.0% was obtained with MeJA under heat stress, respectively, in
comparison to heat stress and control (Figure 1A–D). These observations showed that MeJA
increased the photosynthetic efficiency of PS II under heat stress.

It was interesting to note that MeJA was more effective under heat stress as compared
to control. Possibly, efficient MeJA signaling is activated under heat stress. The chlorophyll
fluorescence parameters varied under different treatments. Chlorophyll fluorescence
increased from a minimum level (“O” or Fo) towards a maximum level (“p” or Fm). The
results showed that in response to heat stress treatment, Fv/Fm and the diameter of leaves
decreased to a very large degree, whereas for the MeJA-treated leaves, the results were
reversed (Table 5). In heat-treated plants, both Fo and Fm decreased, and the O–J, J–I,
and I–P phases showed lower amplitudes, in comparison to those in with MeJA-treated
plants under control or heat stress. The OJIP curves were normalized at Fo to determine
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the changes in the fluorescence kinetics and show relative variable fluorescence vs. time on
a logarithmic time ruler (Figure 2).

Antioxidants 2021, 10, x FOR PEER REVIEW 9 of 20 
 

Total protein (mg g−1 Leaf FW) 08.60 ± 1.18 03.80 ± 1.09 ** 10.90 ± 1.39 ** 11.90 ± 1.42 ** 

3.4. Influence of MeJA on Chlorophyll a Fluorescence 
Since previous studies have reported that MeJA repaired PS II in mustard and en-

hanced the photosynthetic efficiency of the system [15], we investigated the effect of MeJA 
on chlorophyll a fluorescence. Till date, there is no report available on the effect of MeJA 
on chlorophyll fluorescence under heat stress in wheat. Plants grown under heat stress 
exhibited reduced intrinsic PS II efficiency, actual PS II efficiency, and qP by 15.3%, 59.6%, 
and 33.3%, respectively, compared to control, and NPQ increased by 74.0%. Exogenous 
MeJA enhanced the above parameters significantly in comparison with heat-stressed 
plants, under no stress. However, a maximum increase in intrinsic PS II efficiency, actual 
PS II efficiency, and qP by 26.3% and 6.9%, 166.2% and 7.3%, and 109.4% and 39.6%, and 
a decline in NPQ by 70.7% and 49.0% was obtained with MeJA under heat stress, respec-
tively, in comparison to heat stress and control (Figure 1A–D). These observations showed 
that MeJA increased the photosynthetic efficiency of PS II under heat stress. 

 
Figure 1. Intrinsic PS II efficiency (A), actual PS II efficiency (B), photochemical quenching (C), and non-photochemical 
quenching (D) in wheat leaves at 30 DAS. Plants were treated with MeJA (10 µM) at 42 °C (heat stress) or 25 °C (no stress). 
Data are presented as mean ± SE (n = 4). Significantly different values are marked with an asterisk between control and 
treatments (* p < 0.05, ** p < 0.01, *** p < 0.001), as determined by Tukey’s test. DAS, days after sowing; HS, heat stress; 
MeJA, methyl jasmonate. 

It was interesting to note that MeJA was more effective under heat stress as compared 
to control. Possibly, efficient MeJA signaling is activated under heat stress. The chloro-
phyll fluorescence parameters varied under different treatments. Chlorophyll fluores-
cence increased from a minimum level (“O” or Fo) towards a maximum level (“p” or Fm). 
The results showed that in response to heat stress treatment, Fv/Fm and the diameter of 
leaves decreased to a very large degree, whereas for the MeJA-treated leaves, the results 
were reversed (Table 5). In heat-treated plants, both Fo and Fm decreased, and the O–J, J–
I, and I–P phases showed lower amplitudes, in comparison to those in with MeJA-treated 
plants under control or heat stress. The OJIP curves were normalized at Fo to determine 

Figure 1. Intrinsic PS II efficiency (A), actual PS II efficiency (B), photochemical quenching (C), and non-photochemical
quenching (D) in wheat leaves at 30 DAS. Plants were treated with MeJA (10 µM) at 42 ◦C (heat stress) or 25 ◦C (no stress).
Data are presented as mean ± SE (n = 4). Significantly different values are marked with an asterisk between control and
treatments (* p < 0.05, ** p < 0.01, *** p < 0.001), as determined by Tukey’s test. DAS, days after sowing; HS, heat stress;
MeJA, methyl jasmonate.

Table 5. Chl a fluorescence measurement in wheat leaves at 30 DAS. Plants were treated with MeJA (10 µM) at 42 ◦C (heat
stress) or 25 ◦C (no stress). Minimal fluorescence (Fo), maximal fluorescence (Fm), maximal variable fluorescence (Fv), and
Fv/Fm ratio, where Fv = (Fm−Fo), reaction center-to-PS II antenna absorption ratio (RC/ABS), performance index (PI),
and Area, region above the chlorophyll fluorescence OJIP curve between Fo and Fm. Data are presented as mean ± SE
(n = 4). Significantly different values between control and treatments are marked with an asterisk (* p < 0.05, ** p < 0.01,
*** p < 0.001), as determined by Tukey’s test. DAS, days after sowing; HS, heat stress; MeJA, methyl jasmonate.

Treatments

Parameters Control HS MeJA MeJA + HS

Fo 206 ± 03.80 187 ± 03.50 ** 241 ± 04.10 ** 246 ± 04.40 **
Fm 935 ± 07.30 816 ± 06.20 * 1258 ± 08.10 ** 1350 ± 08.50 ***

Fv/Fo 2.863 ± 0.018 2.709 ± 0.011 * 3.445 ± 0.021 ** 3.639 ± 0.026 **
Fv/Fm 0.780 ± 0.04 0.760 ± 0.04 * 0.808 ± 0.05 ** 0.817 ± 0.05 **

RC/ABS 0.831 ± 0.07 0.754 ± 0.04 * 0.956 ± 0.08 ** 0.992 ± 0.08 **
PI 1.675 ± 0.014 1.383 ± 0.009 * 2.423 ± 0.021 ** 2.734 ± 0.023 ***

Area 21,744 ± 505 15,989 ± 421 * 23,100 ± 539 24,907 ± 611 *
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methyl jasmonate.

These results suggested that heat stress influenced chlorophyll fluorescence, as pre-
sented in OJIP curves (Figure 2). The fluorescence parameters Fo, Fm, Fv/Fm, and Fv/Fo
decreased by 9.2%, 12.7%, 2.6%, and 4.9%, respectively, compared to control under heat
stress. Nevertheless, the fluorescence parameters were higher with the application of MeJA
to heat-stressed leaves by 31.5% and 19.4%, 65.4% and 44.3%, 7.5% and 4.7%, and 34.5%
and 26.8%, respectively, compared to heat stress and control. Heat treatment decreased
PI by 17.4%, but in MeJA-treated plants under heat stress it increased by 97.6 and 63.2%
compared to heat stress and control, respectively. These results indicate the beneficial
effect of MeJA compared to control and heat-stressed plants. The ratio of RC/ABS, which
reveals RCs density of the PS II antenna chlorophyll, was higher in MeJA-treated plants in
heat stress by 19.3%, which decreased by 9.3% under heat stress compared to control. The
leaves treated with MeJA were more resistant to heat stress and reduced-heat adversities
with respect to chlorophyll fluorescence. The area over the OJIP curve, between Fo and
Fm, decreased upon heat stress treatment by 26.4% but increased by 55.7% and 14.5% in
MeJA-treated leaves compared to heat stress and control, respectively (Table 5; Figure 2),
again confirming the benefits of the MeJA treatment in heat-stressed wheat.

Additionally, other parameters were analyzed to specify energy fluxes (per RC) and
yield, as shown in Figure 3A–D. Energy fluxes (per RC), i.e., TR0/RC (trapping) and
DI0/RC (dissipation), were higher under heat stress. However, trapping and dissipa-
tion per RC were reduced significantly after the application of MeJA under heat stress
(Figure 3A,B). There were noticeable effects on ET0/RC (electron transport flux per RC)
and yield, indicated by ETo/CS (quantum yield of electron transport), after MeJA treatment
under heat stress, as MeJA increased these values by 14.7% and 9.61% and 111.6% and
63.5% compared to heat stress and control, respectively (Figure 3C,D).
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Figure 3. Photosynthetic parameters inferred from the JIP test study of chlorophyll fluorescence
transients. Change of specific energy fluxes per PS II reaction center (RC) as (A) Trapping (TR0/RC),
(B) Dissipation (DI0/RC), and (C) Electron transport (ET0/RC) and for (D) yields as quantum yields
of electron transport (ETo/CS) in wheat leaves at 30 DAS. Plants were treated with MeJA (10 µM)
at 42 ◦C (heat stress) or 25 ◦C (no stress). Data are presented as mean ± SE (n = 4). Significantly
different values between control and treatments are marked with an asterisk (* p < 0.05, ** p < 0.01),
as determined by Tukey’s test. DAS, days after sowing; HS, heat stress; MeJA, methyl jasmonate.

3.5. Impact of MeJA on Photosynthesis and Growth under Heat Stress or without Stress

Earlier studies have shown that MeJA regulates many aspects of plant development
by involving photosynthetic characteristics [15,18]. We investigated the role of MeJA in
improving the photosynthetic capacity in wheat. It has been reported that MeJA exerts a
positive effect in response to abiotic stress [11,14]. To test the role of MeJA on photosynthesis
and growth under heat stress, we treated wheat plants with 10 µM MeJA. Our results
showed that heat stress-treated plants showed a decline in Pn, Ci, and gs by 34.5%, 30.4%,
and 26.4%, respectively, compared to control. Application of MeJA significantly increased
these parameters (Pn, Ci, and gs) under normal conditions compared to heat stress and
control. However, MeJA treatment maximally benefitted the plants under heat stress and
maximally alleviated the reduction in Pn, Ci, and gs by 112.2% and 38.8%, 75.6% and
22.1%, and 65.3% and 21.6% compared to heat stress and control, respectively. These results
verified that MeJA could increase the photosynthetic efficiency under heat stress. Heat
stress reduced leaf area, plant fresh and dry mass by 43.3%, 47.4%, and 42.9%, respectively,
compared to control. An individual dose of MeJA was effective in increasing leaf area,
plant fresh and dry mass in the lack of heat stress. However, the maximal increase in the
leaf area and plant fresh and dry mass by 32.6%, 34.6%, and 34.9% compared to control was
noted with the application of MeJA to the heat-treated plants and proved more effective in
lessening the effect of heat stress in wheat plants (Table 6).
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Table 6. Net photosynthesis, intercellular CO2 concentration, stomatal conductance, leaf area, plant fresh and dry weight of
wheat leaves at 30 DAS. Plants were treated with MeJA (10 µM) at 42 ◦C (heat stress) or 25 ◦C (no stress). Data are presented
as mean ± SE (n = 4). Significantly different values between control and treatments are marked with an asterisk (* p < 0.05,
** p < 0.01, *** p < 0.001), determined by Tukey’s test. Chl, chlorophyll; DAS, days after sowing; FW, fresh weight; HS, heat
stress; MeJA, methyl jasmonate.

Treatments

Parameters Control HS MeJA MeJA + HS

Net photosynthesis
(µmol CO2 m−2 s−1) 16.2 ± 0.91 10.6 ± 0.52 *** 20.5 ± 095 ** 22.5 ± 0.99 ***

Intercellular CO2 concentration
(µmol CO2 mol−1) 230 ± 9.1 160 ± 7.3 ** 258 ± 10.3 ** 281 ± 11.1 **

Stomatal conductance
(mmol H2O m−2 s−1) 310 ± 12.3 228 ± 8.7 ** 345 ± 13.5 ** 377 ± 14.1 **

Leaf area
(cm2 Plant−1) 106 ± 4.1 60.1 ± 2.9 *** 123 ± 4.3 ** 140.6 ± 4.9 ***

Plant fresh weight
(g Plant−1) 5.37 ± 0.09 2.82 ± 0.05 ** 6.01 ± 0.10 * 7.23 ± 0.11 **

Plant dry weight
(g Plant−1) 0.808 ± 0.04 0.461 ± 0.01 ** 0.897 ± 0.06 * 1.090 ± 0.09 **

3.6. Effect of MeJA on D1 Protein Content Abundance and Gene Expression Relevant to the
Photosynthetic System

The D1 protein constitutes the core of the PS II reaction center [2,5], and many studies
have indicated that the PS II center in chloroplasts is the part that is the most easily damaged
by environmental stresses [9]. Therefore, to identify the role of MeJA in the PS II system and
in the maintenance of efficient turnover of D1 protein, the abundance of the PS II reaction
center D1 protein in wheat leaves was analyzed. Our results suggest that the abundance of
D1 protein in heat-treated leaves decreased significantly with respect to that in the control
(Figure 4A,B). In contrast, with the application of MeJA, D1 protein abundance increased
significantly compared to control and heat-stressed plants. The maximal increase in the
abundance of D1 protein obtained with MeJA in heat-treated leaves was of 57.1% and
35.6% compared to heat-stressed and control leaves, respectively, and suggested that the
recovery of D1 protein was effectively induced by MeJA in comparison with control. The
original Immunoblot image is given in the Figure S1.

Exogenous application of MeJA modulates the photosynthetic efficiency and the
expression of PS II genes [15]. Therefore, we tested changes in the expression levels of PS II
genes upon exogenous application of MeJA under heat stress. The photosynthetic system
was examined to obtain the expression levels of psbA, psbB, and psbC genes, encoding
D1 protein, CP47, and CP43, to explore the protective role of MeJA in wheat leaves in
heat-stressed plants. We observed that the application of MeJA enhanced the expression of
psbA and psbB significantly, but it did not affect psbC levels under normal conditions. Heat
stress decreased the expression of genes compared to control. However, MeJA under heat
stress strongly stimulated psbA and psbB expression, while the effect on psbC expression
was lower compared to that on psbA and psbB (Figure 5A–C).
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Figure 5. Relative expression of the genes (A) psbA; (B) psbB, and (C) psbC in wheat leaves at 30 DAS. Plants were treated
with MeJA (10 µM) at 42 ◦C (heat stress) or 25 ◦C (no stress). Results are presented relative to the respective controls (control,
1). Data are presented as mean ± SE (n = 4). Significantly different values between control and treatments are marked with
an asterisk (* p < 0.05, ** p < 0.01, *** p < 0.001), as determined by Tukey’s test. DAS, days after sowing; HS, heat stress;
MeJA, methyl jasmonate.

4. Discussion

Heat stress causes damage in plants’ photosynthetic apparatus, deterioration of leaf
function, and reduction of yield. Degradation of chloroplasts and damage of PS II are
important factors that affect photosynthesis. These aspects are currently the focus of
research to understand the influence of stress on plants. Exogenous application of MeJA
markedly regulates numerous key biochemical, physiological, and molecular processes
in response to abiotic stress [14,46,47]. However, the effects of MeJA on PS II in wheat
under heat stress are less known. Therefore, the present research was designed to acquire
knowledge on how MeJA protects PS II and maintains the stability of D1 protein by
regulating the expression of relevant genes during heat stress.
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4.1. MeJA Increases Antioxidant System Activity to Mitigate the Oxidative Damage Induced by
Heat Stress

Heat stress is one of the reasons for the accumulation of ROS such as H2O2 and
superoxide ions, oxy-intermediates that cause cellular damage through the oxidation of
lipids, proteins, and nucleic acids. The present study shows that exogenous MeJA markedly
increased the activity of the antioxidant enzymes CAT and APX, which led to efficient
detoxification of ROS and decreased lipid peroxidation in membranes under stress. Plants
have developed complex defense systems as enzymatic antioxidants under heat stress;
SOD changes superoxide ions into H2O2 and O2; then, CAT mainly changes H2O2 into
H2O and O2 that is produced by photorespiration and β-oxidation of fatty acids, while GR
and APX catalyze the transformation of H2O2 to H2O through dismutation [8]. Thus, we
speculated that enhanced CAT, APX, GR, and SOD enzyme activities upon MeJA treatment
played an effective role in the scavenging of O2

−and H2O2. Lang et al. [14] reported that
MeJA increased the activity of antioxidant enzymes and reversed the harmful effect of salt
stress in Glycyrrhiza uralensis. Similarly, MeJA has been reported to increase the activity of
POD and SOD in Brassica napus [46], of CAT, POD, and APX in Citrus limon [48], and of CAT,
POX, and APX in Fragaria× ananassa ‘Camarosa’ [49]. Remarkably, our results indicate that
MeJA improved ROS-scavenging ability in wheat plants and exerted progressive effects on
the improvement of plant resistance under heat stress.

4.2. MeJA Improved the Photosynthetic Efficiency under Heat Stress

The photosynthetic pigments Chl a and Chl b are the main pigments in leaves’ pho-
tosynthesis process, indicative of the physiological state of plants [32,50]. Both Chl a
and Chl b absorb light energy, but only Chl a in the excited state transforms light energy
into electrical energy and plays an important role in managing the stability of the light-
harvesting complex related to PS II and in regulating the size of the photosynthetic antenna
in plants [51]. Heat stress decreased the content of Chl a, Chl b, total Chl, carotenoid, and
Chl a-to-Chl b ratio considerably (Table 4). The disturbance of Chl synthesis was linked
to the decrease in Chl content in response to high temperature and cadmium stress [3,52].
Changes in the Chl a/b ratio are usually associated with changes in the size of the light-
harvesting antenna of PS II. The results showed that the decrease of Chl content by heat
stress was enhanced by MeJA. In addition, the Chl a/b ratio was higher under heat stress
after MeJA treatment. Exogenous MeJA may act as a regulator inhibiting the disintegration
of Chl molecules and protecting the photosynthetic antenna and PS II structure, thus
enhancing the heat tolerance and photosynthetic efficacy of wheat through increasing the
activity of antioxidant enzymes that scavenge ROS. These results are related to previous
findings indicating that MeJA application protected the degradation of photosynthetic
pigments under environmental stresses [8,14]. It was reported that jasmonate increased Chl
a content, which is the direct photon donor to the RCs of both PS II and PS I systems [53].
Enhanced content of Chl a over Chl b helps sustain the photosynthetic capacity at a greater
level, which promotes the accumulation of carbohydrates, after both jasmonate and MeJA
treatments [15].

Increased Chl levels together with enhanced protein levels increased Fo in the plants
(Tables 4 and 5). These results are also supported by the chlorophyll fluorescence data,
which showed a decrease in PS II quantum efficiency and yield (Table 5; Figures 1–3). High
temperature influences electron transport, which damages the function of PS II [41,54]. For
the development of heat tolerance, wheat leaves were treated with MeJA, and then Chl
fluorescence transients were examined by the JIP test (Figure 2; Table 5). Chl fluorescence
kinetics transients provided additional data regarding the photochemical reaction in photo-
synthesis, mainly for the PS II donor side and the receptor side with RCs [41,55]. According
to the JIP test, heat stress at 42 ◦C caused the impairment of the PS II donor side and
an overreduction of the PS II acceptor side compared with those at optimal temperature
(25 ◦C), resulting in a greater use of the excitation energy that decreased the stability of
the photosystem [38] and altered the amplitudes O, J, I, and p, as observed in the OJIP
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curve. A significant difference upon application of MeJA under heat stress was evident
when examining the OJIP curve and the data of chlorophyll a fluorescence, shown in
Figures 2 and 3 and Table 5. This difference indicates that MeJA promotes heat resistance
by protecting the PS II in wheat leaves through increasing quantum yield and efficiency.
Heat stress lowers the stability of the PS II system [38], thereby leading to the decrease of
PI. The performance index shows the photosynthetic capacity based on light absorption
and is the most sensitive parameter in the OJIP curve. It comprises the maximum quantum
yield of primary photochemistry, possibly related to the capability to reduce an electron
acceptor at the end of PS I, and the RC/ ABS ratio or includes light absorption, trapping,
and transfer excitation energy in electron transport [38,56,57]. The results showed that
plants under heat stress did not adjust their light absorption and consumption, causing
adverse effects on the RC. The present research shows that the application of MeJA had a
beneficial impact on PI, which was higher compared to heat stress (Table 5). The application
of MeJA influenced the trapped excitation and electron transport flux per RC, leading to
normal levels. This proves that MeJA augmented the active RC and reduced the damage on
RC in heat stress. In MeJA-treated plants under heat stress, PI and the RC/ABS ratio were
higher than in the control (Table 5), suggesting improved stability of the PS II system due
to comparatively higher stability of RCs, which contributed to higher PI in MeJA-treated
plants exposed to heat stress. The results for PS II are consistent with those of studies on
spermidine and nitric oxide application for the mitigation of PS II damage in tall fescue
under heat stress [6,58].

The energy fluxes per RC, i.e., TR0/RC and DI0/RC, were higher, but ET0/RC and
yield (ETo/CS) were reduced under heat stress (Figure 3). The results showed that the
electron transportation efficiency and the function of Chl in PS II decreased under heat
stress, but the application of MeJA remarkably improved ET0/RC and ETo/CS. Exogenous
MeJA had a favorable effect on the acceptor and donor sides of PS II under heat stress.
In addition, MeJA protected the RC of PS II and lessened the damage to the thylakoid
protein complex organization by increasing Fv/Fm and qP. Exogenous MeJA protected
the RCs, which were damaged under heat stress, and increased the size of light-harvesting
antennas in the plants due to the increase of Chl molecules. Furthermore, the decrease
in chlorophyll a fluorescence and the reduced qP are accountable for the decreased CO2
assimilation under heat stress. MeJA worked as regulator in the stomatal response and
improved Pn, Ci, gs, and the leaf area in plants under heat stress (Table 6), improving the
efficiency of photosynthesis.

4.3. MeJA Increases D1 Protein Content and Gene Expression Relevant to the
Photosynthetic System

Previous studies have shown that the PS II reaction center in chloroplasts, mainly, the
D1 protein, was easily damaged by stresses [2,9]. Consistent with previous reports, the
present study also showed that D1 protein, a sensitive component of the photosystem, was
damaged by heat stress. It is important to maintain conformation stability of PS II RCs;
therefore, D1 protein damage causes alteration of PS II RC conformation, electron transfer
disruption, and destruction of PS II RCs [5,59,60]. The protection of the photosynthetic
apparatus mainly depends on the stability of D1 under stress. Therefore, in the present
study, wheat leaves were treated with MeJA under heat stress to examine the abundance of
D1 protein and its function in PS II. It was possible that the damage of D1 protein and the
repair of D1 protein under heat stress were reversible. However, in the presence of MeJA
under heat stress, the level of D1 protein was much higher than in control and heat-stressed
plants, indicating that MeJA treatment significantly reduced D1 protein degradation under
heat stress by regulating enzymatic antioxidants. MeJA treatment not only reduced D1
protein damage or PS II function under heat stress, but also more efficiently restored D1
protein levels and PS II compared to control plants after heat stress, which was verified by
the Fv/Fm results (Table 5). The application of MeJA to the heat-treated plants may increase
D1 protein abundance more effectively and stimulate the assembly of PS II RCs through
scavenging ROS by enhancing enzymatic antioxidants and increasing PS II activity, as PS II
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RC proteins are the main targets of ROS under stress responsible for the decrease in PS II
function [60,61]. The mechanisms of the recovery of D1 protein levels and PS II function
are not simple, as they are not just involved in the reducing the injured proteins but, also
involved in the synthesis of new proteins, in particular in relation to psbA gene expression
in chloroplasts. Therefore, further experiments were set up to analyze gene expression and
determine the mechanisms influencing the stability and repair of D1 protein in the presence
of MeJA under heat stress. The damaged D1 protein RCs under heat stress disturbed energy
utilization and led to a reduction in CP43 and CP47 (psbC- and psbB-encoded proteins
respectively), which are main antenna protein complexes of the PS II system [62,63]. Hence,
the protection of D1 under heat stress is vital for the RC of PS II. The application of MeJA
stimulated CP47 transcription and increased the function of RC to some extent. The protein
D1 encoded by the psbA gene is a crucial element of the PS II system, and an assortment of
cofactors involved in electron transfer and charge separation, are collectively organized
in the PS II structure [64,65]. Our results showed that in the presence of MeJA, psbA gene
expression increased significantly, which could be responsible for PS II stability under
heat stress, as the psbA gene may participate in the restoration and renewal of D1 protein,
damaged under heat stress. As shown in Table 3, the application of MeJA stimulated
antioxidant enzyme activities, helped the scavenging of oxidative stress, upregulated the
expression of genes coding for proteins involved in the PS II system (Figure 5), enhanced the
removal of the negative effects of heat stress, and eventually increased the photosynthetic
efficiency. Thus, MeJA protection of the photosystem under heat stress was reciprocated
reflected in the increased abundance of D1 protein and overexpression of the psbA gene.
In summary, MeJA reduced PS II core proteins degradation under heat stress, thereby
contributing to heat tolerance in wheat plants.

5. Conclusions

The current study revealed that MeJA is efficient in the protection of the PS II complex
under heat stress. Exogenous MeJA decreased heat-induced oxidative stress through
increased activity of enzymatic antioxidants that protected the photosynthetic apparatus
and enhanced chlorophyll content, chlorophyll fluorescence, and CO2 assimilation. These
findings indicate that MeJA supply exerted a positive effect by maintaining the stability
of chloroplast D1 protein in the PS II complex and enhancing the expression of relevant
genes. This study suggests that MeJA can be utilized to enhance PS II efficiency and overall
protection of photosynthesis in adverse climatic conditions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antiox10081216/s1, Figure S1: Immunoblot analyses of thylakoid protein (D1) obtained from
wheat leaves 30 days after sowing. Plants were treated with MeJA (10 µM) at 42 ◦C (heat stress)
or 25 ◦C (no stress). Immunoblotting was performed with specific antibodies raised against the
D1 protein.
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65. Adamiec, M.; Misztal, L.; Kosicka, E.; Paluch-Lubawa, E.; Luciński, R. Arabidopsis thaliana egy2 mutants display altered expression
level of genes encoding crucial photosystem II proteins. J. Plant Physiol. 2018, 231, 155–167. [CrossRef] [PubMed]

http://doi.org/10.3389/fpls.2016.00453
http://doi.org/10.3390/plants10050887
http://www.ncbi.nlm.nih.gov/pubmed/33924904
http://doi.org/10.1038/srep13956
http://www.ncbi.nlm.nih.gov/pubmed/26400371
http://doi.org/10.1007/s11120-013-9883-5
http://www.ncbi.nlm.nih.gov/pubmed/23832593
http://doi.org/10.1007/s11120-008-9372-4
http://doi.org/10.3389/fpls.2013.00433
http://www.ncbi.nlm.nih.gov/pubmed/24194743
http://doi.org/10.1073/pnas.1618922114
http://doi.org/10.1078/0176-1617-00260
http://doi.org/10.1038/s41598-021-92086-2
http://www.ncbi.nlm.nih.gov/pubmed/34135422
http://doi.org/10.1111/j.1365-3040.1994.tb00284.x
http://doi.org/10.1016/j.jplph.2018.09.010
http://www.ncbi.nlm.nih.gov/pubmed/30268696

	Introduction 
	Materials and Methods 
	Measurement of Reactive Oxygen Species Content and Lipid Peroxidation 
	Assay of Antioxidant Enzymes Activities 
	Protein and Pigment Analysis 
	Chlorophyll a Fluorescence Measurement 
	Analysis of OJIP Chlorophyll a Fluroscense Transient 
	Photosynthetic and Growth Parameters 
	Western Blot Analysis 
	Quantitative RT-PCR Analysis 
	Statistical Analysis 

	Results 
	Screening of MeJA Concentration for Protection of Plants against Heat-Induced Oxidative Stress 
	MeJA Enhanced Antioxidant Enzymes Activity and Reduced Oxidative Damage under Heat Stress 
	Pigments and Protein Content 
	Influence of MeJA on Chlorophyll a Fluorescence 
	Impact of MeJA on Photosynthesis and Growth under Heat Stress or without Stress 
	Effect of MeJA on D1 Protein Content Abundance and Gene Expression Relevant to the Photosynthetic System 

	Discussion 
	MeJA Increases Antioxidant System Activity to Mitigate the Oxidative Damage Induced by Heat Stress 
	MeJA Improved the Photosynthetic Efficiency under Heat Stress 
	MeJA Increases D1 Protein Content and Gene Expression Relevant to the Photosynthetic System 

	Conclusions 
	References

